-
1
-
-
84908031939
-
Making designer mutants in model organisms
-
Peng Y, Clark KJ, Campbell JM, et al. Making designer mutants in model organisms. Development 2014;141:4042-54
-
(2014)
Development
, vol.141
, pp. 4042-4054
-
-
Peng, Y.1
Clark, K.J.2
Campbell, J.M.3
-
2
-
-
84937558548
-
The bacterial origins of the CRISPR genome-editing revolution
-
Sontheimer EJ, Barrangou R. The bacterial origins of the CRISPR genome-editing revolution. Hum Gene Ther 2015;26:413-24
-
(2015)
Hum Gene Ther
, vol.26
, pp. 413-424
-
-
Sontheimer, E.J.1
Barrangou, R.2
-
3
-
-
74249095519
-
CRISPR/Cas, the immune system of bacteria and archaea
-
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010;327:167-70
-
(2010)
Science
, vol.327
, pp. 167-170
-
-
Horvath, P.1
Barrangou, R.2
-
4
-
-
77249170201
-
CRISPR interference: RNAdirected adaptive immunity in bacteria and archaea
-
Marraffini LA, Sontheimer EJ. CRISPR interference: RNAdirected adaptive immunity in bacteria and archaea. Nat Rev Genet 2010;11:181-90
-
(2010)
Nat Rev Genet
, vol.11
, pp. 181-190
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
5
-
-
84942079449
-
The CRISPR-Cas immune system: biology, mechanisms and applications
-
Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 2015;117:119-28
-
(2015)
Biochimie
, vol.117
, pp. 119-128
-
-
Rath, D.1
Amlinger, L.2
Rath, A.3
Lundgren, M.4
-
6
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. Elife 2013;2:e00471
-
(2013)
Elife
, vol.2
-
-
Jinek, M.1
East, A.2
Cheng, A.3
-
7
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-23
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
-
8
-
-
84881475586
-
Heritable genome editing in C. elegans via a CRISPR-Cas9 system
-
Friedland AE, Tzur YB, Esvelt KM, et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 2013;10:741-3
-
(2013)
Nat Methods
, vol.10
, pp. 741-743
-
-
Friedland, A.E.1
Tzur, Y.B.2
Esvelt, K.M.3
-
9
-
-
84908620313
-
Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development
-
Shen Z, Zhang X, Chai Y, et al. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development. Dev Cell 2014;30:625-36
-
(2014)
Dev Cell
, vol.30
, pp. 625-636
-
-
Shen, Z.1
Zhang, X.2
Chai, Y.3
-
10
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013;31:227-9
-
(2013)
Nat Biotechnol
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
-
11
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Casmediated genome engineering
-
Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Casmediated genome engineering. Cell 2013;153:910-8
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
-
12
-
-
84908047255
-
CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis
-
Sasaki H, Yoshida K, Hozumi A, et al. CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Dev Growth Differ 2014;56:499-510
-
(2014)
Dev Growth Differ
, vol.56
, pp. 499-510
-
-
Sasaki, H.1
Yoshida, K.2
Hozumi, A.3
-
13
-
-
84961917730
-
Genome editing in sea urchin embryos by using a CRISPR/Cas9 system
-
Lin CY, Su YH. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Dev Biol 2016;409:420-8
-
(2016)
Dev Biol
, vol.409
, pp. 420-428
-
-
Lin, C.Y.1
Su, Y.H.2
-
14
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013;31:822-6
-
(2013)
Nat Biotechnol
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
-
15
-
-
84929666410
-
Expanding the biologist's toolkit with CRISPR-Cas9
-
Sternberg SH, Doudna JA. Expanding the biologist's toolkit with CRISPR-Cas9. Mol Cell 2015;58:568-74
-
(2015)
Mol Cell
, vol.58
, pp. 568-574
-
-
Sternberg, S.H.1
Doudna, J.A.2
-
16
-
-
84939252101
-
Precision cancer mouse models through genome editing with CRISPR-Cas9
-
Mou H, Kennedy Z, Anderson DG, et al. Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med 2015;7:53
-
(2015)
Genome Med
, vol.7
, pp. 53
-
-
Mou, H.1
Kennedy, Z.2
Anderson, D.G.3
-
17
-
-
84933277263
-
Applications of the CRISPR-Cas9 system in cancer biology
-
Sánchez-Rivera FJ, Jacks T. Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 2015;15:387-95
-
(2015)
Nat Rev Cancer
, vol.15
, pp. 387-395
-
-
Sánchez-Rivera, F.J.1
Jacks, T.2
-
18
-
-
84880117972
-
Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish
-
Xiao A, Wang Z, Hu Y, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 2013;41:e141
-
(2013)
Nucleic Acids Res
, vol.41
-
-
Xiao, A.1
