메뉴 건너뛰기




Volumn 30, Issue 5, 2002, Pages 1412-1440

Parameter priors for directed acyclic graphical models and the characterization of several probability distributions

Author keywords

Bayesian network; Directed acyclic graphical model; Dirichlet distribution; Gaussian DAG model; Learning; Linear regression model; Normal distribution; Wishart distribution

Indexed keywords


EID: 0036431552     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1035844981     Document Type: Article
Times cited : (153)

References (33)
  • 2
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of Markov equivalence classes for acyclic digraphs
    • ANDERSSON, S. A., MADIGAN, D. and PERLMAN, M. D. (1997). A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist. 25 505-541.
    • (1997) Ann. Statist. , vol.25 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 4
    • 0000735610 scopus 로고
    • Operations for learning with graphical models
    • BUNTINE, W. (1994). Operations for learning with graphical models. J. Artificial Intelligence Research 2 159-225.
    • (1994) J. Artificial Intelligence Research , vol.2 , pp. 159-225
    • Buntine, W.1
  • 5
    • 0002013121 scopus 로고
    • A transformational characterization of equivalent Bayesian network structures
    • Montreal 87-98, Morgan Kaufmann, San Francisco
    • CHICKERING, D. (1995). A transformational characterization of equivalent Bayesian network structures. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal 87-98. Morgan Kaufmann, San Francisco.
    • (1995) Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence
    • Chickering, D.1
  • 7
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • COOPER, G. and HERSKOVITS, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 9
    • 21344482755 scopus 로고
    • Hyper-Markov laws in the statistical analysis of decomposable graphical models
    • DAWID, A. P. and LAURITZEN, S. (1993). Hyper-Markov laws in the statistical analysis of decomposable graphical models. Ann. Statist. 21 1272-1317.
    • (1993) Ann. Statist. , vol.21 , pp. 1272-1317
    • Dawid, A.P.1    Lauritzen, S.2
  • 13
    • 0031510558 scopus 로고    scopus 로고
    • A characterization of the Dirichlet distribution through global and local parameter independence
    • GEIGER, D. and HECKERMAN, D. (1997). A characterization of the Dirichlet distribution through global and local parameter independence. Ann. Statist. 25 1344-1369.
    • (1997) Ann. Statist. , vol.25 , pp. 1344-1369
    • Geiger, D.1    Heckerman, D.2
  • 14
    • 0041611387 scopus 로고    scopus 로고
    • A characterization of the bivariate Wishart distribution
    • GEIGER, D. and HECKERMAN, D. (1998). A characterization of the bivariate Wishart distribution. Probab. Math. Statist. 18 119-131.
    • (1998) Probab. Math. Statist. , vol.18 , pp. 119-131
    • Geiger, D.1    Heckerman, D.2
  • 15
    • 0042614429 scopus 로고    scopus 로고
    • Parameter priors for directed graphical models and the characterization of several probability distributions
    • Morgan Kaufmann, San Francisco
    • GEIGER, D. and HECKERMAN, D. (1999). Parameter priors for directed graphical models and the characterization of several probability distributions. In Proceedings of Fifteenth Conference on Uncertainty in Artificial Intelligence 216-225. Morgan Kaufmann, San Francisco.
    • (1999) Proceedings of Fifteenth Conference on Uncertainty in Artificial Intelligence , pp. 216-225
    • Geiger, D.1    Heckerman, D.2
  • 17
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • HECKERMAN, D., GEIGER, D. and CHICKERING, D. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 18
    • 0002494175 scopus 로고
    • Real-world applications of Bayesian networks
    • HECKERMAN, D., MAMDANI, A. and WELLMAN, M. (1995). Real-world applications of Bayesian networks. Comm. ACM 38.
    • (1995) Comm. ACM , pp. 38
    • Heckerman, D.1    Mamdani, A.2    Wellman, M.3
  • 19
    • 0000086731 scopus 로고
    • Influence diagrams
    • (R. Howard and J. Matheson, eds.) Strategic Decisions Group, Menlo Park, CA
    • HOWARD, R. and MATHESON, J. (1981). Influence diagrams. In The Principles and Applications of Decision Analysis 2 (R. Howard and J. Matheson, eds.) 721-762. Strategic Decisions Group, Menlo Park, CA.
    • (1981) The Principles and Applications of Decision Analysis , vol.2 , pp. 721-762
    • Howard, R.1    Matheson, J.2
  • 20
    • 0010346680 scopus 로고
    • On regular solutions of functional equations
    • JÁRAI, A. (1986). On regular solutions of functional equations. Aequationes Math. 30 21-54.
    • (1986) Aequationes Math. , vol.30 , pp. 21-54
    • Járai, A.1
  • 21
    • 0042113345 scopus 로고    scopus 로고
    • Regularity property of the functional equation of the Dirichlet distribution
    • JÁRAI, A. (1998). Regularity property of the functional equation of the Dirichlet distribution, Aequationes Math. 56 37-46.
    • (1998) Aequationes Math. , vol.56 , pp. 37-46
    • Járai, A.1
  • 24
    • 0000220791 scopus 로고    scopus 로고
    • Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs
    • MADIGAN, D., ANDERSSON, S. A., PERLMAN, M. D. and VOLINSKY, C. T. (1996). Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Comm. Statist. Theory Methods 25 2493-2519.
    • (1996) Comm. Statist. Theory Methods , vol.25 , pp. 2493-2519
    • Madigan, D.1    Andersson, S.A.2    Perlman, M.D.3    Volinsky, C.T.4
  • 27
    • 0000987741 scopus 로고
    • Gaussian influence diagrams
    • SHACHTER, R. and KENLEY, C. (1989). Gaussian influence diagrams. Management Sci. 35 527-550.
    • (1989) Management Sci. , vol.35 , pp. 527-550
    • Shachter, R.1    Kenley, C.2
  • 29
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • SPIEGELHALTER, D. and LAURITZEN, S. (1990). Sequential updating of conditional probabilities on directed graphical structures. Networks 20 579-605.
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.1    Lauritzen, S.2
  • 32
    • 0006579128 scopus 로고    scopus 로고
    • Computationally efficient methods for selecting among mixtures of graphical models
    • (J. M. Bernardo, A. P. Dawid and A. F. M. Smith, eds.) Clarendon Press, Oxford
    • THIESSON, B., MEEK, C., CHICKERINO, D. and HECKERMAN, D. (1998). Computationally efficient methods for selecting among mixtures of graphical models. In Bayesian Statistics 6 (J. M. Bernardo, A. P. Dawid and A. F. M. Smith, eds.) 631-656. Clarendon Press, Oxford.
    • (1998) Bayesian Statistics , vol.6 , pp. 631-656
    • Thiesson, B.1    Meek, C.2    Chickerino, D.3    Heckerman, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.