메뉴 건너뛰기




Volumn 63, Issue 7, 2016, Pages 1505-1516

Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

Author keywords

deep learning; Deformable image registration; Hierarchical feature representation

Indexed keywords

DEFORMATION; FEATURE EXTRACTION; IMAGE REGISTRATION; LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING; UNSUPERVISED LEARNING;

EID: 84978033606     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2015.2496253     Document Type: Article
Times cited : (271)

References (70)
  • 1
    • 14044270157 scopus 로고    scopus 로고
    • Non-rigid image registration: Theory and practice
    • W. R. Crum et al., "Non-rigid image registration: Theory and practice," Brit. J. Radiol., vol. 77, pp. S140-153, 2004.
    • (2004) Brit. J. Radiol. , vol.77 , pp. S140-153
    • Crum, W.R.1
  • 2
    • 0029197929 scopus 로고
    • Spatial registration and normalization of images
    • K. J. Friston et al., "Spatial registration and normalization of images," Human Brain Mapping, vol. 3, pp. 165-189, 1995.
    • (1995) Human Brain Mapping , vol.3 , pp. 165-189
    • Friston, K.J.1
  • 3
    • 64949166881 scopus 로고    scopus 로고
    • Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
    • A. Klein et al., "Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration," NeuroImage, vol. 46, pp. 786-802, 2009.
    • (2009) NeuroImage , vol.46 , pp. 786-802
    • Klein, A.1
  • 4
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: Hierarchical attribute matching mechanism for elastic registration
    • Nov.
    • D. Shen and C. Davatzikos, "HAMMER: Hierarchical attribute matching mechanism for elastic registration," IEEE Trans. Med. Imag., vol. 21, no. 11, pp. 1421-1439, Nov. 2002.
    • (2002) IEEE Trans. Med. Imag. , vol.21 , Issue.11 , pp. 1421-1439
    • Shen, D.1    Davatzikos, C.2
  • 5
    • 0043237770 scopus 로고    scopus 로고
    • Image registration methods: A survey
    • B. Zitová and J. Flusser, "Image registration methods: A survey," Image Vis. Comput., vol. 21, pp. 977-1000, 2003.
    • (2003) Image Vis. Comput. , vol.21 , pp. 977-1000
    • Zitová, B.1    Flusser, J.2
  • 7
    • 34548832230 scopus 로고    scopus 로고
    • A fast diffeomorphic image registration algorithm
    • J. Ashburner, "A fast diffeomorphic image registration algorithm," NeuroImage, vol. 38, pp. 95-113, 2007.
    • (2007) NeuroImage , vol.38 , pp. 95-113
    • Ashburner, J.1
  • 8
    • 33746375374 scopus 로고    scopus 로고
    • Symmetric diffeomorphic image registration: Evaluating automated labeling of elderly and neurodegenerative cortex and frontal lobe
    • B. Avants et al., "Symmetric diffeomorphic image registration: Evaluating automated labeling of elderly and neurodegenerative cortex and frontal lobe," in Proc. Int. Workshop Biomed. Image Registration, 2006, pp. 50-57.
    • (2006) Proc. Int. Workshop Biomed. Image Registration , pp. 50-57
    • Avants, B.1
  • 9
    • 0033169211 scopus 로고    scopus 로고
    • Nonrigid registration using free-form deformations: Application to breast MR images
    • Aug.
    • D. Rueckert et al., "Nonrigid registration using free-form deformations: Application to breast MR images," IEEE Trans. Med. Imag., vol. 18, no. 8, pp. 712-721, Aug. 1999.
    • (1999) IEEE Trans. Med. Imag. , vol.18 , Issue.8 , pp. 712-721
    • Rueckert, D.1
  • 10
    • 63849264858 scopus 로고    scopus 로고
    • Diffeomorphic demons: Efficient non-parametric image registration
    • T. Vercauteren et al., "Diffeomorphic demons: Efficient non-parametric image registration," NeuroImage, vol. 45, pp. S61-S72, 2009.
