메뉴 건너뛰기




Volumn 112, Issue 517, 2017, Pages 282-299

Partition MCMC for Inference on Acyclic Digraphs

Author keywords

Bayesian networks; MCMC; Structure learning

Indexed keywords


EID: 85019023792     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2015.1133426     Document Type: Article
Times cited : (88)

References (57)
  • 1
    • 0037893033 scopus 로고
    • Finding a Minimum Circuit in a Graph
    • Alon, I., and Rodeh, M., (1978), “Finding a Minimum Circuit in a Graph,” SIAM Journal on Computing, 7, 413–423.
    • (1978) SIAM Journal on Computing , vol.7 , pp. 413-423
    • Alon, I.1    Rodeh, M.2
  • 2
    • 0031531764 scopus 로고    scopus 로고
    • A Characterization of Markov Equivalence Classes for Acyclic Digraphs
    • Andersson, S. A., Madigan, D., and Perlman, M. D., (1997), “A Characterization of Markov Equivalence Classes for Acyclic Digraphs,” Annals of Statistics, 25, 505–541.
    • (1997) Annals of Statistics , vol.25 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L., (1996), “Bagging Predictors,” Machine Learning, 24, 123–140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 84919705538 scopus 로고    scopus 로고
    • Order-Independent Constraint-Based Causal Structure Learning
    • Colombo, D., and Maathuis, M. H., (2014), “Order-Independent Constraint-Based Causal Structure Learning,” Journal of Machine Learning Research, 15, 3741–3782.
    • (2014) Journal of Machine Learning Research , vol.15 , pp. 3741-3782
    • Colombo, D.1    Maathuis, M.H.2
  • 5
    • 84870061071 scopus 로고    scopus 로고
    • Objective Bayes Factors for Gaussian Directed Acyclic Graphical Models
    • Consonni, G., and Rocca, L. L., (2012), “Objective Bayes Factors for Gaussian Directed Acyclic Graphical Models,” Scandinavian Journal of Statistics, 39, 743–756.
    • (2012) Scandinavian Journal of Statistics , vol.39 , pp. 743-756
    • Consonni, G.1    Rocca, L.L.2
  • 8
    • 79958782255 scopus 로고    scopus 로고
    • Learning Bayesian Networks: Approaches and Issues
    • Daly, R., Shen, Q., and Aitken, S., (2011), “Learning Bayesian Networks:Approaches and Issues,” The Knowledge Engineering Review, 26, 99–157.
    • (2011) The Knowledge Engineering Review , vol.26 , pp. 99-157
    • Daly, R.1    Shen, Q.2    Aitken, S.3
  • 11
    • 85019019275 scopus 로고    scopus 로고
    • Eaton, D., and Murphy, K. (2007b), “BDAGL,” available at http://www.cs.ubc.ca/murphyk/Software/BDAGL/.
    • (2007) BDAGL
    • Eaton, D.1    Murphy, K.2
  • 12
    • 0002344794 scopus 로고
    • Bootstrap Methods: Another Look at the Jackknife
    • Efron, B., (1979), “Bootstrap Methods:Another Look at the Jackknife,” Annals of Statistics, 7, 1–26.
    • (1979) Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 14
    • 49549100459 scopus 로고    scopus 로고
    • Learning Causal Bayesian Network Structures From Experimental Data
    • Ellis, B., and Wong, W. H., (2008), “Learning Causal Bayesian Network Structures From Experimental Data,” Journal of the American Statistical Association, 103, 778–789.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 778-789
    • Ellis, B.1    Wong, W.H.2
  • 15
    • 0842288337 scopus 로고    scopus 로고
    • Inferring Cellular Networks Using Probabilistic Graphical Models
    • Friedman, N., (2004), “Inferring Cellular Networks Using Probabilistic Graphical Models,” Science, 303, 799–805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 17
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks
    • Friedman, N., and Koller, D., (2003), “Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks,” Machine Learning, 50, 95–125.
    • (2003) Machine Learning , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 20
    • 0036431552 scopus 로고    scopus 로고
    • Parameter Priors for Directed Acyclic Graphical Models and the Characterization of Several Probability Distributions
