-
1
-
-
84863867505
-
An edge-region force guided active shape approach for automatic lung field detection in chest radiographs
-
T. Xu, M. Mandal, R. Long, I. Cheng, and A. Basu, "An edge-region force guided active shape approach for automatic lung field detection in chest radiographs," Comput. Med. Imag. Graph., vol. 36, pp. 452-463, 2012.
-
(2012)
Comput. Med. Imag. Graph.
, vol.36
, pp. 452-463
-
-
Xu, T.1
Mandal, M.2
Long, R.3
Cheng, I.4
Basu, A.5
-
2
-
-
84871508045
-
A computer-aided diagnosis approach for emphysema recognition in chest radiography
-
G. Coppini, M. Miniati, S. Monti, M. Paterni, R. Favilla, and E. M. Ferdeghini, "A computer-aided diagnosis approach for emphysema recognition in chest radiography," Med. Eng. Phys., vol. 35, pp. 63-73, 2013.
-
(2013)
Med. Eng. Phys.
, vol.35
, pp. 63-73
-
-
Coppini, G.1
Miniati, M.2
Monti, S.3
Paterni, M.4
Favilla, R.5
Ferdeghini, E.M.6
-
3
-
-
33750250277
-
Segmenting lung fields in serial chest radiographs using both population and patient-specific shape statistics
-
Y. Shi, F. Qi, Z. Xue, K. Ito, H. Matsuo, and D. Shen, "Segmenting lung fields in serial chest radiographs using both population and patient-specific shape statistics," in Proc. MICCAI, pp. 83-91.
-
Proc. MICCAI
, pp. 83-91
-
-
Shi, Y.1
Qi, F.2
Xue, Z.3
Ito, K.4
Matsuo, H.5
Shen, D.6
-
4
-
-
0032215994
-
Knowledge-based method for segmentation and analysis of lung boundaries in chest X-ray images
-
M. S. Brown, L. S. Wilson, B. D. Doust, R. W. Gill, and C. Sun, "Knowledge-based method for segmentation and analysis of lung boundaries in chest X-ray images," Comput. Med. Imag. Graph., vol. 22, pp. 463-477, 1998.
-
(1998)
Comput. Med. Imag. Graph.
, vol.22
, pp. 463-477
-
-
Brown, M.S.1
Wilson, L.S.2
Doust, B.D.3
Gill, R.W.4
Sun, C.5
-
5
-
-
0028921567
-
A fully automated algorithm for the segmentation of lung fields on digital chest radiographic images
-
J. Duryea and J. M. Boone, "A fully automated algorithm for the segmentation of lung fields on digital chest radiographic images," Med. Phys., vol. 22, pp. 183-191, 1995.
-
(1995)
Med. Phys.
, vol.22
, pp. 183-191
-
-
Duryea, J.1
Boone, J.M.2
-
6
-
-
0031824569
-
Automated lung segmentation in digitized posteroanterior chest radiographs
-
S. G. Armato, III, M. L. Giger, and H. MacMahon, "Automated lung segmentation in digitized posteroanterior chest radiographs," Acad. Radiol., vol. 5, pp. 245-255, 1998.
-
(1998)
Acad. Radiol.
, vol.5
, pp. 245-255
-
-
Armato III, S.G.1
Giger, M.L.2
MacMahon, H.3
-
7
-
-
28744449143
-
Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database
-
B. V. Ginneken, M. B. Stegmann, and M. Loog, "Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database," Med. Image Anal., vol. 10, pp. 19-40, 2006.
-
(2006)
Med. Image Anal.
, vol.10
, pp. 19-40
-
-
Ginneken, B.V.1
Stegmann, M.B.2
Loog, M.3
-
8
-
-
0029378347
-
Feature selection in the pattern classification problem of digital chest radiograph segmentation
-
Sep.
-
M. F. McNitt-Gray, H. Huang, and J. W. Sayre, "Feature selection in the pattern classification problem of digital chest radiograph segmentation," IEEE Trans. Med. Imag., vol. 14, no. 3, pp. 537-547, Sep. 1995.