Wang, Z.2
Hu, Y.3
-
19
-
-
84947485619
-
Small molecules targeting microRNA for cancer therapy: promises and obstacles
-
Wen D, Danquah M, Chaudhary AK, et al. Small molecules targeting microRNA for cancer therapy: promises and obstacles. J Control Release 2015;219:237-47
-
(2015)
J Control Release
, vol.219
, pp. 237-247
-
-
Wen, D.1
Danquah, M.2
Chaudhary, A.K.3
-
20
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-21
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
-
21
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012;109:E2579-86
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
-
22
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013;8:2281-308
-
(2013)
Nat Protoc
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
Hsu, P.D.2
Wright, J.3
-
23
-
-
33845604556
-
DNA double-strand break repair: all's well that ends well
-
Wyman C, Kanaar R. DNA double-strand break repair: all's well that ends well. Annu Rev Genet 2006;40:363-83
-
(2006)
Annu Rev Genet
, vol.40
, pp. 363-383
-
-
Wyman, C.1
Kanaar, R.2
-
24
-
-
84917710578
-
High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis
-
Thomas HR, Percival SM, Yoder BK, et al. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS One 2014;9:e114632
-
(2014)
PLoS One
, vol.9
-
-
Thomas, H.R.1
Percival, S.M.2
Yoder, B.K.3
-
25
-
-
84923229919
-
An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system
-
Zhu X, Xu Y, Yu S, et al. An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 2014;4:6420
-
(2014)
Sci Rep
, vol.4
, pp. 6420
-
-
Zhu, X.1
Xu, Y.2
Yu, S.3
-
26
-
-
84954360216
-
A rapid and cheap methodology for CRISPR/Cas9 zebrafish mutant screening
-
D'Agostino Y, Locascio A, Ristoratore F, et al. A rapid and cheap methodology for CRISPR/Cas9 zebrafish mutant screening. Mol Biotechnol 2016;58:73-8
-
(2016)
Mol Biotechnol
, vol.58
, pp. 73-78
-
-
D'Agostino, Y.1
Locascio, A.2
Ristoratore, F.3
-
27
-
-
84964337221
-
CRISPR-STAT: an easy and reliable PCR-based method to evaluate targetspecific sgRNA activity
-
Carrington B, Varshney GK, Burgess SM, et al. CRISPR-STAT: an easy and reliable PCR-based method to evaluate targetspecific sgRNA activity. Nucleic Acids Res 2015;43:e157
-
(2015)
Nucleic Acids Res
, vol.43
-
-
Carrington, B.1
Varshney, G.K.2
Burgess, S.M.3
-
28
-
-
84889855901
-
One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering
-
Zhou J, Shen B, Zhang W, et al. One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering. Int J Biochem Cell Biol 2014;46:49-55
-
(2014)
Int J Biochem Cell Biol
, vol.46
, pp. 49-55
-
-
Zhou, J.1
Shen, B.2
Zhang, W.3
-
29
-
-
84882788354
-
Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system
-
Jao LE, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 2013;110:13904-9
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 13904-13909
-
-
Jao, L.E.1
Wente, S.R.2
Chen, W.3
-
30
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157:1262-78
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
31
-
-
84911465571
-
Target specificity of the CRISPR-Cas9 system
-
Wu X, Kriz AJ, Sharp PA. Target specificity of the CRISPR-Cas9 system. Quant Biol 2014;2:59-70
-
(2014)
Quant Biol
, vol.2
, pp. 59-70
-
-
Wu, X.1
Kriz, A.J.2
Sharp, P.A.3
-
32
-
-
84860235697
-
A simple, high sensitivity mutation screening using ampligase mediated T7 endonuclease I and surveyor nuclease with microfluidic capillary electrophoresis
-
Huang MC, Cheong WC, Lim LS. A simple, high sensitivity mutation screening using ampligase mediated T7 endonuclease I and surveyor nuclease with microfluidic capillary electrophoresis. Electrophoresis 2012;33:788-96
-
(2012)
Electrophoresis
, vol.33
, pp. 788-796
-
-
Huang, M.C.1
Cheong, W.C.2
Lim, L.S.3
-
33
-
-
84983752643
-
Cas9-chromatin binding information enables more accurate CRISPR off-target prediction
-
Singh R, Kuscu C, Quinlan A, et al. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 2015;43:e118
-
(2015)
Nucleic Acids Res
, vol.43
-
-
Singh, R.1
Kuscu, C.2
Quinlan, A.3
-
34
-
-
84923266604
-
GUIDEseq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDEseq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 2015;33:187-97
-
(2015)
Nat Biotechnol
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
Zheng, Z.2
Nguyen, N.T.3
-
35
-
-
84921540377
-
Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
-
Doench JG, Hartenian E, Graham DB, et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 2014;32:1262-7
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1262-1267
-
-
Doench, J.G.1
Hartenian, E.2
Graham, D.B.3
-
36
-
-
84904813279
-
CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing
-
Montague TG, Cruz JM, Gagnon JA, et al. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 2014;42:W401-7
-
(2014)
Nucleic Acids Res
, vol.42
-
-
Montague, T.G.1
Cruz, J.M.2
Gagnon, J.A.3
-
37
-
-
84955244884
-
A guide to computational tools and design strategies for genome editing experiments in zebrafish using CRISPR/Cas9
-
Prykhozhij SV, Rajan V, Berman JN. A guide to computational tools and design strategies for genome editing experiments in zebrafish using CRISPR/Cas9. Zebrafish 2016;13:70-3
-
(2016)
Zebrafish
, vol.13
, pp. 70-73
-
-
Prykhozhij, S.V.1
Rajan, V.2
Berman, J.N.3
-
38
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013;154:1380-9
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
-
39
-
-
84876016461
-
Mammalian base excision repair: the forgotten archangel
-
Dianov GL, Hübscher U. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 2013;41:3483-90
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 3483-3490
-
-
Dianov, G.L.1
Hübscher, U.2
-
40
-
-
84902204289
-
Dimeric CRISPR RNAguided FokI nucleases for highly specific genome editing
-
Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNAguided FokI nucleases for highly specific genome editing. Nat Biotechnol 2014;32:569-76
-
(2014)
Nat Biotechnol
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
Wyvekens, N.2
Khayter, C.3
-
41
-
-
84963941043
-
High-fidelity CRISPR-Cas9 variants with undetectable genome-wide offtargets
-
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 variants with undetectable genome-wide offtargets. Nature 2016;529:490-5
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
Pattanayak, V.2
Prew, M.S.3
-
42
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163:759-71
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
-
43
-
-
84920992414
-
Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
-
Zalatan JG, Lee ME, Almeida R, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015;160:339-50
-
(2015)
Cell
, vol.160
, pp. 339-350
-
-
Zalatan, J.G.1
Lee, M.E.2
Almeida, R.3
-
44
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013;152:1173-83
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
-
45
-
-
84908352138
-
Genome-scale CRISPR-mediated control of gene repression and activation
-
Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014;159:647-61
-
(2014)
Cell
, vol.159
, pp. 647-661
-
-
Gilbert, L.A.1
Horlbeck, M.A.2
Adamson, B.3
-
46
-
-
84958600233
-
Epigenome editing: state of the art, concepts, and perspectives
-
Kungulovski G, Jeltsch A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genetics 2016;32:101-13
-
(2016)
Trends Genetics
, vol.32
, pp. 101-113
-
-
Kungulovski, G.1
Jeltsch, A.2
-
47
-
-
84926419085
-
CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish
-
Auer TO, Del Bene F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 2014;69:142-50
-
(2014)
Methods
, vol.69
, pp. 142-150
-
-
Auer, T.O.1
Del Bene, F.2
-
48
-
-
84924365995
-
Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish
-
Hisano Y, Sakuma T, Nakade S, et al. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 2015;5:8841
-
(2015)
Sci Rep
, vol.5
, pp. 8841
-
-
Hisano, Y.1
Sakuma, T.2
Nakade, S.3
-
49
-
-
84942009794
-
Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs
-
Ruan J, Li H, Xu K, et al. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep 2015;5:14253
-
(2015)
Sci Rep
, vol.5
, pp. 14253
-
-
Ruan, J.1
Li, H.2
Xu, K.3
-
50
-
-
84926341187
-
Editing and investigating genomes with TALE and CRISPR/Cas systems: applications of artificial TALE and CRISPR-Cas systems
-
Giovannangeli C, Concordet JP. Editing and investigating genomes with TALE and CRISPR/Cas systems: applications of artificial TALE and CRISPR-Cas systems. Methods 2014;69:119-20
-
(2014)
Methods
, vol.69
, pp. 119-120
-
-
Giovannangeli, C.1
Concordet, J.P.2
-
51
-
-
84891722219
-
Highly efficient CRISPR/ Cas9-mediated knock-in in zebrafish by homologyindependent DNA repair
-
