메뉴 건너뛰기




Volumn 8184 LNCS, Issue , 2013, Pages 1-8

Unsupervised deep learning for hippocampus segmentation in 7.0 Tesla MR images

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING; MEDICAL IMAGING;

EID: 84886731548     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-02267-3_1     Document Type: Conference Paper
Times cited : (23)

References (15)
  • 1
    • 28244485448 scopus 로고    scopus 로고
    • Segmentation of subcortical brain structures using fuzzy templates
    • Zhou, J., Rajapakse, J.C.: Segmentation of subcortical brain structures using fuzzy templates. NeuroImage 28(4), 915-924 (2005)
    • (2005) NeuroImage , vol.28 , Issue.4 , pp. 915-924
    • Zhou, J.1    Rajapakse, J.C.2
  • 2
    • 78649673803 scopus 로고    scopus 로고
    • Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation
    • Coupé, P., et al.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940-954 (2011)
    • (2011) NeuroImage , vol.54 , Issue.2 , pp. 940-954
    • Coupé, P.1
  • 3
    • 44549086707 scopus 로고    scopus 로고
    • FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using Large Deformation Diffeomorphic Metric Mapping
    • Khan, A.R., Wang, L., Beg, M.F.: FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using Large Deformation Diffeomorphic Metric Mapping. NeuroImage 41(3), 735-746 (2008)
    • (2008) NeuroImage , vol.41 , Issue.3 , pp. 735-746
    • Khan, A.R.1    Wang, L.2    Beg, M.F.3
  • 4
    • 64949122392 scopus 로고    scopus 로고
    • Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation
    • Chupin, M., et al.: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. NeuroImage 46(3), 749-761 (2009)
    • (2009) NeuroImage , vol.46 , Issue.3 , pp. 749-761
    • Chupin, M.1
  • 5
    • 54549100129 scopus 로고    scopus 로고
    • Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts
    • van der Lijn, F., et al.: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage 43(4), 708-720 (2008)
    • (2008) NeuroImage , vol.43 , Issue.4 , pp. 708-720
    • Van Der Lijn, F.1
  • 6
    • 71949096519 scopus 로고    scopus 로고
    • Fast and robust multi-atlas segmentation of brain magnetic resonance images
    • Lötjönen, J.M.P., et al.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49(3), 2352-2365
    • NeuroImage , vol.49 , Issue.3 , pp. 2352-2365
    • Lötjönen, J.M.P.1
  • 7
    • 71849111470 scopus 로고    scopus 로고
    • Quantitative analysis of the hippocampus using images obtained from 7.0 T MRI
    • Cho, Z.-H., et al.: Quantitative analysis of the hippocampus using images obtained from 7.0 T MRI. NeuroImage 49(3), 2134-2140 (2010)
    • (2010) NeuroImage , vol.49 , Issue.3 , pp. 2134-2140
    • Cho, Z.-H.1
  • 8
    • 79952071986 scopus 로고    scopus 로고
    • A learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain segmentation
    • Wang, H., et al.: A learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain segmentation. NeuroImage 55(3), 968-985 (2011)
    • (2011) NeuroImage , vol.55 , Issue.3 , pp. 968-985
    • Wang, H.1
  • 9
    • 58849116063 scopus 로고    scopus 로고
    • Automatic Subcortical Segmentation Using a Contextual Model
    • Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Springer, Heidelberg
    • Morra, J.H., Tu, Z., Apostolova, L.G., Green, A.E., Toga, A.W., Thompson, P.M.: Automatic Subcortical Segmentation Using a Contextual Model. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 194-201. Springer, Heidelberg (2008)
    • (2008) LNCS , vol.5241 , Issue.PART I , pp. 194-201
    • Morra, J.H.1    Tu, Z.2    Apostolova, L.G.3    Green, A.E.4    Toga, A.W.5    Thompson, P.M.6
  • 10
    • 77956051102 scopus 로고    scopus 로고
    • Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation
    • Tu, Z., Bai, X.: Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1744-1757 (2010)
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , pp. 1744-1757
    • Tu, Z.1    Bai, X.2
  • 11
    • 84866450569 scopus 로고    scopus 로고
    • Deformable segmentation via sparse representation and dictionary learning
    • Zhang, S., Zhan, Y., Metaxas, D.N.: Deformable segmentation via sparse representation and dictionary learning. Medical Image Analysis 16(7), 1385-1396 (2012)
    • (2012) Medical Image Analysis , vol.16 , Issue.7 , pp. 1385-1396
    • Zhang, S.1    Zhan, Y.2    Metaxas, D.N.3
  • 12
    • 82355192255 scopus 로고    scopus 로고
    • Towards robust and effective shape modeling: Sparse shape composition
    • Zhang, S., et al.: Towards robust and effective shape modeling: Sparse shape composition. Medical Image Analysis 16(1), 265-277 (2012)
    • (2012) Medical Image Analysis , vol.16 , Issue.1 , pp. 265-277
    • Zhang, S.1
  • 13
    • 69349090197 scopus 로고    scopus 로고
    • Learning Deep Architectures for AI
    • Bengio, Y.: Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2(1), 1-127 (2009)
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 14
    • 84886731259 scopus 로고    scopus 로고
    • Stacked Autoencoders for Unsupervised Feature Learning and Multiple Organ Detection in a Pilot Study Using 4D Patient Data
    • PrePrints
    • Shin, H.-C., et al.: Stacked Autoencoders for Unsupervised Feature Learning and Multiple Organ Detection in a Pilot Study Using 4D Patient Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 99(PrePrints), 1 (2012)
    • (2012) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.99 , pp. 1
    • Shin, H.-C.1
  • 15
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • Le, Q.V., et al.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2011)
    • (2011) 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
    • Le, Q.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.