-
1
-
-
77954665728
-
How to explain individual classification decisions
-
D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Müller. How to explain individual classification decisions. JMLR, 11:1803–1831, 2010.
-
(2010)
JMLR
, vol.11
, pp. 1803-1831
-
-
Baehrens, D.1
Schroeter, T.2
Harmeling, S.3
Kawanabe, M.4
Hansen, K.5
Müller, K.-R.6
-
3
-
-
0034844730
-
Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images
-
Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In Proc. ICCV, volume 2, pages 105–112, 2001.
-
(2001)
Proc. ICCV
, vol.2
, pp. 105-112
-
-
Boykov, Y.1
Jolly, M.P.2
-
4
-
-
84866714584
-
Multi-column deep neural networks for image classification
-
D. C. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In Proc. CVPR, pages 3642–3649, 2012.
-
(2012)
Proc. CVPR
, pp. 3642-3649
-
-
Ciresan, D.C.1
Meier, U.2
Schmidhuber, J.3
-
5
-
-
77949524387
-
-
Technical Report 1341, University of Montreal, Jun
-
D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a deep network. Technical Report 1341, University of Montreal, Jun 2009.
-
(2009)
Visualizing Higher-Layer Features of A Deep Network
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Vincent, P.4
-
6
-
-
51949101231
-
A discriminatively trained, multiscale, deformable part model
-
P. Felzenszwalb, D. Mcallester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In Proc. CVPR, 2008.
-
(2008)
Proc. CVPR
-
-
Felzenszwalb, P.1
Mcallester, D.2
Ramanan, D.3
-
7
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527–1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
8
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106–1114, 2012.
-
(2012)
NIPS
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
9
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, and A. Ng. Building high-level features using large scale unsupervised learning. In Proc. ICML, 2012.
-
(2012)
Proc. ICML
-
-
Le, Q.1
Ranzato, M.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.6
Dean, J.7
Ng, A.8
-
10
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
11
-
-
79959771606
-
Improving the fisher kernel for large-scale image classification
-
F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for large-scale image classification. In Proc. ECCV, 2010.
-
(2010)
Proc. ECCV
-
-
Perronnin, F.1
Sánchez, J.2
Mensink, T.3
-
12
-
-
85062870964
-
Deep fisher networks and class saliency maps for object classification and localisation
-
K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Fisher networks and class saliency maps for object classification and localisation. In ILSVRC workshop, 2013. URL http://image-net.org/challenges/LSVRC/2013/slides/ILSVRC_az.pdf.
-
(2013)
ILSVRC Workshop
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
13
-
-
84906341064
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901v3, 2013.
-
(2013)
CoRR
-
-
Zeiler, M.D.1
Fergus, R.2
|