메뉴 건너뛰기




Volumn 253, Issue , 2017, Pages 82-96

Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy

Author keywords

Cancer hypoxia; Nanomedicine; Targeted cancer therapy; Tumor microenvironment; Tumor associated macrophages

Indexed keywords

CHEMOTHERAPY; DISEASES; DRUG THERAPY; ENZYME INHIBITION; GENE EXPRESSION; MACROPHAGES; MEDICAL NANOTECHNOLOGY; ONCOLOGY;

EID: 85015960063     PISSN: 01683659     EISSN: 18734995     Source Type: Journal    
DOI: 10.1016/j.jconrel.2017.03.013     Document Type: Review
Times cited : (72)

References (162)
  • 1
    • 85015892297 scopus 로고    scopus 로고
    • Cancerstats - Terminology and Calculations
    • Cancer Research UK (Accessed: September 2016). Available from:
    • [1] Cancer Research UK, Cancerstats - Terminology and Calculations. 2013, Cancer Research UK (Accessed: September 2016). Available from: www.cruk.org/cancerstats.
    • (2013)
    • Cancer Research UK1
  • 2
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • [2] Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation. Cell 144:5 (2011), 646–674.
    • (2011) Cell , vol.144 , Issue.5 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 3
    • 84995593345 scopus 로고    scopus 로고
    • The Warburg effect and beyond: metabolic dependencies for cancer cells
    • D.E. Johnson Springer New York
    • [3] Hockenbery, D., et al. The Warburg effect and beyond: metabolic dependencies for cancer cells. Johnson, D.E., (eds.) Cell Death Signaling in Cancer Biology and Treatment, 2013, Springer, New York, 35–51.
    • (2013) Cell Death Signaling in Cancer Biology and Treatment , pp. 35-51
    • Hockenbery, D.1
  • 4
    • 84862305536 scopus 로고    scopus 로고
    • A new hypothesis for the cancer mechanism
    • [4] Meng, X., et al. A new hypothesis for the cancer mechanism. Cancer Metastasis Rev. 31:1–2 (2012), 247–268.
    • (2012) Cancer Metastasis Rev. , vol.31 , Issue.1-2 , pp. 247-268
    • Meng, X.1
  • 5
    • 84861116448 scopus 로고    scopus 로고
    • Tumor microenvironment complexity: emerging roles in cancer therapy
    • [5] Swartz, M.A., et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 72:10 (2012), 2473–2480.
    • (2012) Cancer Res. , vol.72 , Issue.10 , pp. 2473-2480
    • Swartz, M.A.1
  • 6
    • 0034000453 scopus 로고    scopus 로고
    • Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review
    • [6] Maeda, H., et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65:1–2 (2000), 271–284.
    • (2000) J. Control. Release , vol.65 , Issue.1-2 , pp. 271-284
    • Maeda, H.1
  • 7
    • 79952485687 scopus 로고    scopus 로고
    • Nanotechnology-based cancer therapeutics–promise and challenge–lessons learned through the NCI Alliance for Nanotechnology in Cancer
    • [7] Farrell, D., et al. Nanotechnology-based cancer therapeutics–promise and challenge–lessons learned through the NCI Alliance for Nanotechnology in Cancer. Pharm. Res. 28:2 (2011), 273–278.
    • (2011) Pharm. Res. , vol.28 , Issue.2 , pp. 273-278
    • Farrell, D.1
  • 8
    • 0034674901 scopus 로고    scopus 로고
    • A family of drug transporters: the multidrug resistance-associated proteins
    • [8] Borst, P., et al. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst. 92:16 (2000), 1295–1302.
    • (2000) J. Natl. Cancer Inst. , vol.92 , Issue.16 , pp. 1295-1302
    • Borst, P.1
  • 9
    • 68949114117 scopus 로고    scopus 로고
    • Tumor-associated macrophages: effectors of angiogenesis and tumor progression
    • [9] Coffelt, S.B., Hughes, R., Lewis, C.E., Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim. Biophys. Acta 1796:1 (2009), 11–18.
    • (2009) Biochim. Biophys. Acta , vol.1796 , Issue.1 , pp. 11-18
    • Coffelt, S.B.1    Hughes, R.2    Lewis, C.E.3
