메뉴 건너뛰기




Volumn 22, Issue 6, 2012, Pages 1257-1271

Reverse engineering gene regulatory networks using approximate Bayesian computation

Author keywords

Approximate Bayesian computation; Gene regulatory networks; Longitudinal gene expression; Markov chain Monte Carlo

Indexed keywords


EID: 84867979927     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-011-9309-1     Document Type: Article
Times cited : (12)

References (44)
  • 1
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: theory and experimental approaches
    • Alon, U.: Network motifs: theory and experimental approaches. Nat. Genet. Rev. 8, 450-461 (2007).
    • (2007) Nat. Genet. Rev. , vol.8 , pp. 450-461
    • Alon, U.1
  • 2
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal, M. J., Falciani, F., Ghahramani, Z., Rangel, C., Wild, D. L.: A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(3), 349-356 (2005).
    • (2005) Bioinformatics , vol.21 , Issue.3 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 3
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • Beaumont, M. A., Zhang, W., Balding, D. J.: Approximate Bayesian computation in population genetics. Genetics 162, 2025-2035 (2002).
    • (2002) Genetics , vol.162 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 6
    • 77249179159 scopus 로고    scopus 로고
    • Weighted-LASSO for structured network inference from time course data
    • Charbonnier, C., Chiquet, J., Ambroise, C.: Weighted-LASSO for structured network inference from time course data. Stat. Appl. Genet. Mol. Biol. 9(15) (2010).
    • (2010) Stat. Appl. Genet. Mol. Biol , vol.9 , Issue.15
    • Charbonnier, C.1    Chiquet, J.2    Ambroise, C.3
  • 7
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland, W. S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829-836 (1979).
    • (1979) J. Am. Stat. Assoc. , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 8
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs sampling for Bayesian non-conjugate and hierarchical models using auxiliary variables
    • Damien, P., Wakefield, J., Walker, S.: Gibbs sampling for Bayesian non-conjugate and hierarchical models using auxiliary variables. J. R. Stat. Soc. B 61(2), 331-344 (1999).
    • (1999) J. R. Stat. Soc. B , vol.61 , Issue.2 , pp. 331-344
    • Damien, P.1    Wakefield, J.2    Walker, S.3
  • 10
    • 84857190557 scopus 로고    scopus 로고
    • An adaptive sequential Monte Carlo method for approximate Bayesian computation
    • doi:10.1007/s11222-011-9271-y
    • Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. (2011). doi: 10. 1007/s11222-011-9271-y.
    • (2011) Stat. Comput.
    • Del Moral, P.1    Doucet, A.2    Jasra, A.3
  • 11
    • 79952603857 scopus 로고    scopus 로고
    • Estimation of parameters for macroparasite population evolution using approximate Bayesian computation
    • Drovandi, C. C., Pettitt, A. N.: Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67, 225-233 (2011).
    • (2011) Biometrics , vol.67 , pp. 225-233
    • Drovandi, C.C.1    Pettitt, A.N.2
  • 12
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman, N.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7(3/4), 601-620 (2000).
    • (2000) J. Comput. Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1
  • 13
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303(799), 799-805 (2004).
    • (2004) Science , vol.303 , Issue.799 , pp. 799-805
    • Friedman, N.1
  • 14
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., Rubin, D. B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457-511 (1992).
    • (1992) Stat. Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 15
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • Geyer, C. J.: Practical Markov chain Monte Carlo. Stat. Sci. 7, 473-511 (1992).
    • (1992) Stat. Sci. , vol.7 , pp. 473-511
    • Geyer, C.J.1
  • 18
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97-109 (1970).
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 19
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271-2282 (2003).
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 21
    • 49449086368 scopus 로고    scopus 로고
    • Survival of the sparsest: robust gene networks are parsimonious
    • Leclerc, R. D.: Survival of the sparsest: robust gene networks are parsimonious. Mol. Syst. Biol. 4(213) (2008).
    • (2008) Mol. Syst. Biol. , vol.4 , Issue.213
    • Leclerc, R.D.1
  • 22
    • 84867992408 scopus 로고    scopus 로고
    • Bayesian computation and model selection without likelihoods
    • Leuenberger, C., Wegmann, D.: Bayesian computation and model selection without likelihoods. Genetics 183, 1-10 (2009).
    • (2009) Genetics , vol.183 , pp. 1-10
    • Leuenberger, C.1    Wegmann, D.2
  • 23
    • 65449166720 scopus 로고    scopus 로고
    • Revisiting climate region definitions via clustering
    • Lund, R., Li, B.: Revisiting climate region definitions via clustering. Am. Meteorol. Soc. 22, 1787-1800 (2009).
    • (2009) Am. Meteorol. Soc. , vol.22 , pp. 1787-1800
    • Lund, R.1    Li, B.2
  • 25
    • 34249862287 scopus 로고    scopus 로고
    • Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process
