메뉴 건너뛰기




Volumn 32, Issue 2, 2016, Pages 101-113

Epigenome Editing: State of the Art, Concepts, and Perspectives

Author keywords

Cell reprogramming; Chromatin modification; DNA recognition; Gene regulation; Molecular epigenetics; Synthetic biology

Indexed keywords

ACYLTRANSFERASE; DEUBIQUITINASE; DIOXYGENASE; DNA; DNA METHYLTRANSFERASE; HISTONE DEACETYLASE; METHYLCYTOSINE DIOXYGENASE; METHYLTRANSFERASE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; PHOSPHATASE; PHOSPHOTRANSFERASE; PROTEIN ARGININE DEIMINASE; PROTEIN ARGININE METHYLTRANSFERASE; PROTEIN LYSINE ACETYLTRANSFERASE; PROTEIN LYSINE DEACETYLASE I; PROTEIN LYSINE DEACETYLASE IIA; PROTEIN LYSINE DEACETYLASE IIB; PROTEIN LYSINE DEACETYLASE IV; PROTEIN LYSINE DEMETHYLASE; PROTEIN LYSINE METHYLTRANSFERASE; SIRTUIN; UBIQUITIN PROTEIN LIGASE; UNCLASSIFIED DRUG; UNCLASSIFIED ENZYME; CHROMATIN;

EID: 84958600233     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2015.12.001     Document Type: Review
Times cited : (145)

References (93)
  • 1
    • 33847068077 scopus 로고    scopus 로고
    • Cold Spring Harbor Laboratory Press
    • Allis C.D., et al. Epigenetics 2015, Cold Spring Harbor Laboratory Press.
    • (2015) Epigenetics
    • Allis, C.D.1
  • 2
    • 84859893371 scopus 로고    scopus 로고
    • Histone methylation: a dynamic mark in health, disease and inheritance
    • Greer E.L., Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13:343-357.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 343-357
    • Greer, E.L.1    Shi, Y.2
  • 4
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • The ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
    • (2012) Nature , vol.489 , pp. 57-74
  • 5
    • 84884829249 scopus 로고    scopus 로고
    • Mapping human epigenomes
    • Rivera C.M., Ren B. Mapping human epigenomes. Cell 2013, 155:39-55.
    • (2013) Cell , vol.155 , pp. 39-55
    • Rivera, C.M.1    Ren, B.2
  • 6
    • 84923362619 scopus 로고    scopus 로고
    • Integrative analysis of 111 reference human epigenomes
    • Kundaje A., et al. Integrative analysis of 111 reference human epigenomes. Nature 2015, 518:317-330.
    • (2015) Nature , vol.518 , pp. 317-330
    • Kundaje, A.1
  • 7
    • 77956095231 scopus 로고    scopus 로고
    • Active DNA demethylation: many roads lead to Rome
    • Wu S.C., Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 2010, 11:607-620.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 607-620
    • Wu, S.C.1    Zhang, Y.2
  • 8
    • 0000127073 scopus 로고
    • Sequence-specific recognition of double helical nucleic acids by proteins
    • Seeman N.C., et al. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sci. U.S.A. 1976, 73:804-808.
    • (1976) Proc. Natl. Acad. Sci. U.S.A. , vol.73 , pp. 804-808
    • Seeman, N.C.1
  • 9
    • 0030183768 scopus 로고    scopus 로고
    • Engineering novel restriction endonucleases: principles and applications
    • Jeltsch A., et al. Engineering novel restriction endonucleases: principles and applications. Trends Biotechnol. 1996, 14:235-238.
    • (1996) Trends Biotechnol. , vol.14 , pp. 235-238
    • Jeltsch, A.1
  • 10
    • 84879264708 scopus 로고    scopus 로고
    • ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
    • Gaj T., et al. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31:397-405.
    • (2013) Trends Biotechnol. , vol.31 , pp. 397-405
    • Gaj, T.1
  • 11
    • 0033624684 scopus 로고    scopus 로고
    • DNA recognition by Cys2His2 zinc finger proteins
    • Wolfe S.A., et al. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 2000, 29:183-212.
