메뉴 건너뛰기




Volumn , Issue , 2007, Pages 101-108

Bayesian structure learning using dynamic programming and MCMC

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN STRUCTURE LEARNING; EXPONENTIAL TIME; HYBRID TECHNIQUES; MCMC METHOD; PREDICTIVE DENSITY; PROPOSAL DISTRIBUTION; STRUCTURE-LEARNING; TEST DATA;

EID: 80053158041     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (91)

References (29)
  • 1
    • 25444464759 scopus 로고
    • Computing linear extensions is #P-complete
    • G. Brightwell and P. Winkler. Computing linear extensions is #P-complete. In STOC, 1991.
    • (1991) STOC
    • Brightwell, G.1    Winkler, P.2
  • 2
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. on Info. Theory, 14:462-67, 1968.
    • (1968) IEEE Trans. on Info. Theory , vol.14 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 3
    • 0038517651 scopus 로고    scopus 로고
    • Finding optimal Bayesian networks
    • D. Chickering and C. Meek. Finding Optimal Bayesian Networks. In UAI, 2002.
    • (2002) UAI
    • Chickering, D.1    Meek, C.2
  • 4
    • 0007047929 scopus 로고    scopus 로고
    • Causal discovery from a mixture of experimental and observational data
    • G. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational data. In UAI, 1999.
    • (1999) UAI
    • Cooper, G.1    Yoo, C.2
  • 5
    • 29144531645 scopus 로고    scopus 로고
    • Model averaging for prediction with discrete Bayesian networks
    • D. Dash and G. Cooper. Model Averaging for Prediction with Discrete Bayesian Networks. J. of Machine Learning Research, 5:1177-1203, 2004.
    • (2004) J. of Machine Learning Research , vol.5 , pp. 1177-1203
    • Dash, D.1    Cooper, G.2
  • 8
    • 70349363064 scopus 로고    scopus 로고
    • Sampling Bayesian networks quickly
    • B. Ellis and W. Wong. Sampling Bayesian Networks quickly. In Interface, 2006.
    • (2006) Interface
    • Ellis, B.1    Wong, W.2
  • 9
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • N. Friedman and D. Koller. Being Bayesian about Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks. Machine Learning, 50:95-126, 2003.
    • (2003) Machine Learning , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 10
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic probabilistic networks
    • N. Friedman, K. Murphy, and S. Russell. Learning the structure of dynamic probabilistic networks. In UAI, 1998.
    • (1998) UAI
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 11
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • January
    • P Giudici and R. Castelo. Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50(1-2):127 - 158, January 2003.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 12
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and M. Chickering. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, M.3
  • 13
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • DOI 10.1093/bioinformatics/btg313
    • D. Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19:2271-2282, 2003. (Pubitemid 37483983)
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 14
    • 29144477220 scopus 로고    scopus 로고
    • Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets
    • DOI 10.1109/TSMCB.2005.850162
    • K.-B. Hwang and B.-T. Zhang. Bayesian model averaging of Bayesian network classifiers over multiple node-orders: application to sparse datasets. IEEE Trans. on Systems, Man and Cybernetics, 35(6):1302-1310, 2005. (Pubitemid 41800428)
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.35 , Issue.6 , pp. 1302-1310
    • Hwang, K.-B.1    Zhang, B.-T.2
  • 15
    • 69249216907 scopus 로고    scopus 로고
    • Advances in exact Bayesian structure discovery in Bayesian networks
    • M. Koivisto. Advances in exact Bayesian structure discovery in Bayesian networks. In UAI, 2006.
    • (2006) UAI
    • Koivisto, M.1
  • 16
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. J. of Machine Learning Research, 5:549-573, 2004.
    • (2004) J. of Machine Learning Research , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 19
    • 33644516911 scopus 로고    scopus 로고
    • Tractable Bayesian learning of tree belief networks
    • DOI 10.1007/s11222-006-5535-3
    • M. Meila and T. Jaakkola. Tractable Bayesian learning of tree belief networks. Statistics and Computing, 16:77-92, 2006. (Pubitemid 43296619)
    • (2006) Statistics and Computing , vol.16 , Issue.1 , pp. 77-92
    • Meila, M.1    Jaakkola, T.2
  • 21
    • 0001828003 scopus 로고    scopus 로고
    • Cached sufficient statistics for efficient machine learning with large datasets
    • Andrew W Moore and Mary S. Lee. Cached sufficient statistics for efficient machine learning with large datasets. J. of AI Research, 8:67-91, 1998.
    • (1998) J. of AI Research , vol.8 , pp. 67-91
    • Moore, A.W.1    Lee, M.S.2
  • 22
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using occam's window
    • D. Madigan and A. Raftery. Model selection and accounting for model uncertainty in graphical models using Occam's window. J. of the Am. Stat. Assoc, 89:1535-1546, 1994.
    • (1994) J. of the Am. Stat. Assoc , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.2
  • 23
    • 1942452317 scopus 로고    scopus 로고
    • Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
    • Andrew Moore and Weng-Keen Wong. Optimal reinsertion: A new search operator for accelerated and more accurate bayesian network structure learning. In Intl. Conf. on Machine Learning, pages 552-559, 2003.
    • (2003) Intl. Conf. on Machine Learning , pp. 552-559
    • Moore, A.1    Wong, W.-K.2
  • 24
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • D. Madigan and J. York. Bayesian graphical models for discrete data. Intl. Statistical Review, 63:215-232, 1995.
    • (1995) Intl. Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 26
    • 0001457227 scopus 로고
    • Counting labeled acyclic digraphs
    • F. Harary, editor Academic Press
    • R. W. Robinson. Counting labeled acyclic digraphs. In F. Harary, editor, New Directions in the Theory of Graphs, pages 239-273. Academic Press, 1973.
    • (1973) New Directions in the Theory of Graphs , pp. 239-273
    • Robinson, R.W.1
  • 27
    • 80053201441 scopus 로고    scopus 로고
    • A simple approach for finding the globally optimal Bayesian network structure
    • T. Silander and P. Myllmaki. A simple approach for finding the globally optimal Bayesian network structure. In UAI, 2006.
    • (2006) UAI
    • Silander, T.1    Myllmaki, P.2
  • 28
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • K. Sachs, O. Perez, D. Pe'er, D. Lauffenburger, and G. Nolan. Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, 2005.
    • Science , vol.308 , pp. 2005
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.4    Nolan, G.5
  • 29
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • I. Tsamardinos, L. Brown, and C. Aliferis. The max-min hill-climbing bayesian network structure learning algorithm. Machine learning, 2006.
    • (2006) Machine Learning
    • Tsamardinos, I.1    Brown, L.2    Aliferis, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.