메뉴 건너뛰기




Volumn 221, Issue 5, 2016, Pages 2569-2587

Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis

Author keywords

Alzheimer s disease (AD); Deep architecture; Feature selection; Magnetic resonance imaging (MRI); Mild cognitive impairment (MCI); Multi task learning; Positron emission topography (PET); Sparse least squared regression

Indexed keywords

AMYLOID BETA PROTEIN[1-42]; BIOLOGICAL MARKER; TAU PROTEIN;

EID: 84929692240     PISSN: 18632653     EISSN: 18632661     Source Type: Journal    
DOI: 10.1007/s00429-015-1059-y     Document Type: Article
Times cited : (132)

References (74)
  • 1
    • 33947330322 scopus 로고    scopus 로고
    • Understanding diagnostic tests 1: sensitivity, specificity and predictive values
    • Akobeng AK (2007) Understanding diagnostic tests 1: sensitivity, specificity and predictive values. Acta Pediatr 96(3):338–341
    • (2007) Acta Pediatr , vol.96 , Issue.3 , pp. 338-341
    • Akobeng, A.K.1
  • 2
    • 84878975632 scopus 로고    scopus 로고
    • Adaptive cluster analysis approach for functional localization using magnetoencephalography
    • Alikhanian H, Crawford JD, DeSouza JFX, Cheyne D, Blohm G (2013) Adaptive cluster analysis approach for functional localization using magnetoencephalography. Front Neurosci 7(73). doi:10.3389/fnins.2013.00073
    • (2013) Front Neurosci , vol.7 , Issue.73
    • Alikhanian, H.1    Crawford, J.D.2    DeSouza, J.F.X.3    Cheyne, D.4    Blohm, G.5
  • 3
    • 84858225391 scopus 로고    scopus 로고
    • 2012 Alzheimer’s disease facts and figures
    • Association Alzheimer’s (2012) 2012 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 8(2):131–168
    • (2012) Alzheimer’s Dementia , vol.8 , Issue.2 , pp. 131-168
    • Association, A.1
  • 4
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Mach Learn 73(3):243–272
    • (2008) Mach Learn , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 5
    • 33646246406 scopus 로고    scopus 로고
    • Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment
    • COI: 1:STN:280:DC%2BD283hvFOktQ%3D%3D, PID: 16520329
    • Bokde ALW, Lopez-Bayo P, Meindl T, Pechler S, Born C, Faltraco F, Teipel SJ, Möller HJ, Hampel H (2006) Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain 129(5):1113–1124
    • (2006) Brain , vol.129 , Issue.5 , pp. 1113-1124
    • Bokde, A.L.W.1    Lopez-Bayo, P.2    Meindl, T.3    Pechler, S.4    Born, C.5    Faltraco, F.6    Teipel, S.J.7    Möller, H.J.8    Hampel, H.9
  • 6
    • 0025863618 scopus 로고
    • Neuropathological stageing of Alzheimer-related changes
    • COI: 1:STN:280:DyaK387gtFOiug%3D%3D, PID: 1759558
    • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259
    • (1991) Acta Neuropathol , vol.82 , Issue.4 , pp. 239-259
    • Braak, H.1    Braak, E.2
  • 7
    • 84857278965 scopus 로고    scopus 로고
    • Combining sparseness and smoothness improves classification accuracy and interpretability
    • PID: 22261376
    • de Brecht M, Yamagishi N (2012) Combining sparseness and smoothness improves classification accuracy and interpretability. NeuroImage 60(2):1550–1561
    • (2012) NeuroImage , vol.60 , Issue.2 , pp. 1550-1561
    • de Brecht, M.1    Yamagishi, N.2
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Mining Knowl Discov 2(2):121–167
    • (1998) Data Mining Knowl Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 58849132290 scopus 로고    scopus 로고
    • Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis
    • Burton EJ, Barber R, Mukaetova-Ladinska EB, Robson J, Perry RH, Jaros E, Kalaria RN, O’Brien JT (2009) Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain 132(1):195–203
    • (2009) Brain , vol.132 , Issue.1 , pp. 195-203