    • (2009) NeuroImage , vol.45 , pp. S61-S72
    • Vercauteren, T.1
  • 11
    • 77950594481 scopus 로고    scopus 로고
    • Attribute vector guided groupwise registration
    • Q. Wang et al., "Attribute vector guided groupwise registration," NeuroImage, vol. 50, pp. 1485-1496, 2010.
    • (2010) NeuroImage , vol.50 , pp. 1485-1496
    • Wang, Q.1
  • 12
    • 84856690675 scopus 로고    scopus 로고
    • Image similarity and tissue overlaps as surrogates for image registration accuracy: Widely used but unreliable
    • Feb.
    • T. Rohlfing, "Image similarity and tissue overlaps as surrogates for image registration accuracy: Widely used but unreliable," IEEE Trans. Med. Imag., vol. 31, no. 2, pp. 153-160, Feb. 2012.
    • (2012) IEEE Trans. Med. Imag. , vol.31 , Issue.2 , pp. 153-160
    • Rohlfing, T.1
  • 13
    • 84893782766 scopus 로고    scopus 로고
    • S-HAMMER: Hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images
    • G. Wu et al., "S-HAMMER: Hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images," Human Brain Mapping, vol. 35, pp. 1044-1060, 2013.
    • (2013) Human Brain Mapping , vol.35 , pp. 1044-1060
    • Wu, G.1
  • 14
    • 71849096928 scopus 로고    scopus 로고
    • TPS-HAMMER: Improving HAMMER registration algorithm by soft correspondence matching and Thin-plate splines based deformation interpolation
    • G. Wu et al., "TPS-HAMMER: Improving HAMMER registration algorithm by soft correspondence matching and Thin-plate splines based deformation interpolation," NeuroImage, vol. 49, pp. 2225-2233, 2010.
    • (2010) NeuroImage , vol.49 , pp. 2225-2233
    • Wu, G.1
  • 15
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: Hierarchical attribute matching mechanism for elastic registration
    • Nov.
    • D. Shen and C. Davatzikos, "HAMMER: Hierarchical attribute matching mechanism for elastic registration," IEEE Trans. Med. Imag., vol. 21, no. 11, pp. 1421-1439, Nov. 2002.
    • (2002) IEEE Trans. Med. Imag. , vol.21 , Issue.11 , pp. 1421-1439
    • Shen, D.1    Davatzikos, C.2
  • 16
    • 33644636043 scopus 로고    scopus 로고
    • Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method
    • Mar.
    • Y. Zhan and D. Shen, "Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method," IEEE Trans. Image Process., vol. 25, no. 3, pp. 256-272, Mar. 2006.
    • (2006) IEEE Trans. Image Process. , vol.25 , Issue.3 , pp. 256-272
    • Zhan, Y.1    Shen, D.2
  • 17
    • 84862907523 scopus 로고    scopus 로고
    • Feature-based groupwise registration by hierarchical anatomical correspondence detection
    • G. Wu et al., "Feature-based groupwise registration by hierarchical anatomical correspondence detection," Human Brain Mapping, vol. 33, pp. 253-271, 2012.
    • (2012) Human Brain Mapping , vol.33 , pp. 253-271
    • Wu, G.1
  • 18
    • 33748095663 scopus 로고    scopus 로고
    • Learning-based deformable registration of MR brain images
    • Sep.
    • G. Wu et al., "Learning-based deformable registration of MR brain images," IEEE Trans. Med. Imag., vol. 25, no. 9, pp. 1145-1157, Sep. 2006.
    • (2006) IEEE Trans. Med. Imag. , vol.25 , Issue.9 , pp. 1145-1157
    • Wu, G.1
  • 19
    • 34548432628 scopus 로고    scopus 로고
    • Learning best features and deformation statistics for hierarchical registration of MR brain images
    • G. Wu et al., "Learning best features and deformation statistics for hierarchical registration of MR brain images," Inf. Process. Med. Imag., vol. 20, pp. 160-171, 2007.
    • (2007) Inf. Process. Med. Imag. , vol.20 , pp. 160-171
    • Wu, G.1
  • 20
    • 78951494198 scopus 로고    scopus 로고
    • DRAMMS: Deformable registration via attribute matching and Mutual-saliency weighting
    • Y. Ou et al., "DRAMMS: Deformable registration via attribute matching and Mutual-saliency weighting," Med. Image Anal., vol. 15, pp. 622-639, 2011.
