메뉴 건너뛰기




Volumn , Issue , 2014, Pages

Deep inside convolutional networks: Visualising image classification models and saliency maps

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; IMAGE SEGMENTATION; VISUALIZATION;

EID: 85083953896     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2666)

References (13)
  • 3
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images
    • Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In Proc. ICCV, volume 2, pages 105–112, 2001.
    • (2001) Proc. ICCV , vol.2 , pp. 105-112
    • Boykov, Y.1    Jolly, M.P.2
  • 4
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • D. C. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In Proc. CVPR, pages 3642–3649, 2012.
    • (2012) Proc. CVPR , pp. 3642-3649
    • Ciresan, D.C.1    Meier, U.2    Schmidhuber, J.3
  • 6
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • P. Felzenszwalb, D. Mcallester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In Proc. CVPR, 2008.
    • (2008) Proc. CVPR
    • Felzenszwalb, P.1    Mcallester, D.2    Ramanan, D.3
  • 7
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527–1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 8
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106–1114, 2012.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 10
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 11
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for large-scale image classification. In Proc. ECCV, 2010.
    • (2010) Proc. ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 12
    • 85062870964 scopus 로고    scopus 로고
    • Deep fisher networks and class saliency maps for object classification and localisation
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Fisher networks and class saliency maps for object classification and localisation. In ILSVRC workshop, 2013. URL http://image-net.org/challenges/LSVRC/2013/slides/ILSVRC_az.pdf.
    • (2013) ILSVRC Workshop
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 13
    • 84906341064 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901v3, 2013.
    • (2013) CoRR
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.