-
(1995)
IEEE Trans. Med. Imag.
, vol.14
, Issue.3
, pp. 537-547
-
-
McNitt-Gray, M.F.1
Huang, H.2
Sayre, J.W.3
-
9
-
-
0033744682
-
Automatic segmentation of lung fields in chest radiographs
-
B. v. Ginneken and B. M. t. H. Romeny, "Automatic segmentation of lung fields in chest radiographs," Med. Phys., vol. 27, pp. 2445-2455, 2000.
-
(2000)
Med. Phys.
, vol.27
, pp. 2445-2455
-
-
Ginneken, B.V.1
Romeny, B.M.T.H.2
-
10
-
-
77955362060
-
Fusing shape information in lung segmentation in chest radiographs
-
New York: Springer
-
A. Dawoud, "Fusing shape information in lung segmentation in chest radiographs," in Image Analysis and Recognition. New York: Springer, 2010, pp. 70-78.
-
(2010)
Image Analysis and Recognition
, pp. 70-78
-
-
Dawoud, A.1
-
11
-
-
77955195408
-
A region based active contour method for X-ray lung segmentation using prior shape and low level features
-
P. Annangi, S. Thiruvenkadam, A. Raja, H. Xu, X. Sun, and L. Mao, "A region based active contour method for X-ray lung segmentation using prior shape and low level features," in Proc. IEEE Int. Symp. Biomed. Imag.: From Nano to Macro., 2010, pp. 892-895.
-
(2010)
Proc. IEEE Int. Symp. Biomed. Imag.: From Nano to Macro.
, pp. 892-895
-
-
Annangi, P.1
Thiruvenkadam, S.2
Raja, A.3
Xu, H.4
Sun, X.5
Mao, L.6
-
12
-
-
79955761424
-
Segmentation of lung fields using Chan-Vese active contour model in chest radiographs
-
K. Sohn, "Segmentation of lung fields using Chan-Vese active contour model in chest radiographs," Proc. SPIE, vol., 2011, p. 796332.
-
(2011)
Proc. SPIE, Vol.
, pp. 796332
-
-
Sohn, K.1
-
13
-
-
41649087417
-
Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics
-
Apr.
-
Y. Shi, F. Qi, Z. Xue, L. Chen, K. Ito, H. Matsuo, and D. Shen, "Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics," IEEE Trans. Med. Imag., vol. 27, no. 4, pp. 481-494, Apr. 2008.
-
(2008)
IEEE Trans. Med. Imag.
, vol.27
, Issue.4
, pp. 481-494
-
-
Shi, Y.1
Qi, F.2
Xue, Z.3
Chen, L.4
Ito, K.5
Matsuo, H.6
Shen, D.7
-
14
-
-
82355192255
-
Towards robust and effective shape modeling: Sparse shape composition
-
S. Zhang, Y. Zhan, M. Dewan, J. Huang, D. N. Metaxas, and X. S. Zhou, "Towards robust and effective shape modeling: Sparse shape composition," Med. Image Anal., vol. 16, pp. 265-277, 2012.
-
(2012)
Med. Image Anal.
, vol.16
, pp. 265-277
-
-
Zhang, S.1
Zhan, Y.2
Dewan, M.3
Huang, J.4
Metaxas, D.N.5
Zhou, X.S.6
-
15
-
-
0029182228
-
Active shape models-their training and application
-
T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active shape models-their training and application," Comput. Vis. Image Understand., vol. 61, pp. 38-59, 1995.
-
(1995)
Comput. Vis. Image Understand.
, vol.61
, pp. 38-59
-
-
Cootes, T.F.1
Taylor, C.J.2
Cooper, D.H.3
Graham, J.4
-
16
-
-
0035363218
-
Active appearance models
-
Jun.
-
T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp. 681-685, Jun. 2001.