    • (2011) Med. Image Anal. , vol.15 , pp. 622-639
    • Ou, Y.1
  • 23
    • 84856255784 scopus 로고    scopus 로고
    • Learning-based non-rigid image registration using prior joint intensity distributions with graph-cuts
    • R. W. K. So and A. C. S. Chung, "Learning-based non-rigid image registration using prior joint intensity distributions with graph-cuts," presented at the 18th Int. Conf. Image Process., Brussels, Belgium, 2011.
    • (2011) 18th Int Conf. Image Process., Brussels, Belgium
    • So, R.W.K.1    Chung, A.C.S.2
  • 25
    • 84880956855 scopus 로고    scopus 로고
    • Automatic hippocampus segmentation of 7.0 tesla MR images by combining multiple atlases and auto-context models
    • M. Kim et al., "Automatic hippocampus segmentation of 7.0 tesla MR images by combining multiple atlases and auto-context models," NeuroImage, vol. 83, pp. 335-345, 2013.
    • (2013) NeuroImage , vol.83 , pp. 335-345
    • Kim, M.1
  • 26
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • P. Comon, "Independent component analysis, a new concept?" Signal Process., vol. 36, pp. 287-314, 1994.
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Comon, P.1
  • 28
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum et al., " A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, pp. 640-646, 2000.
    • (2000) Science , vol.290 , pp. 640-646
    • Tenenbaum, J.B.1
  • 29
    • 0037002322 scopus 로고    scopus 로고
    • A support vector machine approach for detection of microcalcifications
    • Dec.
    • I. El-Naqa et al., "A support vector machine approach for detection of microcalcifications," IEEE Trans. Med. Imag., vol. 21, no. 12, pp. 1552-1563, Dec. 2002.
    • (2002) IEEE Trans. Med. Imag. , vol.21 , Issue.12 , pp. 1552-1563
    • El-Naqa, I.1
  • 30
    • 50249093806 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • H. Larochelle et al., "An empirical evaluation of deep architectures on problems with many factors of variation," presented at the 24th Int. Conf. Mach. Learning, Corvalis, OR, USA, 2007.
    • (2007) 24th Int Conf. Mach. Learning, Corvalis, OR, USA
    • Larochelle, H.1
  • 31
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, p. 2323, 2000.
    • (2000) Science , vol.290 , pp. 2323
    • Roweis, S.T.1    Saul, L.K.2
  • 32
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, pp. 1373-1396, 2003.
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 33
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, vol. 381, pp. 607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 34
    • 84881233012 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Y. Bengio et al., "Representation learning: A review and new perspectives," Arxiv, 2012.
    • (2012) Arxiv
    • Bengio, Y.1
  • 37
    • 33745805403 scopus 로고    scopus 로고
    • Afast learning algorithm for deep belief nets
    • G. E. Hinton et al., "Afast learning algorithm for deep belief nets," Neural Comput., vol. 18, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1
  • 38
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, pp. 504-507, 2006.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 39
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • Q. V. Le et al., "Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis," presented at the IEEE Conf. Comput. Vision Pattern Recog., Providence, RI, USA, 2011.
    • (2011) IEEE Conf. Comput. Vision Pattern Recog., Providence, RI, USA
    • Le, Q.V.1
  • 41
    • 79957933221 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee et al., "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," presented at the 26th Annu. Int. Conf. Mach. Learning, Montreal, QC, Canada, 2009.
    • (2009) 26th Annu Int. Conf. Mach. Learning, Montreal, QC, Canada
    • Lee, H.1
  • 42
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • H. Lee et al., "Unsupervised learning of hierarchical representations with convolutional deep belief networks," Commun. ACM, vol. 54, pp. 95-103, 2011.
    • (2011) Commun. ACM , vol.54 , pp. 95-103
    • Lee, H.1
  • 43
    • 0002263996 scopus 로고
    • Convolutional network for images, speech, time series
    • Cambridge, MA, USA: MIT Press
    • Y. LeCun and Y. Bengio, "Convolutional network for images, speech, time series," in TheHandbook Brain Theory Neural Networks. Cambridge, MA, USA: MIT Press, 1995.
