-
1
-
-
0002460150
-
The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks
-
Springer Berlin
-
Beinlich, I., Suermondt, R., Chavez, R., & Cooper, G. (1989). The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks. In J. Hunter (Ed.), Proceedings of the second European conference on artificial intelligence and medicine. Berlin: Springer.
-
(1989)
Proceedings of the Second European Conference on Artificial Intelligence and Medicine
-
-
Beinlich, I.1
Suermondt, R.2
Chavez, R.3
Cooper, G.4
Hunter, J.5
-
4
-
-
0042496103
-
Learning equivalence classes of Bayesian network structures
-
Chickering, D. M. (2002). Learning equivalence classes of Bayesian network structures. Journal of Machine Learning Research, 2, 445-498.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 445-498
-
-
Chickering, D.M.1
-
5
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
8
-
-
0037262841
-
Being Bayesian about network structure
-
Friedman, N., & Koller, D. (2003). Being Bayesian about network structure. Machine Learning, 50, 95-126.
-
(2003)
Machine Learning
, vol.50
, pp. 95-126
-
-
Friedman, N.1
Koller, D.2
-
9
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman, N., Linial, M., Nachman, I., & Pe'er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7, 601-620.
-
(2000)
Journal of Computational Biology
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'Er, D.4
-
11
-
-
0037266163
-
Improving Markov chain Monte Carlo model search for data mining
-
Giudici, P., & Castelo, R. (2003). Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50, 127-158.
-
(2003)
Machine Learning
, vol.50
, pp. 127-158
-
-
Giudici, P.1
Castelo, R.2
-
12
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
13
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-2282.
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2282
-
-
Husmeier, D.1
-
14
-
-
84960432692
-
Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
-
Imoto, S., Higuchi, T., Goto, T., Kuhara, S., & Miyano, S. (2003). Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. In Proceedings IEEE computer society bioinformatics conference (CSB'03) (pp. 104-113).
-
(2003)
Proceedings IEEE Computer Society Bioinformatics Conference (CSB'03)
, pp. 104-113
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Kuhara, S.4
Miyano, S.5
-
15
-
-
33644783926
-
Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks
-
1
-
Imoto, S., Higuchi, T., Goto, T., & Miyano, S. (2006). Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks. Statistical Methodology, 3(1), 1-16.
-
(2006)
Statistical Methodology
, vol.3
, pp. 1-16
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Miyano, S.4
-
17
-
-
0030921594
-
A database for post-genome analysis
-
Kanehisa, M. (1997). A database for post-genome analysis. Trends in Genetics, 13, 375-376.
-
(1997)
Trends in Genetics
, vol.13
, pp. 375-376
-
-
Kanehisa, M.1
-
18
-
-
0033982936
-
Kegg: Kyoto encyclopedia of genes and genomes
-
Kanehisa, M., & Goto, S. (2000). Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27-30.
-
(2000)
Nucleic Acids Research
, vol.28
, pp. 27-30
-
-
Kanehisa, M.1
Goto, S.2
-
19
-
-
33644874819
-
From genomics to chemical genomics new developments in kegg
-
Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K., Itoh, M., Kawashima, S., Katayama, T., Araki, M., & Hirakawa, M. (2006). From genomics to chemical genomics new developments in kegg. Nucleic Acids Research, 34, 354-357.
-
(2006)
Nucleic Acids Research
, vol.34
, pp. 354-357
-
-
Kanehisa, M.1
Goto, S.2
Hattori, M.3
Aoki-Kinoshita, K.4
Itoh, M.5
Kawashima, S.6
Katayama, T.7
Araki, M.8
Hirakawa, M.9
-
21
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
Kovisto, M., & Sood, K. (2004). Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5, 549-573.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 549-573
-
-
Kovisto, M.1
Sood, K.2
-
22
-
-
0032976397
-
Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees
-
6
-
Larget, B., & Simon, D. L. (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16(6), 750-759.
-
(1999)
Molecular Biology and Evolution
, vol.16
, pp. 750-759
-
-
Larget, B.1
Simon, D.L.2
-
23
-
-
21844520724
-
Bayesian graphical models for discrete data
-
Madigan, D., & York, J. (1995). Bayesian graphical models for discrete data. International Statistical Review, 63, 215-232.
-
(1995)
International Statistical Review
, vol.63
, pp. 215-232
-
-
Madigan, D.1
York, J.2
-
24
-
-
79958774082
-
Structured priors for structure learning
-
Mansinghka, V. K., Kemp, C., Tenenbaum, J. B., & Griffiths, T. L. (2006). Structured priors for structure learning. In Proceedings of the twenty-second conference on uncertainty in artificial intelligence (UAI 2006).
-
(2006)
Proceedings of the Twenty-second Conference on Uncertainty in Artificial Intelligence (UAI 2006)
-
-
Mansinghka, V.K.1
Kemp, C.2
Tenenbaum, J.B.3
Griffiths, T.L.4
-
26
-
-
27544494569
-
Estimating gene regulatory networks and protein-protein interactions of saccharomyces cerevisiae from multiple genome-wide data
-
Suppl. 2
-
Nariai, N., Tamada, Y., Imoto, S., & Miyano, S. (2005). Estimating gene regulatory networks and protein-protein interactions of saccharomyces cerevisiae from multiple genome-wide data. Bioinformatics, 21(Suppl. 2), ii206-ii212.
-
(2005)
Bioinformatics
, vol.21
-
-
Nariai, N.1
Tamada, Y.2
Imoto, S.3
Miyano, S.4
-
27
-
-
33745834241
-
-
Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/ MLRepository.html.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.L.3
Merz, C.J.4
-
28
-
-
2442703194
-
Finding optimal models for small gene networks
-
Ott, S., Imoto, S., & Miyano, S. (2004). Finding optimal models for small gene networks. In Pacific symposium on biocomputing (Vol. 9, pp. 557-567).
-
(2004)
Pacific Symposium on Biocomputing
, vol.9
, pp. 557-567
-
-
Ott, S.1
Imoto, S.2
Miyano, S.3
-
30
-
-
17644427718
-
Protein-signaling networks derived from multiparameter single-cell data
-
Sachs, K., Perez, O., Pe'er, D. A., Lauffenburger, D. A., & Nolan, G. P. (2005). Protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
-
(2005)
Science
, vol.308
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe'Er, D.A.3
Lauffenburger, D.A.4
Nolan, G.P.5
-
31
-
-
0000576595
-
Markov chains for exploring posterior distributions
-
4
-
Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of Statistics, 22(4), 1701-1728.
-
(1994)
The Annals of Statistics
, vol.22
, pp. 1701-1728
-
-
Tierney, L.1
-
33
-
-
34249774309
-
Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
-
Article 15
-
Werhli, A. V., & Husmeier, D. (2007). Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Statistical Applications in Genetics and Molecular Biology, 6 (Article 15).
-
(2007)
Statistical Applications in Genetics and Molecular Biology
, pp. 6
-
-
Werhli, A.V.1
Husmeier, D.2
|