    • (2000) Annu. Rev. Biophys. Biomol. Struct. , vol.29 , pp. 183-212
    • Wolfe, S.A.1
  • 12
    • 0034923498 scopus 로고    scopus 로고
    • Design and selection of novel Cys2His2 zinc finger proteins
    • Pabo C.O., et al. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 2001, 70:313-340.
    • (2001) Annu. Rev. Biochem. , vol.70 , pp. 313-340
    • Pabo, C.O.1
  • 13
    • 0037711251 scopus 로고    scopus 로고
    • Drug discovery with engineered zinc-finger proteins
    • Jamieson A.C., et al. Drug discovery with engineered zinc-finger proteins. Nat. Rev. Drug Discov. 2003, 2:361-368.
    • (2003) Nat. Rev. Drug Discov. , vol.2 , pp. 361-368
    • Jamieson, A.C.1
  • 14
    • 72149110399 scopus 로고    scopus 로고
    • Breaking the code of DNA binding specificity of TAL-type III effectors
    • Boch J., et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009, 326:1509-1512.
    • (2009) Science , vol.326 , pp. 1509-1512
    • Boch, J.1
  • 15
    • 80053343092 scopus 로고    scopus 로고
    • TAL effectors: customizable proteins for DNA targeting
    • Bogdanove A.J., Voytas D.F. TAL effectors: customizable proteins for DNA targeting. Science 2011, 333:1843-1846.
    • (2011) Science , vol.333 , pp. 1843-1846
    • Bogdanove, A.J.1    Voytas, D.F.2
  • 16
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 17
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi L.S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152:1173-1183.
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1
  • 18
    • 84903212620 scopus 로고    scopus 로고
    • TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity
    • Mussolino C., et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 2014, 42:6762-6773.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 6762-6773
    • Mussolino, C.1
  • 19
    • 80052285185 scopus 로고    scopus 로고
    • On target? Tracing zinc-finger-nuclease specificity
    • Mussolino C., Cathomen T. On target? Tracing zinc-finger-nuclease specificity. Nat. Methods 2011, 8:725-726.
    • (2011) Nat. Methods , vol.8 , pp. 725-726
    • Mussolino, C.1    Cathomen, T.2
  • 20
    • 84913620157 scopus 로고    scopus 로고
    • Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation
    • Grimmer M.R., et al. Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation. Nucleic Acids Res. 2014, 42:10856-10868.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 10856-10868
    • Grimmer, M.R.1
  • 21
    • 84923266604 scopus 로고    scopus 로고
    • GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
    • Tsai S.Q., et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 2015, 33:187-197.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 187-197
    • Tsai, S.Q.1
  • 22
    • 84938857368 scopus 로고    scopus 로고
    • Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators
    • Polstein L.R., et al. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res. 2015, 25:1158-1169.
    • (2015) Genome Res. , vol.25 , pp. 1158-1169
    • Polstein, L.R.1
  • 23
    • 84945152253 scopus 로고    scopus 로고
    • How specific is CRISPR/Cas9 really?
    • O'Geen H., et al. How specific is CRISPR/Cas9 really?. Curr. Opin. Chem. Biol. 2015, 29:72-78.
    • (2015) Curr. Opin. Chem. Biol. , vol.29 , pp. 72-78
    • O'Geen, H.1
  • 24
    • 84913594397 scopus 로고    scopus 로고
    • The new frontier of genome engineering with CRISPR-Cas9
    • Doudna J.A., Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346:1258096.
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 25
    • 84940924686 scopus 로고    scopus 로고
    • Proven and novel strategies for efficient editing of the human genome
    • Mussolino C., et al. Proven and novel strategies for efficient editing of the human genome. Curr. Opin. Pharmacol. 2015, 24:105-112.
    • (2015) Curr. Opin. Pharmacol. , vol.24 , pp. 105-112
    • Mussolino, C.1
  • 26
    • 34250825379 scopus 로고    scopus 로고
    • Application of DNA methyltransferases in targeted DNA methylation
    • Jeltsch A., et al. Application of DNA methyltransferases in targeted DNA methylation. Appl. Microbiol. Biotechnol. 2007, 75:1233-1240.