    • Geiger, D., and Heckerman, D. (2002), “Parameter Priors for Directed Acyclic Graphical Models and the Characterization of Several Probability Distributions,” Annals of Statistics, 30, 1412–1440.
    • (2002) Annals of Statistics , vol.30 , pp. 1412-1440
    • Geiger, D.1    Heckerman, D.2
  • 21
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov Chain Monte Carlo Model Search for Data Mining
    • Giudici, P., and Castelo, R., (2003), “Improving Markov Chain Monte Carlo Model Search for Data Mining,” Machine Learning, 50, 127–158.
    • (2003) Machine Learning , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 22
    • 43049097125 scopus 로고    scopus 로고
    • Improving the Structure MCMC Sampler for Bayesian Networks by Introducing a New Edge Reversal Move
    • Grzegorczyk, M., and Husmeier, D., (2008), “Improving the Structure MCMC Sampler for Bayesian Networks by Introducing a New Edge Reversal Move,” Machine Learning, 71, 265–305.
    • (2008) Machine Learning , vol.71 , pp. 265-305
    • Grzegorczyk, M.1    Husmeier, D.2
  • 23
    • 84917733558 scopus 로고    scopus 로고
    • Jointly Interventional and Observational Data: Estimation of Interventional Markov Equivalence Classes of Directed Acyclic Graphs
    • Series B
    • Hauser, A., and Bühlmann, P., (2015), “Jointly Interventional and Observational Data:Estimation of Interventional Markov Equivalence Classes of Directed Acyclic Graphs,” Journal of the Royal Statistical Society, Series B, 77, 291–318.
    • (2015) Journal of the Royal Statistical Society , vol.77 , pp. 291-318
    • Hauser, A.1    Bühlmann, P.2
  • 25
    • 84885027886 scopus 로고    scopus 로고
    • Reversible MCMC on Markov Equivalence Classes of Sparse Directed Acyclic Graphs
    • He, Y., Jia, J., and Yu, B., (2013), “Reversible MCMC on Markov Equivalence Classes of Sparse Directed Acyclic Graphs,” Annals of Statistics, 41, 1742–1779.
    • (2013) Annals of Statistics , vol.41 , pp. 1742-1779
    • He, Y.1    Jia, J.2    Yu, B.3
  • 28
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and Specificity of Inferring Genetic Regulatory Interactions From Microarray Experiments With Dynamic Bayesian Networks
    • Husmeier, D., (2003), “Sensitivity and Specificity of Inferring Genetic Regulatory Interactions From Microarray Experiments With Dynamic Bayesian Networks,” Bioinformatics, 19, 2271–2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 29
    • 33947524259 scopus 로고    scopus 로고
    • Estimating High-Dimensional Directed Acyclic Graphs With the PC-Algorithm
    • Kalisch, M., and Bühlmann, P., (2007), “Estimating High-Dimensional Directed Acyclic Graphs With the PC-Algorithm,” Journal of Machine Learning Research, 8, 613–636.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 31
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian Structure Discovery in Bayesian Networks
    • Koivisto, M., and Sood, K., (2004), “Exact Bayesian Structure Discovery in Bayesian Networks,” Journal of Machine Learning Research, 5, 549–573.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 33
    • 84886987303 scopus 로고    scopus 로고
    • Uniform Random Generation of Large Acyclic Digraphs
    • Kuipers, J., and Moffa, G., (2015), “Uniform Random Generation of Large Acyclic Digraphs,” Statistics and Computing, 25, 227–242.
    • (2015) Statistics and Computing , vol.25 , pp. 227-242
    • Kuipers, J.1    Moffa, G.2
  • 34
    • 84979953170 scopus 로고    scopus 로고
    • Addendum on the Scoring of Gaussian Directed Acyclic Graphical Models
    • Kuipers, J., Moffa, G., and Heckerman, D., (2014), “Addendum on the Scoring of Gaussian Directed Acyclic Graphical Models,” Annals of Statistics, 42, 1689–1691.
    • (2014) Annals of Statistics , vol.42 , pp. 1689-1691
    • Kuipers, J.1    Moffa, G.2    Heckerman, D.3
  • 37
    • 69949166983 scopus 로고    scopus 로고
    • Estimating High-Dimensional Intervention Effects From Observational Data
