-
2
-
-
0031531764
-
A characterization of Markov equivalence classes for acyclic digraphs
-
S. A. Andersson, D. Madigan, and M. D. Perlman. A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist., 25:505-541, 1997.
-
(1997)
Ann. Statist.
, vol.25
, pp. 505-541
-
-
Andersson, S.A.1
Madigan, D.2
Perlman, M.D.3
-
4
-
-
0042496103
-
Learning equivalence classes of Bayesian-network structures
-
D.M. Chickering. Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res., 2:445-498, 2002.
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 445-498
-
-
Chickering, D.M.1
-
5
-
-
84888174793
-
Learning sparse causal models is not NP-hard
-
AUAI Press, Corvallis
-
T. Claassen, J. Mooij, and T. Heskes. Learning sparse causal models is not NP-hard. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI-2013), pages 172-181. AUAI Press, Corvallis, 2013.
-
(2013)
Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI-2013)
, pp. 172-181
-
-
Claassen, T.1
Mooij, J.2
Heskes, T.3
-
6
-
-
84867677322
-
Learning high-dimensional directed acyclic graphs with latent and selection variables
-
D. Colombo, M.H. Maathuis, M. Kalisch, and T.S. Richardson. Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Statist., 40:294-321, 2012.
-
(2012)
Ann. Statist.
, vol.40
, pp. 294-321
-
-
Colombo, D.1
Maathuis, M.H.2
Kalisch, M.3
Richardson, T.S.4
-
8
-
-
0000508704
-
Conditional independence for statistical operations
-
A.P. Dawid. Conditional independence for statistical operations. Ann. Statist., 8:598-617, 1980.
-
(1980)
Ann. Statist.
, vol.8
, pp. 598-617
-
-
Dawid, A.P.1
-
9
-
-
84890100281
-
PC algorithm for nonparanormal graphical models
-
N. Harris and M. Drton. PC algorithm for nonparanormal graphical models. J. Mach. Learn. Res., 14:3365-3383, 2013.
-
(2013)
J. Mach. Learn. Res.
, vol.14
, pp. 3365-3383
-
-
Harris, N.1
Drton, M.2
-
10
-
-
0034616930
-
Functional discovery via a compendium of expression profiles
-
T.R. Hughes, M.J. Marton, A.R. Jones, C.J. Roberts, R. Stoughton, C.D. Armour, H.A. Bennett, E. Coffey, H. Dai, Y.D. He, et al. Functional discovery via a compendium of expression profiles. Cell, 102:109-126, 2000.
-
(2000)
Cell
, vol.102
, pp. 109-126
-
-
Hughes, T.R.1
Marton, M.J.2
Jones, A.R.3
Roberts, C.J.4
Stoughton, R.5
Armour, C.D.6
Bennett, H.A.7
Coffey, E.8
Dai, H.9
He, Y.D.10
-
11
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res., 8:613-636, 2007.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Bühlmann, P.2
-
12
-
-
77749330119
-
Understanding human functioning using graphical models
-
M. Kalisch, B.A.G. Fellinghauer, E. Grill, M.H. Maathuis, U. Mansmann, P. Bühlmann, and G. Stucki. Understanding human functioning using graphical models. BMC Med. Res. Methodol., 10(14), 2010.
-
(2010)
BMC Med. Res. Methodol.
, vol.10
, Issue.14
-
-
Kalisch, M.1
Fellinghauer, B.A.G.2
Grill, E.3
Maathuis, M.H.4
Mansmann, U.5
Bühlmann, P.6
Stucki, G.7
-
13
-
-
84863330390
-
Causal inference using graphical models with the R package pcalg
-
M. Kalisch, M. Mächler, D. Colombo, M.H. Maathuis, and P. Bühlmann. Causal inference using graphical models with the R package pcalg. J. Stat. Softw., 47(11), 2012.
-
(2012)
J. Stat. Softw.
, vol.47
, Issue.11
-
-
Kalisch, M.1
Mächler, M.2
Colombo, D.3
Maathuis, M.H.4
Bühlmann, P.5
-
14
-
-
69949166983
-
Estimating high-dimensional intervention effects from observational data
-
M.H. Maathuis, M. Kalisch, and P. Bühlmann. Estimating high-dimensional intervention effects from observational data. Ann. Statist., 37:3133-3164, 2009.
-
(2009)
Ann. Statist.