    • (2007) Appl. Microbiol. Biotechnol. , vol.75 , pp. 1233-1240
    • Jeltsch, A.1
  • 27
    • 84870583474 scopus 로고    scopus 로고
    • Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes
    • de Groote M.L., et al. Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res. 2012, 40:10596-10613.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 10596-10613
    • de Groote, M.L.1
  • 28
    • 84984766752 scopus 로고    scopus 로고
    • Cytosine methylation targetted to pre-determined sequences
    • Xu G.L., Bestor T.H. Cytosine methylation targetted to pre-determined sequences. Nat. Genet. 1997, 17:376-378.
    • (1997) Nat. Genet. , vol.17 , pp. 376-378
    • Xu, G.L.1    Bestor, T.H.2
  • 29
    • 0037164741 scopus 로고    scopus 로고
    • Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo
    • Snowden A.W., et al. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr. Biol. 2002, 12:2159-2166.
    • (2002) Curr. Biol. , vol.12 , pp. 2159-2166
    • Snowden, A.W.1
  • 30
    • 84923642913 scopus 로고    scopus 로고
    • Chromatin regulation at the frontier of synthetic biology
    • Keung A.J., et al. Chromatin regulation at the frontier of synthetic biology. Nat. Rev. Genet. 2015, 16:159-171.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 159-171
    • Keung, A.J.1
  • 31
    • 84927513082 scopus 로고    scopus 로고
    • Synthetic epigenetics-towards intelligent control of epigenetic states and cell identity
    • Jurkowski T.P., et al. Synthetic epigenetics-towards intelligent control of epigenetic states and cell identity. Clin. Epigenetics 2015, 7:18.
    • (2015) Clin. Epigenetics , vol.7 , pp. 18
    • Jurkowski, T.P.1
  • 32
    • 33846686888 scopus 로고    scopus 로고
    • Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes
    • Li F., et al. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res. 2007, 35:100-112.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 100-112
    • Li, F.1
  • 33
    • 84860561774 scopus 로고    scopus 로고
    • Epigenetic reprogramming of cancer cells via targeted DNA methylation
    • Rivenbark A.G., et al. Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 2012, 7:350-360.
    • (2012) Epigenetics , vol.7 , pp. 350-360
    • Rivenbark, A.G.1
  • 34
    • 84872865881 scopus 로고    scopus 로고
    • Targeted methylation and gene silencing of VEGF-in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity
    • Siddique A.N., et al. Targeted methylation and gene silencing of VEGF-in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J. Mol. Biol. 2013, 425:479-491.
    • (2013) J. Mol. Biol. , vol.425 , pp. 479-491
    • Siddique, A.N.1
  • 35
    • 84884475055 scopus 로고    scopus 로고
    • Towards sustained silencing of HER2/neu in cancer by epigenetic editing
    • Falahi F., et al. Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol. Cancer Res. 2013, 11:1029-1039.
    • (2013) Mol. Cancer Res. , vol.11 , pp. 1029-1039
    • Falahi, F.1
  • 36
    • 84887452625 scopus 로고    scopus 로고
    • Specific transcriptional enhancement of inducible nitric oxide synthase by targeted promoter demethylation
    • Gregory D.J., et al. Specific transcriptional enhancement of inducible nitric oxide synthase by targeted promoter demethylation. Epigenetics 2013, 8:1205-1212.
    • (2013) Epigenetics , vol.8 , pp. 1205-1212
    • Gregory, D.J.1
  • 37
    • 84894248678 scopus 로고    scopus 로고
    • Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-promoter
    • Chen H., et al. Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-promoter. Nucleic Acids Res. 2014, 42:1563-1574.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 1563-1574
    • Chen, H.1
  • 38
    • 84900412888 scopus 로고    scopus 로고
    • Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells
    • Nunna S., et al. Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells. PLoS ONE 2014, 9:e87703.
    • (2014) PLoS ONE , vol.9 , pp. e87703
    • Nunna, S.1
  • 39
    • 84925226532 scopus 로고    scopus 로고
    • Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors
    • Heller E.A., et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat. Neurosci. 2014, 17:1720-1727.
    • (2014) Nat. Neurosci. , vol.17 , pp. 1720-1727
    • Heller, E.A.1
  • 40
    • 84903942172 scopus 로고    scopus 로고
    • Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation
    • Keung A.J., et al. Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 2014, 158:110-120.
