메뉴 건너뛰기




Volumn 71, Issue 2-3, 2008, Pages 265-305

Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move

Author keywords

Bayesian networks; MCMC sampling; Structure learning

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; MATHEMATICAL MODELS; PARAMETER ESTIMATION; PROBABILITY DISTRIBUTIONS;

EID: 43049097125     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-008-5057-7     Document Type: Article
Times cited : (130)

References (33)
  • 4
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian network structures
    • Chickering, D. M. (2002). Learning equivalence classes of Bayesian network structures. Journal of Machine Learning Research, 2, 445-498.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 5
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 8
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • Friedman, N., & Koller, D. (2003). Being Bayesian about network structure. Machine Learning, 50, 95-126.
    • (2003) Machine Learning , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 11
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • Giudici, P., & Castelo, R. (2003). Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50, 127-158.
    • (2003) Machine Learning , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 13
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 15
    • 33644783926 scopus 로고    scopus 로고
    • Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks
    • 1
    • Imoto, S., Higuchi, T., Goto, T., & Miyano, S. (2006). Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks. Statistical Methodology, 3(1), 1-16.
    • (2006) Statistical Methodology , vol.3 , pp. 1-16
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Miyano, S.4
  • 17
    • 0030921594 scopus 로고    scopus 로고
    • A database for post-genome analysis
    • Kanehisa, M. (1997). A database for post-genome analysis. Trends in Genetics, 13, 375-376.
    • (1997) Trends in Genetics , vol.13 , pp. 375-376
    • Kanehisa, M.1
  • 18
    • 0033982936 scopus 로고    scopus 로고
    • Kegg: Kyoto encyclopedia of genes and genomes
    • Kanehisa, M., & Goto, S. (2000). Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27-30.
    • (2000) Nucleic Acids Research , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 21
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • Kovisto, M., & Sood, K. (2004). Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5, 549-573.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 549-573
    • Kovisto, M.1    Sood, K.2
  • 22
    • 0032976397 scopus 로고    scopus 로고
    • Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees
    • 6
    • Larget, B., & Simon, D. L. (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16(6), 750-759.
    • (1999) Molecular Biology and Evolution , vol.16 , pp. 750-759
    • Larget, B.1    Simon, D.L.2
  • 23
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan, D., & York, J. (1995). Bayesian graphical models for discrete data. International Statistical Review, 63, 215-232.
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 26
    • 27544494569 scopus 로고    scopus 로고
    • Estimating gene regulatory networks and protein-protein interactions of saccharomyces cerevisiae from multiple genome-wide data
    • Suppl. 2
    • Nariai, N., Tamada, Y., Imoto, S., & Miyano, S. (2005). Estimating gene regulatory networks and protein-protein interactions of saccharomyces cerevisiae from multiple genome-wide data. Bioinformatics, 21(Suppl. 2), ii206-ii212.
    • (2005) Bioinformatics , vol.21
    • Nariai, N.1    Tamada, Y.2    Imoto, S.3    Miyano, S.4
  • 28
  • 30
    • 17644427718 scopus 로고    scopus 로고
    • Protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K., Perez, O., Pe'er, D. A., Lauffenburger, D. A., & Nolan, G. P. (2005). Protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'Er, D.A.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 31
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • 4
    • Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of Statistics, 22(4), 1701-1728.
    • (1994) The Annals of Statistics , vol.22 , pp. 1701-1728
    • Tierney, L.1
  • 33
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
    • Article 15
    • Werhli, A. V., & Husmeier, D. (2007). Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Statistical Applications in Genetics and Molecular Biology, 6 (Article 15).
    • (2007) Statistical Applications in Genetics and Molecular Biology , pp. 6
    • Werhli, A.V.1    Husmeier, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.