    • Maathuis, M. H., Kalisch, M., and Bühlmann, P., (2009), “Estimating High-Dimensional Intervention Effects From Observational Data,” Annals of Statistics, 37, 3133–3164.
    • (2009) Annals of Statistics , vol.37 , pp. 3133-3164
    • Maathuis, M.H.1    Kalisch, M.2    Bühlmann, P.3
  • 39
    • 21844520724 scopus 로고
    • Bayesian Graphical Models for Discrete Data
    • Madigan, D., and York, J., (1995), “Bayesian Graphical Models for Discrete Data,” International Statistical Review, 63, 215–232.
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 41
    • 1842736912 scopus 로고    scopus 로고
    • Generating Connected Acyclic Digraphs Uniformly at Random
    • Melançon, G., and Philippe, F., (2004), “Generating Connected Acyclic Digraphs Uniformly at Random,” Information Processing Letters, 90, 209–213.
    • (2004) Information Processing Letters , vol.90 , pp. 209-213
    • Melançon, G.1    Philippe, F.2
  • 47
    • 84923347024 scopus 로고    scopus 로고
    • Structural Intervention Distance (SID) for Evaluating Causal Graphs
    • Peters, J., and Bühlmann, P., (2015), “Structural Intervention Distance (SID) for Evaluating Causal Graphs,” Neural Computation, 27, 771–799.
    • (2015) Neural Computation , vol.27 , pp. 771-799
    • Peters, J.1    Bühlmann, P.2
  • 48
    • 84867979927 scopus 로고    scopus 로고
    • Reverse Engineering Gene Regulatory Networks Using Approximate Bayesian Computation
    • Rau, A., Jaffrézic, F., Foulley, J.-L., and Doerge, R. W., (2012), “Reverse Engineering Gene Regulatory Networks Using Approximate Bayesian Computation,” Statistics and Computing, 22, 1257–1271.
    • (2012) Statistics and Computing , vol.22 , pp. 1257-1271
    • Rau, A.1    Jaffrézic, F.2    Foulley, J.-L.3    Doerge, R.W.4
  • 50
    • 0001457227 scopus 로고
    • Counting Labeled Acyclic Digraphs
    • ed. F. Harary, New York: Academic Press
    • Robinson, R. W., (1973), “Counting Labeled Acyclic Digraphs,” in New Directions in the Theory of Graphs, ed. F. Harary, New York:Academic Press, pp. 239–273.
    • (1973) New Directions in the Theory of Graphs , pp. 239-273
    • Robinson, R.W.1
  • 51
    • 17644427718 scopus 로고    scopus 로고
    • Causal Protein-Signaling Networks Derived From Multiparameter Single-Cell Data
    • Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P., (2005), “Causal Protein-Signaling Networks Derived From Multiparameter Single-Cell Data,” Science, 308, 523–529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe’er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 52
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian Networks With the bnlearn R Package
    • Scutari, M., (2010), “Learning Bayesian Networks With the bnlearn R Package,” Journal of Statistical Software, 35, 1–22.
    • (2010) Journal of Statistical Software , vol.35 , pp. 1-22
    • Scutari, M.1
  • 54
    • 0000192604 scopus 로고
    • Acyclic Orientations of Graphs
    • Stanley, R. P., (1973), “Acyclic Orientations of Graphs,” Discrete Mathematics, 5, 171–178.
    • (1973) Discrete Mathematics , vol.5 , pp. 171-178
    • Stanley, R.P.1
  • 55
    • 33746035971 scopus 로고    scopus 로고
    • The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm
    • Tsamardinos, I., Brown, L. E., and Aliferis, C. F., (2006), “The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm,” Machine Learning, 65, 31–78.
    • (2006) Machine Learning , vol.65 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 57
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data With Multiple Sources of Prior Knowledge
    • Werhli, A. V., and Husmeier, D., (2007), “Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data With Multiple Sources of Prior Knowledge,” Statistical Applications in Genetics and Molecular Biology, 6, 1–47.
    • (2007) Statistical Applications in Genetics and Molecular Biology , vol.6 , pp. 1-47
    • Werhli, A.V.1    Husmeier, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.