    • Burton, E.J.1    Barber, R.2    Mukaetova-Ladinska, E.B.3    Robson, J.4    Perry, R.H.5    Jaros, E.6    Kalaria, R.N.7    O’Brien, J.T.8
  • 10
    • 33750603361 scopus 로고    scopus 로고
    • Progression of mild cognitive impairment to dementia: a challenge to current thinking
    • PID: 17077428
    • Busse A, Angermeyer MC, Riedel-Heller SG (2006) Progression of mild cognitive impairment to dementia: a challenge to current thinking. Br J Psychiatry 189:399–404
    • (2006) Br J Psychiatry , vol.189 , pp. 399-404
    • Busse, A.1    Angermeyer, M.C.2    Riedel-Heller, S.G.3
  • 13
    • 67749133648 scopus 로고    scopus 로고
    • Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease
    • PID: 19460794
    • Desikan R, Cabral H, Hess C, Dillon W, Salat D, Buckner R, Fischl B, Initiative ADN (2009) Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain 132:2048–2057
    • (2009) Brain , vol.132 , pp. 2048-2057
    • Desikan, R.1    Cabral, H.2    Hess, C.3    Dillon, W.4    Salat, D.5    Buckner, R.6    Fischl, B.7    Initiative, A.D.N.8
  • 15
    • 58149308359 scopus 로고    scopus 로고
    • Simultaneous EEG/functional magnetic resonance imaging at 4 tesla: correlates of brain activity to spontaneous alpha rhythm during relaxation
    • PID: 18791470
    • DiFrancesco M, Hollandm S, Szaflarski J (2008) Simultaneous EEG/functional magnetic resonance imaging at 4 tesla: correlates of brain activity to spontaneous alpha rhythm during relaxation. J Clin Neurophysiol 25(5):255–264
    • (2008) J Clin Neurophysiol , vol.25 , Issue.5 , pp. 255-264
    • DiFrancesco, M.1    Hollandm, S.2    Szaflarski, J.3
  • 16
    • 50649119439 scopus 로고    scopus 로고
    • IEEE international conference on computer vision (ICCV)
    • Dueck D, Frey B (2007) Non-metric affinity propagation for unsupervised image categorization. In: 2007 IEEE international conference on computer vision (ICCV), pp 1–8
    • (2007) pp 1–8
    • Dueck, D.1
  • 18
    • 79957495136 scopus 로고    scopus 로고
    • ℓ 1-penalized linear mixed-effects models for high dimensional data with application to BCI
    • PID: 21463695
    • 1 -penalized linear mixed-effects models for high dimensional data with application to BCI. NeuroImage 56(4):2100–2108
    • (2011) NeuroImage , vol.56 , Issue.4 , pp. 2100-2108
    • Fazli, S.1    Danczy, M.2    Schelldorfer, J.3    Mller, K.R.4
  • 19
    • 15244360529 scopus 로고    scopus 로고
    • Buckner R (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD
    • Fotenos A, Snyder A, Girton L, Morris J, Buckner R (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology, pp 1032–1039 (2005)
    • (2005) Neurology , pp. 1032-1039
    • Fotenos, A.1    Snyder, A.2    Girton, L.3    Morris, J.4
  • 20
    • 77950240594 scopus 로고    scopus 로고
    • Neurochemical basis for symptomatic treatment of Alzheimer’s disease
    • COI: 1:CAS:528:DC%2BC3cXhtVKhurbE, PID: 20156462
    • Francis PT, Ramírez MJ, Lai MK (2010) Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology 59(4–5):221–229
    • (2010) Neuropharmacology , vol.59 , Issue.4-5 , pp. 221-229
    • Francis, P.T.1    Ramírez, M.J.2    Lai, M.K.3
  • 21
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • COI: 1:CAS:528:DC%2BD2sXhs1Cksro%3D, PID: 17218491
    • Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 23
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gönen M, Alpaydin E (2011) Multiple kernel learning algorithms. J Mach Learn Res 12:2211–2268
    • (2011) J Mach Learn Res , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydin, E.2
  • 24
    • 0000708450 scopus 로고
    • A class of invariant consistent tests for multivariate normality
    • Henze N, Zirkler B (1990) A class of invariant consistent tests for multivariate normality. Commun Stat Theory Methods 19(10):3595–3617