-
(2001)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.23
, Issue.6
, pp. 681-685
-
-
Cootes, T.F.1
Edwards, G.J.2
Taylor, C.J.3
-
17
-
-
0141920427
-
Fame-A flexible appearance modeling environment
-
Oct.
-
M. B. Stegmann, B. K. Ersboll, and R. Larsen, "Fame-A flexible appearance modeling environment," IEEE Trans. Med. Imag., vol. 22, no. 10, pp. 1319-1331, Oct. 2003.
-
(2003)
IEEE Trans. Med. Imag.
, vol.22
, Issue.10
, pp. 1319-1331
-
-
Stegmann, M.B.1
Ersboll, B.K.2
Larsen, R.3
-
18
-
-
0028463039
-
Use of active shape models for locating structures in medical images
-
T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, "Use of active shape models for locating structures in medical images," Image Vis. Comput., vol. 12, pp. 355-365, 1994.
-
(1994)
Image Vis. Comput.
, vol.12
, pp. 355-365
-
-
Cootes, T.F.1
Hill, A.2
Taylor, C.J.3
Haslam, J.4
-
20
-
-
79951641750
-
Detection of 3D spinal geometry using iterated marginal space learning
-
New York: Springer Lecture Notes in Computer Science
-
B. M. Kelm, S. K. Zhou, M. Suehling, Y. Zheng, M. Wels, and D. Comaniciu, "Detection of 3D spinal geometry using iterated marginal space learning," in Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. New York: Springer, 2011, Lecture Notes in Computer Science, pp. 96-105.
-
(2011)
Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging
, pp. 96-105
-
-
Kelm, B.M.1
Zhou, S.K.2
Suehling, M.3
Zheng, Y.4
Wels, M.5
Comaniciu, D.6
-
21
-
-
84901277078
-
Rapid multi-organ segmentation using context integration and discriminative models
-
N. Lay, N. Birkbeck, J. Zhang, and S. K. Zhou, "Rapid multi-organ segmentation using context integration and discriminative models," Inf. Process. Med. Imag., pp. 450-462, 2013.
-
(2013)
Inf. Process. Med. Imag
, pp. 450-462
-
-
Lay, N.1
Birkbeck, N.2
Zhang, J.3
Zhou, S.K.4
-
22
-
-
84883658529
-
Segmentation of neonatal brain MR images using patch-driven level sets
-
L. Wang, F. Shi, G. Li, Y. Gao, W. Lin, J. H. Gilmore, and D. Shen, "Segmentation of neonatal brain MR images using patch-driven level sets," NeuroImage, vol. 84, pp. 141-158, 2014.
-
(2014)
NeuroImage
, vol.84
, pp. 141-158
-
-
Wang, L.1
Shi, F.2
Li, G.3
Gao, Y.4
Lin, W.5
Gilmore, J.H.6
Shen, D.7
-
23
-
-
84901261356
-
Hierarchical discriminative framework for detecting tubular structures in 3D images
-
D. Breitenreicher, M. Sofka, S. Britzen, and S. K. Zhou, "Hierarchical discriminative framework for detecting tubular structures in 3D images," Inf. Process. Med. Imag., pp. 328-339, 2013.
-
(2013)
Inf. Process. Med. Imag
, pp. 328-339
-
-
Breitenreicher, D.1
Sofka, M.2
Britzen, S.3
Zhou, S.K.4
-
24
-
-
84881626528
-
Graph cut based automatic prostate segmentation using learned semantic information
-
D. Mahapatra, "Graph cut based automatic prostate segmentation using learned semantic information," in Proc. IEEE 10th Int. Symp. Biomed. Imag., 2013, pp. 1316-1319.
-
(2013)
Proc. IEEE 10th Int. Symp. Biomed. Imag.
, pp. 1316-1319
-
-
Mahapatra, D.1
-
25
-
-
2142812371
-
Robust real-time face detection
-
P. Viola and M. J. Jones, "Robust real-time face detection," Int. J. Comput. Vis., vol. 57, pp. 137-154, 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.57
, pp. 137-154
-
-
Viola, P.1
Jones, M.J.2
-
26
-
-
82455204779
-
Robust automatic knee MR slice positioning through redundant and hierarchical anatomy detection
-
Dec.