    • (2014) Cell , vol.158 , pp. 110-120
    • Keung, A.J.1
  • 41
    • 84928040889 scopus 로고    scopus 로고
    • Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained
    • Kungulovski G., et al. Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 2015, 8:12.
    • (2015) Epigenetics Chromatin , vol.8 , pp. 12
    • Kungulovski, G.1
  • 42
    • 84945446360 scopus 로고    scopus 로고
    • Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer
    • Stolzenburg S., et al. Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene 2015, 34:5427-5435.
    • (2015) Oncogene , vol.34 , pp. 5427-5435
    • Stolzenburg, S.1
  • 43
    • 84929135130 scopus 로고    scopus 로고
    • Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
    • Hilton I.B., et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 2015, 33:510-517.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 510-517
    • Hilton, I.B.1
  • 44
    • 84886084801 scopus 로고    scopus 로고
    • Locus-specific editing of histone modifications at endogenous enhancers
    • Mendenhall E.M., et al. Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 2013, 31:1133-1136.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1133-1136
    • Mendenhall, E.M.1
  • 45
    • 84890048526 scopus 로고    scopus 로고
    • Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins
    • Maeder M.L., et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat. Biotechnol. 2013, 31:1137-1142.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1137-1142
    • Maeder, M.L.1
  • 46
    • 84882976110 scopus 로고    scopus 로고
    • Optical control of mammalian endogenous transcription and epigenetic states
    • Konermann S., et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 2013, 500:472-476.
    • (2013) Nature , vol.500 , pp. 472-476
    • Konermann, S.1
  • 47
    • 84929012548 scopus 로고    scopus 로고
    • TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts
    • Bernstein D.L., et al. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J. Clin. Invest. 2015, 125:1998-2006.
    • (2015) J. Clin. Invest. , vol.125 , pp. 1998-2006
    • Bernstein, D.L.1
  • 48
    • 84941793540 scopus 로고    scopus 로고
    • Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells
    • Cho H.S., et al. Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells. Oncotarget 2015, 6:23837-23844.
    • (2015) Oncotarget , vol.6 , pp. 23837-23844
    • Cho, H.S.1
  • 49
    • 84928924333 scopus 로고    scopus 로고
    • Functional annotation of native enhancers with a Cas9-histone demethylase fusion
    • Kearns N.A., et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 2015, 12:401-403.
    • (2015) Nat. Methods , vol.12 , pp. 401-403
    • Kearns, N.A.1
  • 50
    • 84902127230 scopus 로고    scopus 로고
    • Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation
    • Blackledge N.P., et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 2014, 157:1445-1459.
    • (2014) Cell , vol.157 , pp. 1445-1459
    • Blackledge, N.P.1
  • 51
    • 84928130154 scopus 로고    scopus 로고
    • Epigenetic inheritance uncoupled from sequence-specific recruitment
    • Ragunathan K., et al. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 2015, 348:1258699.
    • (2015) Science , vol.348 , pp. 1258699
    • Ragunathan, K.1
  • 52
    • 84929462098 scopus 로고    scopus 로고
    • Restricted epigenetic inheritance of H3K9 methylation
    • Audergon P.N., et al. Restricted epigenetic inheritance of H3K9 methylation. Science 2015, 348:132-135.
    • (2015) Science , vol.348 , pp. 132-135
    • Audergon, P.N.1
  • 53
    • 84862528505 scopus 로고    scopus 로고
    • Induced pluripotent stem cells: past, present, and future
    • Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 2012, 10:678-684.
    • (2012) Cell Stem Cell , vol.10 , pp. 678-684
    • Yamanaka, S.1
  • 54
    • 84947108021 scopus 로고    scopus 로고
    • Genome-editing tools for stem cell biology
    • Vasileva E.A., et al. Genome-editing tools for stem cell biology. Cell Death Dis. 2015, 6:e1831.
    • (2015) Cell Death Dis. , vol.6 , pp. e1831
    • Vasileva, E.A.1
  • 55
    • 33644856123 scopus 로고    scopus 로고
    • Epigenetic therapy of cancer: past, present and future
    • Yoo C.B., Jones P.A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 2006, 5:37-50.
    • (2006) Nat. Rev. Drug Discov. , vol.5 , pp. 37-50
    • Yoo, C.B.1    Jones, P.A.2
  • 56
    • 38649124003 scopus 로고    scopus 로고
    • Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders
    • Abel T., Zukin R.S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol. 2008, 8:57-64.