Auer TO, Duroure K, De Cian A, et al. Highly efficient CRISPR/ Cas9-mediated knock-in in zebrafish by homologyindependent DNA repair. Method 2014;24:142-53
-
(2014)
Method
, vol.24
, pp. 142-153
-
-
Auer, T.O.1
Duroure, K.2
De Cian, A.3
-
52
-
-
84923334761
-
Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering
-
Kimura Y, Hisano Y, Kawahara A, et al. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 2014;4: 6545
-
(2014)
Sci Rep
, vol.4
, pp. 6545
-
-
Kimura, Y.1
Hisano, Y.2
Kawahara, A.3
-
53
-
-
84928927882
-
Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system
-
Li J, Zhang B, Ren Y, et al. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res 2015;25:634-7
-
(2015)
Cell Res
, vol.25
, pp. 634-637
-
-
Li, J.1
Zhang, B.2
Ren, Y.3
-
54
-
-
84884289608
-
One-step generation of mice carrying reporter and conditional alleles by CRISPR/Casmediated genome engineering
-
Yang H, Wang H, Shivalila CS, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Casmediated genome engineering. Cell 2013;154:1370-9
-
(2013)
Cell
, vol.154
, pp. 1370-1379
-
-
Yang, H.1
Wang, H.2
Shivalila, C.S.3
-
55
-
-
84891745242
-
Generating rats with conditional alleles using CRISPR/Cas9
-
Ma Y, Zhang X, Shen B, et al. Generating rats with conditional alleles using CRISPR/Cas9. Cell Res 2014;24:122-5
-
(2014)
Cell Res
, vol.24
, pp. 122-125
-
-
Ma, Y.1
Zhang, X.2
Shen, B.3
-
56
-
-
84876409836
-
Genome editing with RNAguided Cas9 nuclease in zebrafish embryos
-
Chang N, Sun C, Gao L, et al. Genome editing with RNAguided Cas9 nuclease in zebrafish embryos. Cell Res 2013;23:465-72
-
(2013)
Cell Res
, vol.23
, pp. 465-472
-
-
Chang, N.1
Sun, C.2
Gao, L.3
-
57
-
-
84908042682
-
Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9
-
Stolfi A, Gandhi S, Salek F, et al. Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 2014;141: 4115-20
-
(2014)
Development
, vol.141
, pp. 4115-4120
-
-
Stolfi, A.1
Gandhi, S.2
Salek, F.3
-
58
-
-
84900458436
-
Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila
-
Gratz SJ, Ukken FP, Rubinstein CD, et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 2014;196:961-71
-
(2014)
Genetics
, vol.196
, pp. 961-971
-
-
Gratz, S.J.1
Ukken, F.P.2
Rubinstein, C.D.3
-
59
-
-
0036046741
-
Replacement, reduction and refinement
-
Flecknell P. Replacement, reduction and refinement. Altex 2002;19:73-8
-
(2002)
Altex
, vol.19
, pp. 73-78
-
-
Flecknell, P.1
-
60
-
-
84947027312
-
Single-step generation of conditional knockout mouse embryonic stem cells
-
Flemr M, Bühler M. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep 2015;12: 709-16
-
(2015)
Cell Rep
, vol.12
, pp. 709-716
-
-
Flemr, M.1
Bühler, M.2
-
61
-
-
84964048316
-
A molecular chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions
-
Cheng J, Roden CA, Pan W, et al. A molecular chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions. Nat Commun 2016;7:11178
-
(2016)
Nat Commun
, vol.7
, pp. 11178
-
-
Cheng, J.1
Roden, C.A.2
Pan, W.3
-
62
-
-
85016158708
-
A method to convertmRNA into a gRNA library for CRISPR/Cas9 editing of any organism
-
Arakawa H. A method to convertmRNA into a gRNA library for CRISPR/Cas9 editing of any organism. Sci Adv 2016;2:e1600699
-
(2016)
Sci Adv
, vol.2
-
-
Arakawa, H.1
-
63
-
-
84921929541
-
Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance
-
Jiang Q, Meng X, Meng L, et al. Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance. RNA Biol 2014;11:1243-9
-
(2014)
RNA Biol
, vol.11
, pp. 1243-1249
-
-
Jiang, Q.1
Meng, X.2
Meng, L.3
-
64
-
-
84913568580
-
Programmable RNA recognition and cleavage by CRISPR/Cas9
-
O'Connell MR, Oakes BL, Sternberg SH, et al. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014;516:263-6
-
(2014)
Nature
, vol.516
, pp. 263-266
-
-
O'Connell, M.R.1
Oakes, B.L.2
Sternberg, S.H.3
-
66
-
-
84930618439
-
CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
-
Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015;6:363-72
-
(2015)
Protein Cell
, vol.6
, pp. 363-372
-
-
Liang, P.1
Xu, Y.2
Zhang, X.3
-
67
-
-
84930634481
-
CRISPR-Cas9: a new and promising player in gene therapy
-
Xiao-Jie L, Hui-Ying X, Zun-Ping K, et al. CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet 2015;52: 289-96
-
(2015)
J Med Genet
, vol.52
, pp. 289-296
-
-
Xiao-Jie, L.1
Hui-Ying, X.2
Zun-Ping, K.3
|