    • (1990) Commun Stat Theory Methods , vol.19 , Issue.10 , pp. 3595-3617
    • Henze, N.1    Zirkler, B.2
  • 25
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
    • PID: 21146621
    • Hinrichs C, Singh V, Xu G, Johnson SC (2011) Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. NeuroImage 55(2):574–589
    • (2011) NeuroImage , vol.55 , Issue.2 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3    Johnson, S.C.4
  • 30
    • 33646926960 scopus 로고    scopus 로고
    • Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-term declarative memory: a double dissociation in dementia
    • COI: 1:CAS:528:DC%2BD28Xlt1Cisr4%3D, PID: 16687511
    • Lee ACH, Buckley MJ, Gaffan D, Emery T, Hodges JR, Graham KS (2006) Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-term declarative memory: a double dissociation in dementia. J Neurosci 26(19):5198–5203
    • (2006) J Neurosci , vol.26 , Issue.19 , pp. 5198-5203
    • Lee, A.C.H.1    Buckley, M.J.2    Gaffan, D.3    Emery, T.4    Hodges, J.R.5    Graham, K.S.6
  • 31
    • 82755161873 scopus 로고    scopus 로고
    • Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features
    • Li Y, Wang Y, Wu G, Shi F, Zhou L, Lin W, Shen D (2012) Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features. Neurobiol Aging 33(2):427.e15–427.e30
    • (2012) Neurobiol Aging , vol.33 , Issue.2 , pp. 15-30
    • Li, Y.1    Wang, Y.2    Wu, G.3    Shi, F.4    Zhou, L.5    Lin, W.6    Shen, D.7
  • 32
    • 84894638738 scopus 로고    scopus 로고
    • Inter-modality relationship constrained multi-task feature selection for AD/MCI classification
    • Mori K, Sakuma I, Sato Y, Barillot C, Navab N, (eds), Lecture Notes in Computer Science, 8149, Springer, Berlin
    • Liu F, Wee CY, Chen H, Shen D (2013) Inter-modality relationship constrained multi-task feature selection for AD/MCI classification. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) Medical image computing and computer-assisted intervention (MICCAI), vol 8149., Lecture Notes in Computer ScienceSpringer, Berlin, pp 308–315
    • (2013) Medical image computing and computer-assisted intervention (MICCAI) , pp. 308-315
    • Liu, F.1    Wee, C.Y.2    Chen, H.3    Shen, D.4
  • 33
    • 84862778147 scopus 로고    scopus 로고
    • Ensemble sparse classification of Alzheimer’s disease
    • PID: 22270352
    • Liu M, Zhang D, Shen D (2012) Ensemble sparse classification of Alzheimer’s disease. NeuroImage 60(2):1106–1116
    • (2012) NeuroImage , vol.60 , Issue.2 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 35
    • 51949113919 scopus 로고    scopus 로고
    • IEEE conference on computer vision and pattern recognition (CVPR)
    • Lu Z, Carreira-Perpinan M (2008) Constrained spectral clustering through affinity propagation. In: 2008 IEEE conference on computer vision and pattern recognition (CVPR), pp 1–8
    • (2008) pp 1–8
    • Lu, Z.1
  • 36
    • 84873323247 scopus 로고    scopus 로고
    • Are subjective cognitive complaints relevant in preclinical Alzheimer’s disease? A review and guidelines for healthcare professionals
    • Mark RE, Sitskoorn MM (2013) Are subjective cognitive complaints relevant in preclinical Alzheimer’s disease? A review and guidelines for healthcare professionals. Rev Clin Gerontol 23:61–74
    • (2013) Rev Clin Gerontol , vol.23 , pp. 61-74
    • Mark, R.E.1    Sitskoorn, M.M.2
  • 38
    • 17844364259 scopus 로고    scopus 로고
    • Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease
    • COI: 1:CAS:528:DC%2BD2MXjtV2hs7o%3D, PID: 15747152
    • Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 32(4):486–510
    • (2005) Eur J Nucl Med Mol Imaging , vol.32 , Issue.4 , pp. 486-510
    • Mosconi, L.1
  • 39
    • 85162029360 scopus 로고    scopus 로고