    • (2008) Curr. Opin. Pharmacol. , vol.8 , pp. 57-64
    • Abel, T.1    Zukin, R.S.2
  • 57
    • 65249157050 scopus 로고    scopus 로고
    • Epigenetics, DNA methylation, and chromatin modifying drugs
    • Szyf M. Epigenetics, DNA methylation, and chromatin modifying drugs. Annu. Rev. Pharmacol. Toxicol. 2009, 49:243-263.
    • (2009) Annu. Rev. Pharmacol. Toxicol. , vol.49 , pp. 243-263
    • Szyf, M.1
  • 58
    • 84863621527 scopus 로고    scopus 로고
    • Cancer epigenetics: from mechanism to therapy
    • Dawson M.A., Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012, 150:12-27.
    • (2012) Cell , vol.150 , pp. 12-27
    • Dawson, M.A.1    Kouzarides, T.2
  • 59
    • 84921750827 scopus 로고    scopus 로고
    • DNMT1-associated DNA methylation changes in cancer
    • Bashtrykov P., Jeltsch A. DNMT1-associated DNA methylation changes in cancer. Cell Cycle 2015, 14:5.
    • (2015) Cell Cycle , vol.14 , pp. 5
    • Bashtrykov, P.1    Jeltsch, A.2
  • 60
    • 84925511390 scopus 로고    scopus 로고
    • Structural insight into autoinhibition and histone H3-induced activation of DNMT3A
    • Guo X., et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 2015, 517:640-644.
    • (2015) Nature , vol.517 , pp. 640-644
    • Guo, X.1
  • 61
    • 58649110597 scopus 로고    scopus 로고
    • Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks
    • Southall S.M., et al. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol. Cell 2009, 33:181-191.
    • (2009) Mol. Cell , vol.33 , pp. 181-191
    • Southall, S.M.1
  • 62
    • 84891665594 scopus 로고    scopus 로고
    • Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread
    • Al-Sady B., et al. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol. Cell 2013, 51:80-91.
    • (2013) Mol. Cell , vol.51 , pp. 80-91
    • Al-Sady, B.1
  • 63
    • 79953151792 scopus 로고    scopus 로고
    • The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation
    • Qiao Q., et al. The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J. Biol. Chem. 2011, 286:8361-8368.
    • (2011) J. Biol. Chem. , vol.286 , pp. 8361-8368
    • Qiao, Q.1
  • 64
    • 84875341955 scopus 로고    scopus 로고
    • Viral and nonviral delivery systems for gene delivery
    • Nayerossadat N., et al. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res. 2012, 1:27.
    • (2012) Adv. Biomed. Res. , vol.1 , pp. 27
    • Nayerossadat, N.1
  • 65
    • 84904891640 scopus 로고    scopus 로고
    • Applications of nanoparticles in nanomedicine
    • Yohan D., Chithrani B.D. Applications of nanoparticles in nanomedicine. J. Biomed. Nanotechnol. 2014, 10:2371-2392.
    • (2014) J. Biomed. Nanotechnol. , vol.10 , pp. 2371-2392
    • Yohan, D.1    Chithrani, B.D.2
  • 66
    • 78751470921 scopus 로고    scopus 로고
    • Structure and function of mammalian DNA methyltransferases
    • Jurkowska R.Z., et al. Structure and function of mammalian DNA methyltransferases. Chembiochem 2011, 12:206-222.
    • (2011) Chembiochem , vol.12 , pp. 206-222
    • Jurkowska, R.Z.1
  • 67
    • 84886860116 scopus 로고    scopus 로고
    • TET enzymes, TDG and the dynamics of DNA demethylation
    • Kohli R.M., Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013, 502:472-479.
    • (2013) Nature , vol.502 , pp. 472-479
    • Kohli, R.M.1    Zhang, Y.2
  • 68
    • 20544461679 scopus 로고    scopus 로고
    • Structural and sequence motifs of protein (histone) methylation enzymes
    • Cheng X., et al. Structural and sequence motifs of protein (histone) methylation enzymes. Annu. Rev. Biophys. Biomol. Struct. 2005, 34:267-294.