    • (1995) The Handbook Brain Theory Neural Networks
    • LeCun, Y.1    Bengio, Y.2
  • 44
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
    • Aug.
    • H.-C. Shin et al., "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930-1943, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1930-1943
    • Shin, H.-C.1
  • 46
    • 37849038012 scopus 로고    scopus 로고
    • Construction of a 3D probabilistic atlas of human cortical structures
    • D. W. Shattuck et al., "Construction of a 3D probabilistic atlas of human cortical structures," NeuroImage, vol. 39, pp. 1064-1080, 2008.
    • (2008) Neuro Image , vol.39 , pp. 1064-1080
    • Shattuck, D.W.1
  • 47
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of mulitvariate observations
    • J. MacQueen, "Some methods for classification and analysis of mulitvariate observations," in Proc. 5th Berkeley Symp. Math. Statist. Probab., 1967, vol. 1, pp. 281-297.
    • (1967) Proc. 5th Berkeley Symp. Math. Statist. Probab. , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 49
    • 84887730796 scopus 로고    scopus 로고
    • Learning feature representations with K-means
    • New York, NY, USA: Springer
    • A. Coates and A. Y. Ng, "Learning feature representations with K-means," in Neural Networks: Tricks of the Trade. New York, NY, USA: Springer, 2012.
    • (2012) Neural Networks: Tricks of the Trade
    • Coates, A.1    Ng, A.Y.2
  • 50
    • 84898970836 scopus 로고    scopus 로고
    • Kernel PCA and denoising in feature space
    • S. Mika et al., "Kernel PCA and denoising in feature space," in Proc. Conf. Adv. Neural Inf. Process. Syst., 1999, vol. 11, pp. 536-542.
    • (1999) Proc. Conf. Adv. Neural Inf. Process. Syst. , vol.11 , pp. 536-542
    • Mika, S.1
  • 51
    • 0029182228 scopus 로고
    • Active shapemodels-Their training and application
    • T. F. Cootes et al., "Active shapemodels-Their training and application," Comput. Vis. Image Understanding, vol. 16, pp. 38-59, 1995.
    • (1995) Comput. Vis. Image Understanding , vol.16 , pp. 38-59
    • Cootes, T.F.1
  • 52
    • 0035363218 scopus 로고    scopus 로고
    • Active appearance models
    • Jun.
    • T. F. Cootes et al., "Active appearance models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp. 681-685, Jun. 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.6 , pp. 681-685
    • Cootes, T.F.1
  • 55
    • 0035507681 scopus 로고    scopus 로고
    • Saliency, scale and image description
    • T. Kadir and M. Brady, "Saliency, scale and image description," Int. J. Comput. Vis., vol. 45, pp. 83-105, 2001.
    • (2001) Int. J. Comput. Vis. , vol.45 , pp. 83-105
    • Kadir, T.1    Brady, M.2
  • 57
    • 33845418366 scopus 로고    scopus 로고
    • Image registration by local histogram matching
    • D. Shen, "Image registration by local histogram matching," Pattern Recog., vol. 40, pp. 1161-1172, 2007.
    • (2007) Pattern Recog. , vol.40 , pp. 1161-1172
    • Shen, D.1
  • 59
    • 77954233638 scopus 로고    scopus 로고
    • Registration of 4D cardiac CT sequences under trajectory constraints with multichannel diffeomorphic demons
    • Jul.
    • J. M. Peyrat et al., "Registration of 4D cardiac CT sequences under trajectory constraints with multichannel diffeomorphic demons," IEEE Trans Med. Imag., vol. 29, no. 7, pp. 1351-1368, Jul. 2010.
    • (2010) IEEE Trans Med. Imag. , vol.29 , Issue.7 , pp. 1351-1368
    • Peyrat, J.M.1
  • 61
    • 33845418366 scopus 로고    scopus 로고
    • Image registration by local histogram matching
    • Apr.