    • 2, 1 -norms minimization. In: Lafferty J, Williams C, Shawe-Taylor J, Zemel R, Culotta A (eds) Advances in neural information processing systems, vol 23, pp 1813–1821
    • 2, 1 -norms minimization. In: Lafferty J, Williams C, Shawe-Taylor J, Zemel R, Culotta A (eds) Advances in neural information processing systems, vol 23, pp 1813–1821
    • (2010)
  • 41
    • 33645746495 scopus 로고    scopus 로고
    • Identification of degenerate neuronal systems based on intersubject variability
    • PID: 16300969
    • Noppeney U, Penny WD, Price CJ, Flandin G, Friston KJ (2006) Identification of degenerate neuronal systems based on intersubject variability. NeuroImage 30(3):885–890
    • (2006) NeuroImage , vol.30 , Issue.3 , pp. 885-890
    • Noppeney, U.1    Penny, W.D.2    Price, C.J.3    Flandin, G.4    Friston, K.J.5
  • 42
    • 70350061949 scopus 로고    scopus 로고
    • Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease
    • COI: 1:CAS:528:DC%2BD1MXht1KntLvO, PID: 19829371
    • Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461:916–922
    • (2009) Nature , vol.461 , pp. 916-922
    • Perrin, R.J.1    Fagan, A.M.2    Holtzman, D.M.3
  • 43
    • 1242263806 scopus 로고    scopus 로고
    • The generalized LASSO
    • PID: 15387244
    • Roth V (2004) The generalized LASSO. IEEE Trans Neural Netw 15(1):16–28
    • (2004) IEEE Trans Neural Netw , vol.15 , Issue.1 , pp. 16-28
    • Roth, V.1
  • 44
    • 67651171190 scopus 로고    scopus 로고
    • Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients
    • PID: 19463961
    • Schroeter ML, Stein T, Maslowski N, Neumann J (2009) Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. NeuroImage 47(4):1196–1206
    • (2009) NeuroImage , vol.47 , Issue.4 , pp. 1196-1206
    • Schroeter, M.L.1    Stein, T.2    Maslowski, N.3    Neumann, J.4
  • 45
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: hierarchical attribute matching mechanism for elastic registration
    • PID: 12575879
    • Shen D, Davatzikos C (2002) HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21(11):1421–1439
    • (2002) IEEE Trans Med Imaging , vol.21 , Issue.11 , pp. 1421-1439
    • Shen, D.1    Davatzikos, C.2
  • 46
    • 80053493942 scopus 로고    scopus 로고
    • Learning-based meta-algorithm for MRI brain extraction
    • Medical image computing and computer-assisted intervention (MICCAI), Lecture Notes in Computer Science
    • Shi F, Wang L, Gilmore J, Lin W, Shen D (2011) Learning-based meta-algorithm for MRI brain extraction. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer-assisted intervention (MICCAI), Lecture Notes in Computer Science, vol 6893, pp 313–321
    • (2011) , vol.6893 , pp. 313-321
    • Shi, F.1    Wang, L.2    Gilmore, J.3    Lin, W.4    Shen, D.5    Fichtinger, G.6    Martel, A.7    Peters, T.8
  • 47
    • 33750594406 scopus 로고    scopus 로고
    • Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease
    • PID: 17008332
    • Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ (2006) Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain 129(11):2885–2893
    • (2006) Brain , vol.129 , Issue.11 , pp. 2885-2893
    • Singh, V.1    Chertkow, H.2    Lerch, J.P.3    Evans, A.C.4    Dorr, A.E.5    Kabani, N.J.6
  • 48
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • COI: 1:STN:280:DyaK1c3nvVCksA%3D%3D, PID: 9617910
    • Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97
    • (1998) IEEE Trans Med Imaging , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 49
    • 84871786784 scopus 로고    scopus 로고
    • A novel Bayesian framework for discriminative feature extraction in brain–computer interfaces
    • PID: 22431526