    • (2005) Annu. Rev. Biophys. Biomol. Struct. , vol.34 , pp. 267-294
    • Cheng, X.1
  • 69
    • 77953644347 scopus 로고    scopus 로고
    • Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases
    • Mosammaparast N., Shi Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu. Rev. Biochem. 2010, 79:155-179.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 155-179
    • Mosammaparast, N.1    Shi, Y.2
  • 70
    • 84935918229 scopus 로고    scopus 로고
    • Chemical biology of protein arginine modifications in epigenetic regulation
    • Fuhrmann J., et al. Chemical biology of protein arginine modifications in epigenetic regulation. Chem. Rev. 2015, 115:5413-5461.
    • (2015) Chem. Rev. , vol.115 , pp. 5413-5461
    • Fuhrmann, J.1
  • 71
    • 57049152851 scopus 로고    scopus 로고
    • Catalysis and substrate selection by histone/protein lysine acetyltransferases
    • Berndsen C.E., Denu J.M. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr. Opin. Struct. Biol. 2008, 18:682-689.
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 682-689
    • Berndsen, C.E.1    Denu, J.M.2
  • 72
    • 82955247831 scopus 로고    scopus 로고
    • Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes
    • Lombardi P.M., et al. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr. Opin. Struct. Biol. 2011, 21:735-743.
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 735-743
    • Lombardi, P.M.1
  • 73
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 family of protein deacetylases
    • Blander G., Guarente L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 2004, 73:417-435.
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 74
    • 84867183192 scopus 로고    scopus 로고
    • Histone phosphorylation: a chromatin modification involved in diverse nuclear events
    • Rossetto D., et al. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 2012, 7:1098-1108.
    • (2012) Epigenetics , vol.7 , pp. 1098-1108
    • Rossetto, D.1
  • 75
    • 84867788817 scopus 로고    scopus 로고
    • Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer
    • Cao J., Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front. Oncol. 2012, 2:26.
    • (2012) Front. Oncol. , vol.2 , pp. 26
    • Cao, J.1    Yan, Q.2
  • 76
    • 79959847254 scopus 로고    scopus 로고
    • The role of deubiquitinating enzymes in chromatin regulation
    • Atanassov B.S., et al. The role of deubiquitinating enzymes in chromatin regulation. FEBS Lett. 2011, 585:2016-2023.
    • (2011) FEBS Lett. , vol.585 , pp. 2016-2023
    • Atanassov, B.S.1
  • 77
    • 84883214212 scopus 로고    scopus 로고
    • Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis
    • Wang S., Wang Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim. Biophys. Acta 2013, 1829:1126-1135.
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 1126-1135
    • Wang, S.1    Wang, Y.2
  • 78
    • 84930687902 scopus 로고    scopus 로고
    • Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics
    • Hottiger M.O. Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu. Rev. Biochem. 2015, 84:227-263.
    • (2015) Annu. Rev. Biochem. , vol.84 , pp. 227-263
    • Hottiger, M.O.1
  • 79
    • 84891827613 scopus 로고    scopus 로고
    • Emerging strategies to deplete the HIV reservoir
    • Archin N.M., Margolis D.M. Emerging strategies to deplete the HIV reservoir. Curr. Opin. Infect. Dis. 2014, 27:29-35.
    • (2014) Curr. Opin. Infect. Dis. , vol.27 , pp. 29-35
    • Archin, N.M.1    Margolis, D.M.2
  • 80
    • 84900018842 scopus 로고    scopus 로고
    • Specific reactivation of latent HIV-with designer zinc-finger transcription factors targeting the HIV-5'-LTR promoter
    • Wang P., et al. Specific reactivation of latent HIV-with designer zinc-finger transcription factors targeting the HIV-5'-LTR promoter. Gene Ther. 2014, 21:490-495.
    • (2014) Gene Ther. , vol.21 , pp. 490-495
    • Wang, P.1
  • 81
    • 77649202326 scopus 로고    scopus 로고
    • Protein aggregation diseases: pathogenicity and therapeutic perspectives
    • Aguzzi A., O'Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov. 2010, 9:237-248.
    • (2010) Nat. Rev. Drug Discov. , vol.9 , pp. 237-248
    • Aguzzi, A.1    O'Connor, T.2
  • 82
    • 84946475663 scopus 로고    scopus 로고
    • Targeting protein aggregation for the treatment of degenerative diseases
    • Eisele Y.S., et al. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov. 2015, 14:759-780.