    • D. G. Shen, "Image registration by local histogram matching," Pattern Recog., vol. 40, pp. 1161-1172, Apr. 2007.
    • (2007) Pattern Recog. , vol.40 , pp. 1161-1172
    • Shen, D.G.1
  • 62
    • 34250830971 scopus 로고
    • Principal warps: Thin-plate splines and the decomposition of deformations
    • Jun.
    • F. L. Bookstein, "Principal warps: Thin-plate splines and the decomposition of deformations," IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 6, pp. 567-585, Jun. 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.6 , pp. 567-585
    • Bookstein, F.L.1
  • 63
    • 84863506007 scopus 로고    scopus 로고
    • LABEL: Pediatric brain extraction using learning-based meta-algorithm
    • F. Shi et al., "LABEL: Pediatric brain extraction using learning-based meta-algorithm," NeuroImage, vol. 62, pp. 1975-1986, 2012.
    • (2012) NeuroImage , vol.62 , pp. 1975-1986
    • Shi, F.1
  • 64
    • 77953171016 scopus 로고    scopus 로고
    • N4ITK: Improved N3 bias correction
    • Jun.
    • N. Tustison et al., "N4ITK: Improved N3 bias correction," IEEE Trans Med. Imag., vol. 29, no. 6, pp. 1310-1320, Jun. 2010.
    • (2010) IEEE Trans Med. Imag. , vol.29 , Issue.6 , pp. 1310-1320
    • Tustison, N.1
  • 65
    • 33748324803 scopus 로고    scopus 로고
    • New methods of MR image intensity standardization via generalized scale
    • A. Madabhushi and J. Udupa, "New methods of MR image intensity standardization via generalized scale," Med. Phys., vol. 33, pp. 3426-3434, 2006.
    • (2006) Med. Phys. , vol.33 , pp. 3426-3434
    • Madabhushi, A.1    Udupa, J.2
  • 66
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • New York, NY, USA: Springer
    • G. E. Hinton, "A practical guide to training restricted Boltzmann machines," in Neural Networks: Tricks of the Trade, vol. 7700. New York, NY, USA: Springer, 2012, pp. 599-619.
    • (2012) Neural Networks: Tricks of the Trade , vol.7700 , pp. 599-619
    • Hinton, G.E.1
  • 67
    • 37849038012 scopus 로고    scopus 로고
    • Construction of a 3D probabilistic atlas of human cortical structures
    • M. M. Shattuck et al., "Construction of a 3D probabilistic atlas of human cortical structures," NeuroImage, vol. 39, pp. 1064-1080, 2008.
    • (2008) NeuroImage , vol.39 , pp. 1064-1080
    • Shattuck, M.M.1
  • 68
    • 71849111470 scopus 로고    scopus 로고
    • Quantitative analysis of the hippocampus using images obtained from 7.0 T MRI
    • Z.-H. Cho et al., "Quantitative analysis of the hippocampus using images obtained from 7.0 T MRI," NeuroImage, vol. 49, pp. 2134-2140, 2010.
    • (2010) NeuroImage , vol.49 , pp. 2134-2140
    • Cho, Z.-H.1
  • 69
    • 46949103361 scopus 로고    scopus 로고
    • New brain atlas-Mapping the human brain in vivo with 7.0 T MRI and comparison with postmortem histology: Will these images change modern medicine?
    • Z.-H. Cho et al., "New brain atlas-Mapping the human brain in vivo with 7.0 T MRI and comparison with postmortem histology: Will these images change modern medicine?" Int. J. Imag. Syst. Technol., vol. 18, pp. 2-8, 2008.
    • (2008) Int. J. Imag. Syst. Technol. , vol.18 , pp. 2-8
    • Cho, Z.-H.1
  • 70
    • 33750054125 scopus 로고    scopus 로고
    • Simulating deformations ofMRbrain images for validation of Atlas-based segmentation and registration algorithms
    • Z. Xue et al., "Simulating deformations ofMRbrain images for validation of Atlas-based segmentation and registration algorithms," NeuroImage, vol. 33, pp. 855-866, 2006.
    • (2006) NeuroImage , vol.33 , pp. 855-866
    • Xue, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.