메뉴 건너뛰기




Volumn 41, Issue 4, 2013, Pages 1742-1779

Reversible MCMC on Markov equivalence classes of sparse directed acyclic graphs

Author keywords

Causal inference; Markov equivalence class; Reversible Markov chain; Sparse graphical model

Indexed keywords


EID: 84885027886     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/13-AOS1125     Document Type: Article
Times cited : (31)

References (37)
  • 2
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of Markov equivalence classes for acyclic digraphs
    • ANDERSSON, S. A., MADIGAN, D. and PERLMAN, M. D. (1997). A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist. 25 505-541.
    • (1997) Ann. Statist. , vol.25 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 6
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian-network structures
    • DOI 10.1162/153244302760200696
    • CHICKERING, D. M. (2002). Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2 445-498. (Pubitemid 135712569)
    • (2002) Journal of Machine Learning Research , vol.2 , Issue.3 , pp. 445-498
    • Chickering, D.M.1
  • 7
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search: Computational learning theory
    • CHICKERING, D. M. (2003). Optimal structure identification with greedy search: Computational learning theory. J. Mach. Learn. Res. 3 507-554.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 10
    • 0041995260 scopus 로고
    • A simple algorithm to construct a consistent extension of a partially oriented graph
    • Cognitive Systems Laboratory, UCLA
    • DOR, D. and TARSI, M. (1992). A simple algorithm to construct a consistent extension of a partially oriented graph. Technicial Report R-185, Cognitive Systems Laboratory, UCLA.
    • (1992) Technicial Report R-185
    • Dor, D.1    Tarsi, M.2
  • 11
    • 46649113945 scopus 로고    scopus 로고
    • Interventions and causal inference
    • EBERHARDT, F. and SCHEINES, R. (2007). Interventions and causal inference. Philos. Sci. 74 981-995.
    • (2007) Philos. Sci. , vol.74 , pp. 981-995
    • Eberhardt, F.1    Scheines, R.2
  • 12
    • 84871641723 scopus 로고    scopus 로고
    • Robust graphical modeling of gene networks using classical and alternative t-distributions
    • FINEGOLD, M. and DRTON, M. (2011). Robust graphical modeling of gene networks using classical and alternative t-distributions. Ann. Appl. Stat. 5 1057-1080.
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 1057-1080
    • Finegold, M.1    Drton, M.2
  • 13
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • FRIEDMAN, N. (2004). Inferring cellular networks using probabilistic graphical models. Science Signaling 303 799.
    • (2004) Science Signaling , vol.303 , pp. 799
    • Friedman, N.1
  • 14
    • 29444434689 scopus 로고    scopus 로고
    • Formulas for counting acyclic digraph Markov equivalence classes
    • DOI 10.1016/j.jspi.2004.10.007, PII S0378375804003982
    • GILLISPIE, S. B. (2006). Formulas for counting acyclic digraph Markov equivalence classes. J. Statist. Plann. Inference 136 1410-1432. (Pubitemid 43009030)
    • (2006) Journal of Statistical Planning and Inference , vol.136 , Issue.4 , pp. 1410-1432
    • Gillispie, S.B.1
  • 15
    • 0036783875 scopus 로고    scopus 로고
    • The size distribution for Markov equivalence classes of acyclic digraph models
    • GILLISPIE, S. B. and PERLMAN, M. D. (2002). The size distribution for Markov equivalence classes of acyclic digraph models. Artificial Intelligence 141 137-155.
    • (2002) Artificial Intelligence , vol.141 , pp. 137-155
    • Gillispie, S.B.1    Perlman, M.D.2
  • 17
    • 57249084023 scopus 로고    scopus 로고
    • Active learning of causal networks with intervention experiments and optimal designs
    • HE, Y.-B. and GENG, Z. (2008). Active learning of causal networks with intervention experiments and optimal designs. J. Mach. Learn. Res. 9 2523-2547.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2523-2547
    • He, Y.-B.1    Geng, Z.2
  • 18
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • HECKERMAN, D., GEIGER, D. and CHICKERING, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 21
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • KALISCH, M. and BUHLMANN, P. (2007). Estimating high-dimensional directed acyclic graphs with the pc-algorithm. J. Mach. Learn. Res. 8 613-636. (Pubitemid 46473523)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 613-636
    • Kalisch, M.1    Buhlmann, P.2
  • 24
    • 69949166983 scopus 로고    scopus 로고
    • Estimating high-dimensional intervention effects from observational data
    • MAATHUIS, M. H., KALISCH, M. and BÜHLMANN, P. (2009). Estimating high-dimensional intervention effects from observational data. Ann. Statist. 37 3133-3164.
    • (2009) Ann. Statist. , vol.37 , pp. 3133-3164
    • Maathuis, M.H.1    Kalisch, M.2    Bühlmann, P.3
  • 29
    • 54249124496 scopus 로고    scopus 로고
    • Approximate counting of graphical models via MCMC
    • San Juan, Puerto Rico
    • PEÑA, J. M. (2007). Approximate counting of graphical models via MCMC. In Proceedings of the 11th International Conference on Artificial Intelligence 352-359. San Juan, Puerto Rico; available at http://jmlr.org/ proceedings/papers/v2/pena07a/pena07a.pdf.
    • (2007) Proceedings of the 11th International Conference on Artificial Intelligence , pp. 352-359
    • Peña, J.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.