-
Y. Zhan, M. Dewan, M. Harder, A. Krishnan, and X. S. Zhou, "Robust automatic knee MR slice positioning through redundant and hierarchical anatomy detection," IEEE Trans. Med. Imag., vol. 30, no. 12, pp. 2087-2100, Dec. 2011.
-
(2011)
IEEE Trans. Med. Imag.
, vol.30
, Issue.12
, pp. 2087-2100
-
-
Zhan, Y.1
Dewan, M.2
Harder, M.3
Krishnan, A.4
Zhou, X.S.5
-
27
-
-
58849141777
-
Active scheduling of organ detection and segmentation in whole-body medical images
-
Y. Zhan, X. S. Zhou, Z. Peng, and A. Krishnan, "Active scheduling of organ detection and segmentation in whole-body medical images," in Proc. MICCAI, 2008, pp. 313-321.
-
(2008)
Proc. MICCAI
, pp. 313-321
-
-
Zhan, Y.1
Zhou, X.S.2
Peng, Z.3
Krishnan, A.4
-
28
-
-
33847172327
-
Clustering by passing messages between data points
-
B. J. Frey and D. Dueck, "Clustering by passing messages between data points," Science, vol. 315, pp. 972-976, 2007.
-
(2007)
Science
, vol.315
, pp. 972-976
-
-
Frey, B.J.1
Dueck, D.2
-
29
-
-
0000142472
-
Procrustes methods in the statistical analysis of shape
-
C. Goodall, "Procrustes methods in the statistical analysis of shape," J. R. Stat. Soc. Ser. B (Methodol.), pp. 285-339, 1991.
-
(1991)
J. R. Stat. Soc. Ser. B (Methodol.)
, pp. 285-339
-
-
Goodall, C.1
-
30
-
-
0033132544
-
Affine-invariant image retrieval by correspondence matching of shapes
-
D. Shen, W.-H. Wong, and H. H. Ip, "Affine-invariant image retrieval by correspondence matching of shapes," Image Vis. Comput., vol. 17, pp. 489-499, 1999.
-
(1999)
Image Vis. Comput.
, vol.17
, pp. 489-499
-
-
Shen, D.1
Wong, W.-H.2
Ip, H.H.3
-
32
-
-
0036647193
-
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
-
Jul.
-
T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.7
, pp. 971-987
-
-
Ojala, T.1
Pietikainen, M.2
Maenpaa, T.3
-
33
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
34
-
-
84872929584
-
Prostate segmentation by sparse representation based classification
-
Y. Gao, S. Liao, and D. Shen, "Prostate segmentation by sparse representation based classification," in Proc. MICCAI, 2012, pp. 451-458.
-
(2012)
Proc. MICCAI
, pp. 451-458
-
-
Gao, Y.1
Liao, S.2
Shen, D.3
-
35
-
-
33750383209
-
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
-
Nov.
-
M. Aharon, M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006.
-
(2006)
IEEE Trans. Signal Process.
, vol.54
, Issue.11
, pp. 4311-4322
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
36
-
-
61549128441
-
Robust face recognition via sparse representation
-
Feb.
-
J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210-227, Feb. 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.2
, pp. 210-227
-
-
Wright, J.1
Yang, A.Y.2
Ganesh, A.3
Sastry, S.S.4
Ma, Y.5
-
38
-
-
0033986483
-
Development of a digital image database for chest radiographs with and without a lung nodule receiver operating characteristic analysis of radiologists' detection of pulmonary nodules,"
-
J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi, K.-I. Komatsu, M. Matsui, H. Fujita, Y. Kodera, and K. Doi, "Development of a digital image database for chest radiographs with and without a lung nodule receiver operating characteristic analysis of radiologists' detection of pulmonary nodules," Am. J. f Roentgenol., vol. 174, pp. 71-74, 2000.