    • Suk HI, Lee SW (2013) A novel Bayesian framework for discriminative feature extraction in brain–computer interfaces. IEEE Trans Pattern Anal Mach Intell 35(2):286–299
    • (2013) IEEE Trans Pattern Anal Mach Intell , vol.35 , Issue.2 , pp. 286-299
    • Suk, H.I.1    Lee, S.W.2
  • 50
    • 84904556055 scopus 로고    scopus 로고
    • Subclass-based multi-task learning for Alzheimer’s disease diagnosis
    • Suk HI, Lee SW, Shen D (2014) Subclass-based multi-task learning for Alzheimer’s disease diagnosis. Front Aging Neurosci 6(168)
    • (2014) Front Aging Neurosci , vol.6 , Issue.168
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 51
    • 84923814844 scopus 로고    scopus 로고
    • Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
    • PID: 24363140
    • Suk HI, Lee SW, Shen D (2015) Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct 220(2):841–859
    • (2015) Brain Struct Funct , vol.220 , Issue.2 , pp. 841-859
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 52
    • 84886742336 scopus 로고    scopus 로고
    • Discriminative group sparse representation for mild cognitive impairment classification
    • Suk HI, Wee CY, Shen D (2013) Discriminative group sparse representation for mild cognitive impairment classification. Mach Learn Med Imaging Lect Notes Comput Sci 8184:131–138
    • (2013) Mach Learn Med Imaging Lect Notes Comput Sci , vol.8184 , pp. 131-138
    • Suk, H.I.1    Wee, C.Y.2    Shen, D.3
  • 53
    • 84896353646 scopus 로고    scopus 로고
    • Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion
    • PID: 24480301
    • Thung KH, Wee CY, Yap PT, Shen D (2014) Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. NeuroImage 91:386–400
    • (2014) NeuroImage , vol.91 , pp. 386-400
    • Thung, K.H.1    Wee, C.Y.2    Yap, P.T.3    Shen, D.4
  • 54
    • 85194972808 scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani R (1994) Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B 58:267–288
    • (1994) J R Stat Soc Ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 56
    • 0036214249 scopus 로고    scopus 로고
    • Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment
    • COI: 1:STN:280:DC%2BD383itlGitQ%3D%3D, PID: 11909909
    • Visser PJ, Verhey FRJ, Hofman PAM, Scheltens P, Jolles J (2002) Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry 72(4):491–497
    • (2002) J Neurol Neurosurg Psychiatry , vol.72 , Issue.4 , pp. 491-497
    • Visser, P.J.1    Verhey, F.R.J.2    Hofman, P.A.M.3    Scheltens, P.4    Jolles, J.5
  • 58
    • 84866683998 scopus 로고    scopus 로고
    • IEEE conference on computer vision and pattern recognition (CVPR)
    • Wan J, Zhang Z, Yan J, Li T, Rao B, Fang S, Kim S, Risacher S, Saykin A, Shen L (2012) Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer’s disease. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), pp 940–947
    • (2012) pp 940–947
    • Wan, J.1    Zhang, Z.2    Yan, J.3    Li, T.4    Rao, B.5    Fang, S.6    Kim, S.7    Risacher, S.8    Saykin, A.9
  • 59
    • 84863059819 scopus 로고    scopus 로고
    • IEEE international conference on computer vision (ICCV)
    • Wang H, Nie F, Huang H, Risacher S, Ding C, Saykin A, Shen L (2011) Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. In: 2011 IEEE international conference on computer vision (ICCV), pp 557–562
    • (2011) pp 557–562
    • Wang, H.1    Nie, F.2    Huang, H.3    Risacher, S.4    Ding, C.5    Saykin, A.6
  • 60
    • 77955064096 scopus 로고    scopus 로고
    • Groupwise registration based on hierarchical image clustering and atlas synthesis
    • Wang Q, Chen L, Yap PT, Wu G, Shen D (2010) Groupwise registration based on hierarchical image clustering and atlas synthesis. Human Brain Mapp 31(8):1128–1140
    • (2010) Human Brain Mapp , vol.31 , Issue.8 , pp. 1128-1140