    • (2015) Nat. Rev. Drug Discov. , vol.14 , pp. 759-780
    • Eisele, Y.S.1
  • 83
    • 39049171424 scopus 로고    scopus 로고
    • Genomic imprinting and imprinting defects in humans
    • Horsthemke B., Buiting K. Genomic imprinting and imprinting defects in humans. Adv. Genet. 2008, 61:225-246.
    • (2008) Adv. Genet. , vol.61 , pp. 225-246
    • Horsthemke, B.1    Buiting, K.2
  • 84
    • 84930932944 scopus 로고    scopus 로고
    • Epigenetic control of the genome - lessons from genomic imprinting
    • Adalsteinsson B.T., Ferguson-Smith A.C. Epigenetic control of the genome - lessons from genomic imprinting. Genes 2014, 5:635-655.
    • (2014) Genes , vol.5 , pp. 635-655
    • Adalsteinsson, B.T.1    Ferguson-Smith, A.C.2
  • 85
    • 84962921141 scopus 로고    scopus 로고
    • Correction of aberrant imprinting by allele specific epigenome editing
    • Published online November 4, 2015
    • Bashtrykov P., et al. Correction of aberrant imprinting by allele specific epigenome editing. Clin. Pharmacol. Ther. 2015, Published online November 4, 2015. 10.1002/cpt.295.
    • (2015) Clin. Pharmacol. Ther.
    • Bashtrykov, P.1
  • 86
    • 84903555108 scopus 로고    scopus 로고
    • Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform
    • Yoshimi K., et al. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat. Commun. 2014, 5:4240.
    • (2014) Nat. Commun. , vol.5 , pp. 4240
    • Yoshimi, K.1
  • 87
    • 45549085392 scopus 로고    scopus 로고
    • Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care
    • Cameron N.M., et al. Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care. J. Neuroendocrinol. 2008, 20:795-801.
    • (2008) J. Neuroendocrinol. , vol.20 , pp. 795-801
    • Cameron, N.M.1
  • 88
    • 84874076991 scopus 로고    scopus 로고
    • Epigenetic regulation of memory formation and maintenance
    • Zovkic I.B., et al. Epigenetic regulation of memory formation and maintenance. Learn. Mem. 2013, 20:61-74.
    • (2013) Learn. Mem. , vol.20 , pp. 61-74
    • Zovkic, I.B.1
  • 89
    • 84876140223 scopus 로고    scopus 로고
    • Allele-specific epigenetic modification: a molecular mechanism for gene-environment interactions in stress-related psychiatric disorders?
    • Klengel T., Binder E.B. Allele-specific epigenetic modification: a molecular mechanism for gene-environment interactions in stress-related psychiatric disorders?. Epigenomics 2013, 5:109-112.
    • (2013) Epigenomics , vol.5 , pp. 109-112
    • Klengel, T.1    Binder, E.B.2
  • 90
    • 84928705254 scopus 로고    scopus 로고
    • Brain feminization requires active repression of masculinization via DNA methylation
    • Nugent B.M., et al. Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci. 2015, 18:690-697.
    • (2015) Nat. Neurosci. , vol.18 , pp. 690-697
    • Nugent, B.M.1
  • 91
    • 84864700183 scopus 로고    scopus 로고
    • Epigenetic mechanisms in neurological disease
    • Jakovcevski M., Akbarian S. Epigenetic mechanisms in neurological disease. Nat. Med. 2012, 18:1194-1204.
    • (2012) Nat. Med. , vol.18 , pp. 1194-1204
    • Jakovcevski, M.1    Akbarian, S.2
  • 92
    • 84926061715 scopus 로고    scopus 로고
    • In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
    • Swiech L., et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 2015, 33:102-106.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 102-106
    • Swiech, L.1
  • 93
    • 84961593462 scopus 로고    scopus 로고
    • Cellular reprogramming for understanding and treating human disease
    • Kanherkar R.R., et al. Cellular reprogramming for understanding and treating human disease. Front. Cell Dev. Biol. 2014, 2:67.
    • (2014) Front. Cell Dev. Biol. , vol.2 , pp. 67
    • Kanherkar, R.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.