-
(2000)
Am. J. F Roentgenol.
, vol.174
, pp. 71-74
-
-
Shiraishi, J.1
Katsuragawa, S.2
Ikezoe, J.3
Matsumoto, T.4
Kobayashi, T.5
Komatsu, K.-I.6
Matsui, M.7
Fujita, H.8
Kodera, Y.9
Doi, K.10
-
39
-
-
84875232204
-
An interactive lung field segmentation scheme with automated capability
-
J. H. Tan, U. R. Acharya, C. M. Lim, and K. T. Abraham, "An interactive lung field segmentation scheme with automated capability," Digital Signal Process., vol. 23, pp. 1022-1031, 2013.
-
(2013)
Digital Signal Process.
, vol.23
, pp. 1022-1031
-
-
Tan, J.H.1
Acharya, U.R.2
Lim, C.M.3
Abraham, K.T.4
-
40
-
-
0000250265
-
Measures of the amount of ecologic association between species
-
L. R. Dice, "Measures of the amount of ecologic association between species," Ecology, vol. 26, pp. 297-302, 1945.
-
(1945)
Ecology
, vol.26
, pp. 297-302
-
-
Dice, L.R.1
-
41
-
-
71149119964
-
Online dictionary learning for sparse coding
-
J. Mairal, F. Bach, J. Ponce, and G. Sapiro, "Online dictionary learning for sparse coding," in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 689-696.
-
(2009)
Proc. 26th Annu. Int. Conf. Mach. Learn.
, pp. 689-696
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
42
-
-
17044373704
-
Statistical models of appearance for computer vision
-
Univ. Manchester, Manchester, U.K., Mar.
-
T. F. Cootes and C. J. Taylor, Statistical models of appearance for computer vision Imag. Sci. Biomed. Eng., Univ. Manchester, Manchester, U.K., Mar. 2004.
-
(2004)
Imag. Sci. Biomed. Eng
-
-
Cootes, T.F.1
Taylor, C.J.2
-
43
-
-
84055200824
-
Pupil localization for multiview eyeballs by ASM and eye gray distribution
-
X. Wang, X. Zhao, L. Jia, and P. Yang, "Pupil localization for multiview eyeballs by ASM and eye gray distribution," Procedia Eng., vol. 15, pp. 2993-2998, 2011.
-
(2011)
Procedia Eng.
, vol.15
, pp. 2993-2998
-
-
Wang, X.1
Zhao, X.2
Jia, L.3
Yang, P.4
-
44
-
-
84906850635
-
Segmentation of knee cartilage by using a hierarchical active shape model based on multi-resolution transforms in magnetic resonance images
-
M. León and B. Escalante-Ramirez, "Segmentation of knee cartilage by using a hierarchical active shape model based on multi-resolution transforms in magnetic resonance images," in Proc. IX Int. Seminar Med. Inf. Process. Anal., 2013, p. 892214.
-
(2013)
Proc. IX Int. Seminar Med. Inf. Process. Anal.
, pp. 892214
-
-
León, M.1
Escalante-Ramirez, B.2
-
45
-
-
84867496657
-
A game-theoretic framework for landmark-based image segmentation
-
Sep.
-
B. Ibragimov, B. Likar, F. Pernus, and T. Vrtovec, "A game-theoretic framework for landmark-based image segmentation," IEEE Trans Med. Imag., vol. 31, no. 9, pp. 1761-1776, Sep. 2012.
-
(2012)
IEEE Trans Med. Imag.
, vol.31
, Issue.9
, pp. 1761-1776
-
-
Ibragimov, B.1
Likar, B.2
Pernus, F.3
Vrtovec, T.4
-
46
-
-
0003661003
-
Level set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics Computer
-
Cambridge, U.K.: Cambridge Univ. Press
-
J. A. Sethian, Level set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics Computer. Vision, and Materials Scince. Cambridge, U.K.: Cambridge Univ. Press, 1999, vol. 3.