, vol.37
, pp. 3133-3164
-
-
Maathuis, M.H.1
Kalisch, M.2
Bühlmann, P.3
-
15
-
-
77951641247
-
Predicting causal effects in large-scale systems from observational data
-
M.H. Maathuis, D. Colombo, M. Kalisch, and P. Bühlmann. Predicting causal effects in large-scale systems from observational data. Nature Methods, 7:247-248, 2010.
-
(2010)
Nature Methods
, vol.7
, pp. 247-248
-
-
Maathuis, M.H.1
Colombo, D.2
Kalisch, M.3
Bühlmann, P.4
-
19
-
-
78650875469
-
Functional relationships between genes associated with differentiation potential of aged myogenic progenitors
-
R. Nagarajan, S. Datta, M. Scutari, M. Beggs, G. Nolen, and C. Peterson. Functional relationships between genes associated with differentiation potential of aged myogenic progenitors. Front. Physiol., 1(21), 2010.
-
(2010)
Front. Physiol.
, vol.1
, Issue.21
-
-
Nagarajan, R.1
Datta, S.2
Scutari, M.3
Beggs, M.4
Nolen, G.5
Peterson, C.6
-
21
-
-
77649325496
-
Causal inference in statistics: An overview
-
J. Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3:96-146, 2009.
-
(2009)
Statistics Surveys
, vol.3
, pp. 96-146
-
-
Pearl, J.1
-
24
-
-
0036392228
-
Ancestral graph Markov models
-
T.S. Richardson and P. Spirtes. Ancestral graph Markov models. Ann. Statist., 30:962-1030, 2002.
-
(2002)
Ann. Statist.
, vol.30
, pp. 962-1030
-
-
Richardson, T.S.1
Spirtes, P.2
-
28
-
-
0003614273
-
-
Springer-Verlag, New York
-
P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction, and search. Springer-Verlag, New York, 1993.
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
29
-
-
0042112503
-
An algorithm for causal inference in the presence of latent variables and selection bias
-
C. Glymour and G.F. Cooper, editors, MIT Press, Cambridge
-
P. Spirtes, C. Meek, and T.S. Richardson. An algorithm for causal inference in the presence of latent variables and selection bias. In C. Glymour and G.F. Cooper, editors, Computation, Causation and Discovery, pages 211-252. MIT Press, Cambridge, 1999.
-
(1999)
Computation, Causation and Discovery
, pp. 211-252
-
-
Spirtes, P.1
Meek, C.2
Richardson, T.S.3
-
30
-
-
0003614273
-
-
MIT Press, Cambridge, second edition, With additional material by David Heckerman, Christopher Meek, Gregory F. Cooper and Thomas Richardson
-
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, Cambridge, second edition, 2000. With additional material by David Heckerman, Christopher Meek, Gregory F. Cooper and Thomas Richardson.
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
31
-
-
84868013998
-
Causal stability ranking
-
D.J. Stekhoven, I. Moraes, G. Sveinbjörnsson, L. Hennig, M.H. Maathuis, and P. Bühlmann. Causal stability ranking. Bioinformatics, 28:2819-2823, 2012.
-
(2012)
Bioinformatics
, vol.28
, pp. 2819-2823
-
-
Stekhoven, D.J.1
Moraes, I.2
Sveinbjörnsson, G.3
Hennig, L.4
Maathuis, M.H.5
Bühlmann, P.6
-
32
-
-
9444248216
-
A skeleton-based approach to learning Bayesian networks from data
-
Springer, Berlin
-
S. van Dijk, L.C. van der Gaag, and D. Thierens. A skeleton-based approach to learning Bayesian networks from data. In Proceedings of the 7th Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD-2003), pages 132-143. Springer, Berlin, 2003.
-
(2003)
Proceedings of the 7th Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD-2003)
, pp. 132-143
-
-
Van Dijk, S.1
Van Der Gaag, L.C.2
Thierens, D.3
-
33
-
-
52949097616
-
On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias
-
J. Zhang. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artif. Intell., 172:1873-1896, 2008.
-
(2008)
Artif. Intell.
, vol.172
, pp. 1873-1896
-
-
Zhang, J.1
-
34
-
-
84855160951
-
Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information
-
X. Zhang, X.M. Zhao, K. He, L. Lu, Y. Cao, J. Liu, J.K. Hao, Z.P. Liu, and L. Chen. Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics, 28:98-104, 2012.
-
(2012)
Bioinformatics
, vol.28
, pp. 98-104
-
-
Zhang, X.1
Zhao, X.M.2
He, K.3
Lu, L.4
Cao, Y.5
Liu, J.6
Hao, J.K.7
Liu, Z.P.8
Chen, L.9
|