    • Wang, Q.1    Chen, L.2    Yap, P.T.3    Wu, G.4    Shen, D.5
  • 62
    • 84879987629 scopus 로고    scopus 로고
    • The role of balanced training and testing data sets for binary classifiers in bioinformatics
    • Wei Q, Dunbrack Jr, Lehmann RL (2013) The role of balanced training and testing data sets for binary classifiers in bioinformatics. PLoS ONE 8(7):e67863
    • (2013) PLoS ONE , vol.8 , Issue.7 , pp. e67863
    • Wei, Q.1    Jr, D.2    Lehmann, R.L.3
  • 63
    • 84971355645 scopus 로고    scopus 로고
    • Bayesian factor regression models in the “large p, small n” paradigm. In: Bayesian statistics
    • West M (2003) Bayesian factor regression models in the “large p, small n” paradigm. In: Bayesian statistics, pp 723–732
    • (2003) pp 723–732
    • West, M.1
  • 64
    • 84861645859 scopus 로고    scopus 로고
    • Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion
    • PID: 22580170
    • Westman E, Muehlboeck JS, Simmons A (2012) Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. NeuroImage 62(1):229–238
    • (2012) NeuroImage , vol.62 , Issue.1 , pp. 229-238
    • Westman, E.1    Muehlboeck, J.S.2    Simmons, A.3
  • 65
    • 84908378904 scopus 로고    scopus 로고
    • Bi-level multi-source learning for heterogeneous block-wise missing data
    • PID: 23988272
    • Xiang S, Yuan L, Fan W, Wang Y, Thompson PM, Ye J (2014) Bi-level multi-source learning for heterogeneous block-wise missing data. NeuroImage 102(1):192–206
    • (2014) NeuroImage , vol.102 , Issue.1 , pp. 192-206
    • Xiang, S.1    Yuan, L.2    Fan, W.3    Wang, Y.4    Thompson, P.M.5    Ye, J.6
  • 67
    • 84861187815 scopus 로고    scopus 로고
    • Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
    • PID: 22498655
    • Yuan L, Wang Y, Thompson PM, Narayan VA, Ye J (2012) Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage 61(3):622–632
    • (2012) NeuroImage , vol.61 , Issue.3 , pp. 622-632
    • Yuan, L.1    Wang, Y.2    Thompson, P.M.3    Narayan, V.A.4    Ye, J.5
  • 68
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 68(1):49–67
    • (2006) J R Stat Soc Ser B , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 69
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
    • PID: 21992749
    • Zhang D, Shen D (2012) Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2):895–907
    • (2012) NeuroImage , vol.59 , Issue.2 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 70
    • 84863351725 scopus 로고    scopus 로고
    • Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
    • COI: 1:CAS:528:DC%2BC38Xlt1Chu7c%3D, PID: 22457741
    • Zhang D, Shen D (2012) Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS One 7(3):e33182
    • (2012) PLoS One , vol.7 , Issue.3 , pp. e33182
    • Zhang, D.1    Shen, D.2
  • 71
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer’s disease and mild cognitive impairment
    • PID: 21236349
    • Zhang D, Wang Y, Zhou L, Yuan H, Shen D (2011) Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3):856–867
    • (2011) NeuroImage , vol.55 , Issue.3 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 72
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • COI: 1:STN:280:DC%2BD3MzjvV2luw%3D%3D, PID: 11293691
    • Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57
    • (2001) IEEE Trans Med Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 73
    • 84877334125 scopus 로고    scopus 로고
    • Modeling disease progression via multi-task learning
    • PID: 23583359
    • Zhou J, Liu J, Narayan VA, Ye J (2013) Modeling disease progression via multi-task learning. NeuroImage 78:233–248
    • (2013) NeuroImage , vol.78 , pp. 233-248
    • Zhou, J.1    Liu, J.2    Narayan, V.A.3    Ye, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.