-
(1999)
Vision, and Materials Scince
, vol.3
-
-
Sethian, J.A.1
-
47
-
-
34250090755
-
Snakes: Active contour models
-
M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models," Int. J. Comput. Vis., vol. 1, pp. 321-331, 1988.
-
(1988)
Int. J. Comput. Vis.
, vol.1
, pp. 321-331
-
-
Kass, M.1
Witkin, A.2
Terzopoulos, D.3
-
48
-
-
84991745422
-
Lane detection using B-snake
-
Y. Wang, E. K. Teoh, and D. Shen, "Lane detection using B-snake," in Proc. 1999 Int. Conf. Inf. Intell. Syst., 1999, pp. 438-443.
-
(1999)
Proc. 1999 Int. Conf. Inf. Intell. Syst.
, pp. 438-443
-
-
Wang, Y.1
Teoh, E.K.2
Shen, D.3
-
49
-
-
0030644855
-
A hopfield neural network for adaptive image segmentation: An active surface paradigm
-
D. Shen and H. H. Ip, "A hopfield neural network for adaptive image segmentation: An active surface paradigm," Pattern Recognit. Lett., vol. 18, pp. 37-48, 1997.
-
(1997)
Pattern Recognit. Lett.
, vol.18
, pp. 37-48
-
-
Shen, D.1
Ip, H.H.2
-
50
-
-
0344823746
-
Automated segmentation of 3D us prostate images using statistical texture-based matching method
-
Y. Zhan and D. Shen, "Automated segmentation of 3D us prostate images using statistical texture-based matching method," in Proc. MICCAI, 2003, pp. 688-696.
-
(2003)
Proc. MICCAI
, pp. 688-696
-
-
Zhan, Y.1
Shen, D.2
-
51
-
-
70449334554
-
Segmenting CT prostate images using population and patient-specific statistics for radiotherapy
-
Q. Feng, M. Foskey, S. Tang, W. Chen, and D. Shen, "Segmenting CT prostate images using population and patient-specific statistics for radiotherapy," in Proc. IEEE Int. Symp. Biomed. Imag.: From Nano to Macro, 2009, pp. 282-285.
-
(2009)
Proc. IEEE Int. Symp. Biomed. Imag.: From Nano to Macro
, pp. 282-285
-
-
Feng, Q.1
Foskey, M.2
Tang, S.3
Chen, W.4
Shen, D.5
-
52
-
-
84864142669
-
A feature-based learning framework for accurate prostate localization in CT images
-
Aug.
-
S. Liao and D. Shen, "A feature-based learning framework for accurate prostate localization in CT images," IEEE Trans. Image Process., vol. 21, no. 8, pp. 3546-3559, Aug. 2012.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, Issue.8
, pp. 3546-3559
-
-
Liao, S.1
Shen, D.2
-
53
-
-
84857552799
-
Learning image context for segmentation of the prostate in CT-guided radiotherapy
-
W. Li, S. Liao, Q. Feng, W. Chen, and D. Shen, "Learning image context for segmentation of the prostate in CT-guided radiotherapy," Phys. Med. Biol., vol. 57, pp. 1283-1283, 2012.
-
(2012)
Phys. Med. Biol.
, vol.57
, pp. 1283-1283
-
-
Li, W.1
Liao, S.2
Feng, Q.3
Chen, W.4
Shen, D.5
-
54
-
-
84873314950
-
Sparse patch-based label propagation for accurate prostatelocalization in CT images
-
Feb.
-
S. Liao, Y. Gao, J. Lian, and D. Shen, "Sparse patch-based label propagation for accurate prostatelocalization in CT images," IEEE Trans. Med. Imag., vol. 32, no. 2, pp. 419-434, Feb. 2013.
-
(2013)
IEEE Trans. Med. Imag.
, vol.32
, Issue.2
, pp. 419-434
-
-
Liao, S.1
Gao, Y.2
Lian, J.3
Shen, D.4
|