    • Opgen-Rhein, R., Strimmer, K.: Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinf. 8(Suppl 2) (2007).
    • (2007) BMC Bioinf , vol.8 , Issue.SUPPL. 2
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 27
    • 0032735986 scopus 로고    scopus 로고
    • Population growth of human Y chromosomes: a study of Y chromosome microsatellites
    • Pritchard, J. K., Seielstad, M. T., Perez-Lezann, A., Feldman, M. W.: Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16, 1791-1798 (1999).
    • (1999) Mol. Biol. Evol. , vol.16 , pp. 1791-1798
    • Pritchard, J.K.1    Seielstad, M.T.2    Perez-Lezann, A.3    Feldman, M.W.4
  • 29
    • 36949017519 scopus 로고    scopus 로고
    • Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum
    • doi:10.1371/journal.pcbi.0030230
    • Ratmann, O., Jorgensen, O., Hinkley, T., Stumpf, M., Richardson, S., Wiuf, C.: Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum. PLoS Comput. Biol. 3(11), 2266-2278 (2007). doi: 10. 1371/journal. pcbi. 0030230.
    • (2007) PLoS Comput. Biol. , vol.3 , Issue.11 , pp. 2266-2278
    • Ratmann, O.1    Jorgensen, O.2    Hinkley, T.3    Stumpf, M.4    Richardson, S.5    Wiuf, C.6
  • 30
    • 67649819681 scopus 로고    scopus 로고
    • Model criticism based on likelihood-free inference, with an application to protein network evolution
    • Ratmann, O., Andrieu, C., Wiuf, C., Richardson, S.: Model criticism based on likelihood-free inference, with an application to protein network evolution. Proc. Natl. Acad. Sci. 106(26), 10576-10581 (2009).
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , Issue.26 , pp. 10576-10581
    • Ratmann, O.1    Andrieu, C.2    Wiuf, C.3    Richardson, S.4
  • 33
    • 77649166995 scopus 로고    scopus 로고
    • An empirical Bayesian method for estimating biological networks from temporal microarray data
    • Rau, A., Jaffrézic, F., Foulley, J. L., Doerge, R. W.: An empirical Bayesian method for estimating biological networks from temporal microarray data. Stat. Appl. Genet. Mol. Biol. 9(9), 1-28 (2010).
    • (2010) Stat. Appl. Genet. Mol. Biol. , vol.9 , Issue.9 , pp. 1-28
    • Rau, A.1    Jaffrézic, F.2    Foulley, J.L.3    Doerge, R.W.4
  • 36
    • 0036678794 scopus 로고    scopus 로고
    • Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics
    • Ronen, M., Rosenberg, R., Shraiman, B. I., Alon, U.: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. 99(16), 10555-10560 (2002).
    • (2002) Proc. Natl. Acad. Sci. , vol.99 , Issue.16 , pp. 10555-10560
    • Ronen, M.1    Rosenberg, R.2    Shraiman, B.I.3    Alon, U.4
  • 37
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A., Nolan, G. P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523-529 (2005).
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 38
    • 45149101194 scopus 로고    scopus 로고
    • Current approaches to gene regulatory network modelling
    • Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinform. 8(Suppl 6(S9)), 1-22 (2007).
    • (2007) BMC Bioinform. , vol.8 , Issue.SUPPL. 6 , pp. 1-22
    • Schlitt, T.1    Brazma, A.2
  • 39
    • 33846939958 scopus 로고    scopus 로고
    • Sequential Monte Carlo without likelihoods
    • Sisson, S. A., Fan, Y., Tanaka, M. M.: Sequential Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 104, 1760-1765 (2007).
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , pp. 1760-1765
    • Sisson, S.A.1    Fan, Y.2    Tanaka, M.M.3
  • 40
    • 75249088572 scopus 로고    scopus 로고
    • Simulation-based model selection for dynamical systems in systems and population biology
    • Toni, T., Stumpf, M. P. H.: Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26(1), 104-110 (2010).
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 104-110
    • Toni, T.1    Stumpf, M.P.H.2
  • 41
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian computation scheme for parameter inference and model selection in dynamic systems
    • Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M. P. H.: Approximate Bayesian computation scheme for parameter inference and model selection in dynamic systems. J. R. Soc. Interface 6(31), 187-202 (2009).
    • (2009) J. R. Soc. Interface , vol.6 , Issue.31 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, A.4    Stumpf, M.P.H.5
  • 42
    • 70350136774 scopus 로고    scopus 로고
    • Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood
    • Wegmann, D., Leuenberger, C., Excoffier, L.: Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics 182, 1207-1218 (2009).
    • (2009) Genetics , vol.182 , pp. 1207-1218
    • Wegmann, D.1    Leuenberger, C.2    Excoffier, L.3
  • 43
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
    • 15
    • Werhli, A. V., Husmeier, D.: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6(1), 15 (2007).
    • (2007) Stat. Appl. Genet. Mol. Biol. , vol.6 , Issue.1
    • Werhli, A.V.1    Husmeier, D.2
  • 44
    • 58549110252 scopus 로고    scopus 로고
    • Stochastic modelling for quantitative description of heterogeneous biological systems
    • Wilkinson, D. J.: Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 10, 122-133 (2009).
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 122-133
    • Wilkinson, D.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.