-
2
-
-
0031531764
-
A characterization of Markov equivalence classes for acyclic digraphs
-
ANDERSSON, S. A., MADIGAN, D. and PERLMAN, M. D. (1997). A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist. 25 505-541.
-
(1997)
Ann. Statist.
, vol.25
, pp. 505-541
-
-
Andersson, S.A.1
Madigan, D.2
Perlman, M.D.3
-
6
-
-
0042496103
-
Learning equivalence classes of Bayesian-network structures
-
DOI 10.1162/153244302760200696
-
CHICKERING, D. M. (2002). Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2 445-498. (Pubitemid 135712569)
-
(2002)
Journal of Machine Learning Research
, vol.2
, Issue.3
, pp. 445-498
-
-
Chickering, D.M.1
-
7
-
-
0042967741
-
Optimal structure identification with greedy search: Computational learning theory
-
CHICKERING, D. M. (2003). Optimal structure identification with greedy search: Computational learning theory. J. Mach. Learn. Res. 3 507-554.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
10
-
-
0041995260
-
A simple algorithm to construct a consistent extension of a partially oriented graph
-
Cognitive Systems Laboratory, UCLA
-
DOR, D. and TARSI, M. (1992). A simple algorithm to construct a consistent extension of a partially oriented graph. Technicial Report R-185, Cognitive Systems Laboratory, UCLA.
-
(1992)
Technicial Report R-185
-
-
Dor, D.1
Tarsi, M.2
-
11
-
-
46649113945
-
Interventions and causal inference
-
EBERHARDT, F. and SCHEINES, R. (2007). Interventions and causal inference. Philos. Sci. 74 981-995.
-
(2007)
Philos. Sci.
, vol.74
, pp. 981-995
-
-
Eberhardt, F.1
Scheines, R.2
-
12
-
-
84871641723
-
Robust graphical modeling of gene networks using classical and alternative t-distributions
-
FINEGOLD, M. and DRTON, M. (2011). Robust graphical modeling of gene networks using classical and alternative t-distributions. Ann. Appl. Stat. 5 1057-1080.
-
(2011)
Ann. Appl. Stat.
, vol.5
, pp. 1057-1080
-
-
Finegold, M.1
Drton, M.2
-
13
-
-
0842288337
-
Inferring cellular networks using probabilistic graphical models
-
FRIEDMAN, N. (2004). Inferring cellular networks using probabilistic graphical models. Science Signaling 303 799.
-
(2004)
Science Signaling
, vol.303
, pp. 799
-
-
Friedman, N.1
-
14
-
-
29444434689
-
Formulas for counting acyclic digraph Markov equivalence classes
-
DOI 10.1016/j.jspi.2004.10.007, PII S0378375804003982
-
GILLISPIE, S. B. (2006). Formulas for counting acyclic digraph Markov equivalence classes. J. Statist. Plann. Inference 136 1410-1432. (Pubitemid 43009030)
-
(2006)
Journal of Statistical Planning and Inference
, vol.136
, Issue.4
, pp. 1410-1432
-
-
Gillispie, S.B.1
-
15
-
-
0036783875
-
The size distribution for Markov equivalence classes of acyclic digraph models
-
GILLISPIE, S. B. and PERLMAN, M. D. (2002). The size distribution for Markov equivalence classes of acyclic digraph models. Artificial Intelligence 141 137-155.
-
(2002)
Artificial Intelligence
, vol.141
, pp. 137-155
-
-
Gillispie, S.B.1
Perlman, M.D.2
-
17
-
-
57249084023
-
Active learning of causal networks with intervention experiments and optimal designs
-
HE, Y.-B. and GENG, Z. (2008). Active learning of causal networks with intervention experiments and optimal designs. J. Mach. Learn. Res. 9 2523-2547.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2523-2547
-
-
He, Y.-B.1
Geng, Z.2
-
18
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
HECKERMAN, D., GEIGER, D. and CHICKERING, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
19
-
-
0012315692
-
A Bayesian approach to causal discovery
-
HECKERMAN, D., MEEK, C. and COOPER, G. (1999). A Bayesian approach to causal discovery. In Computation, Causation, and Discovery 141-165.
-
(1999)
Computation, Causation, and Discovery
, pp. 141-165
-
-
Heckerman, D.1
Meek, C.2
Cooper, G.3
-
20
-
-
0142052944
-
A Bayesian networks approach for predicting protein-protein interactions from genomic data
-
JANSEN, R., YU, H., GREENBAUM, D., KLUGER, Y., and KROGAN., N. J., CHUNG, S., EMILI, A., SNYDER, M., GREENBLATT, J. F. and GERSTEIN, M. (2003). A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302 449.
-
(2003)
Science
, vol.302
, pp. 449
-
-
Jansen, R.1
Yu, H.2
Greenbaum, D.3
Kluger, Y.4
Krogan, N.J.5
Chung, S.6
Emili, A.7
Snyder, M.8
Greenblatt, J.F.9
Gerstein, M.10
-
21
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
KALISCH, M. and BUHLMANN, P. (2007). Estimating high-dimensional directed acyclic graphs with the pc-algorithm. J. Mach. Learn. Res. 8 613-636. (Pubitemid 46473523)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Buhlmann, P.2
-
24
-
-
69949166983
-
Estimating high-dimensional intervention effects from observational data
-
MAATHUIS, M. H., KALISCH, M. and BÜHLMANN, P. (2009). Estimating high-dimensional intervention effects from observational data. Ann. Statist. 37 3133-3164.
-
(2009)
Ann. Statist.
, vol.37
, pp. 3133-3164
-
-
Maathuis, M.H.1
Kalisch, M.2
Bühlmann, P.3
-
25
-
-
0000220791
-
Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs
-
MADIGAN, D., and ANDERSSON., S. A., PERLMAN, M. D. and VOLINSKY, C. T. (1996). Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Comm. Statist. Theory Methods 25 2493-2519. (Pubitemid 126710973)
-
(1996)
Communications in Statistics - Theory and Methods
, vol.25
, Issue.11
, pp. 2493-2519
-
-
Madigan, D.1
Andersson, S.A.2
Perlman, M.D.3
Volinsky, C.T.4
-
29
-
-
54249124496
-
Approximate counting of graphical models via MCMC
-
San Juan, Puerto Rico
-
PEÑA, J. M. (2007). Approximate counting of graphical models via MCMC. In Proceedings of the 11th International Conference on Artificial Intelligence 352-359. San Juan, Puerto Rico; available at http://jmlr.org/ proceedings/papers/v2/pena07a/pena07a.pdf.
-
(2007)
Proceedings of the 11th International Conference on Artificial Intelligence
, pp. 352-359
-
-
Peña, J.M.1
-
35
-
-
0003614273
-
-
MIT Press, Cambridge
-
SPIRTES, P., GLYMOUR, C. N. and SCHEINES, R. (2001). Causation, Prediction, and Search. MIT Press, Cambridge.
-
(2001)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.N.2
Scheines, R.3
|