메뉴 건너뛰기




Volumn , Issue , 2011, Pages 557-564

Partial order MCMC for structure discovery in Bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DIRECTED GRAPHS; MARKOV CHAINS; MONTE CARLO METHODS; PROBABILITY DISTRIBUTIONS;

EID: 80053156983     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (17)
  • 2
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4):309-347, 1992.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 3
    • 54249168561 scopus 로고    scopus 로고
    • Parallell interacting MCMC for learning topologies of graphical models
    • J. Corander, M. Ekdahl, and T. Koski. Parallell interacting MCMC for learning topologies of graphical models. Data Mining Knowledge Discovery, 17: 431-456, 2008.
    • (2008) Data Mining Knowledge Discovery , vol.17 , pp. 431-456
    • Corander, J.1    Ekdahl, M.2    Koski, T.3
  • 4
    • 80053158041 scopus 로고    scopus 로고
    • Bayesian structure learning using dynamic programming and MCMC
    • D. Eaton and K. Murphy. Bayesian structure learning using dynamic programming and MCMC. In UAI, pages 101-108, 2007.
    • (2007) UAI , pp. 101-108
    • Eaton, D.1    Murphy, K.2
  • 7
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • N. Friedman and D. Koller. Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 50(1-2):95-125, 2003.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 8
    • 43049097125 scopus 로고    scopus 로고
    • Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move
    • M. Grzegorczyk and D. Husmeier. Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move. Machine Learning, 71:265-305, 2008.
    • (2008) Machine Learning , vol.71 , pp. 265-305
    • Grzegorczyk, M.1    Husmeier, D.2
  • 9
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 10
    • 69249216907 scopus 로고    scopus 로고
    • Advances in exact Bayesian structure discovery in Bayesian networks
    • M. Koivisto. Advances in exact Bayesian structure discovery in Bayesian networks. In UAI, 2006.
    • (2006) UAI
    • Koivisto, M.1
  • 11
    • 77951690901 scopus 로고    scopus 로고
    • A space-time tradeoff for permutation problems
    • M. Koivisto and P. Parviainen. A space-time tradeoff for permutation problems. In SODA, 2010.
    • (2010) SODA
    • Koivisto, M.1    Parviainen, P.2
  • 12
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5:549-573, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 13
  • 14
    • 13444275705 scopus 로고    scopus 로고
    • Finding optimal gene networks using biological constraints
    • S. Ott and S. Miyano. Finding optimal gene networks using biological constraints. Genome Informatics, (14):124-133, 2003.
    • (2003) Genome Informatics , Issue.14 , pp. 124-133
    • Ott, S.1    Miyano, S.2
  • 15
    • 80053144280 scopus 로고    scopus 로고
    • Bayesian structure discovery in Bayesian networks with less space
    • P. Parviainen and M. Koivisto. Bayesian structure discovery in Bayesian networks with less space. In AISTATS, pages 589-596, 2010.
    • (2010) AISTATS , pp. 589-596
    • Parviainen, P.1    Koivisto, M.2
  • 16
    • 0043060017 scopus 로고
    • On the complexity of dynamic programming with precedence constraints
    • G. Steiner. On the complexity of dynamic programming with precedence constraints. Annals of Operations Research, 26:103-123, 1990.
    • (1990) Annals of Operations Research , vol.26 , pp. 103-123
    • Steiner, G.1
  • 17
    • 80053142920 scopus 로고    scopus 로고
    • Computing posterior probabilities of structural features in Bayesian networks
    • J. Tian and R. He. Computing posterior probabilities of structural features in Bayesian networks. In UAI, 2009.
    • (2009) UAI
    • Tian, J.1    He, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.