  • 10
    • 84897937667 scopus 로고    scopus 로고
    • Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis
    • [10] Riabov, V., et al. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front. Physiol., 5, 2014, 75.
    • (2014) Front. Physiol. , vol.5 , pp. 75
    • Riabov, V.1
  • 11
    • 84966649948 scopus 로고    scopus 로고
    • Hypoxic tumor microenvironment: opportunities to develop targeted therapies
    • [11] Patel, A., Sant, S., Hypoxic tumor microenvironment: opportunities to develop targeted therapies. Biotechnol. Adv. 34:5 (2016), 803–812.
    • (2016) Biotechnol. Adv. , vol.34 , Issue.5 , pp. 803-812
    • Patel, A.1    Sant, S.2
  • 12
    • 84906416788 scopus 로고
    • Hypoxia and tumours
    • [12] Thomlinson, R.H., Hypoxia and tumours. J. Clin. Pathol. s3-11:1 (1977), 105–113.
    • (1977) J. Clin. Pathol. , vol.s3-11 , Issue.1 , pp. 105-113
    • Thomlinson, R.H.1
  • 13
    • 0034176782 scopus 로고    scopus 로고
    • Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies
    • [13] Brown, J.M., Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol. Med. Today 6:4 (2000), 157–162.
    • (2000) Mol. Med. Today , vol.6 , Issue.4 , pp. 157-162
    • Brown, J.M.1
  • 14
    • 0347029631 scopus 로고    scopus 로고
    • Tumor hypoxia: a target for selective cancer therapy
    • [14] Kizaka-Kondoh, S., et al. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci. 94:12 (2003), 1021–1028.
    • (2003) Cancer Sci. , vol.94 , Issue.12 , pp. 1021-1028
    • Kizaka-Kondoh, S.1
  • 15
    • 84897990135 scopus 로고    scopus 로고
    • Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment
    • [15] Casazza, A., et al. Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33:14 (2014), 1743–1754.
    • (2014) Oncogene , vol.33 , Issue.14 , pp. 1743-1754
    • Casazza, A.1
  • 16
    • 84924072763 scopus 로고    scopus 로고
    • The clinical significance of hypoxia in human cancers
    • [16] Dhani, N., et al. The clinical significance of hypoxia in human cancers. Semin. Nucl. Med. 45:2 (2015), 110–121.
    • (2015) Semin. Nucl. Med. , vol.45 , Issue.2 , pp. 110-121
    • Dhani, N.1
  • 17
    • 84920123315 scopus 로고    scopus 로고
    • Hypoxia and hypoxia inducible factors in tumor metabolism
    • [17] Zeng, W., et al. Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett. 356:2 Pt A (2015), 263–267.
    • (2015) Cancer Lett. , vol.356 , Issue.2 , pp. 263-267
    • Zeng, W.1
  • 18
    • 84908396140 scopus 로고    scopus 로고
    • Targeting hypoxia in the treatment of small cell lung cancer
    • [18] Bryant, J.L., et al. Targeting hypoxia in the treatment of small cell lung cancer. Lung Cancer 86:2 (2014), 126–132.
    • (2014) Lung Cancer , vol.86 , Issue.2 , pp. 126-132
    • Bryant, J.L.1
  • 19
    • 44149092895 scopus 로고    scopus 로고
    • Hypoxia in prostate cancer: a powerful shield against tumour destruction?
    • [19] Marignol, L., et al. Hypoxia in prostate cancer: a powerful shield against tumour destruction?. Cancer Treat. Rev. 34:4 (2008), 313–327.
    • (2008) Cancer Treat. Rev. , vol.34 , Issue.4 , pp. 313-327
    • Marignol, L.1
  • 20
    • 79957534572 scopus 로고    scopus 로고
    • Targeting hypoxia in cancer therapy
    • [20] Wilson, W.R., Hay, M.P., Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11:6 (2011), 393–410.
    • (2011) Nat. Rev. Cancer , vol.11 , Issue.6 , pp. 393-410
    • Wilson, W.R.1    Hay, M.P.2
  • 21
    • 10744231706 scopus 로고    scopus 로고
    • 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF
    • [21] Mabjeesh, N.J., et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3:4 (2003), 363–375.
    • (2003) Cancer Cell , vol.3 , Issue.4 , pp. 363-375
    • Mabjeesh, N.J.1
  • 22
    • 4944229705 scopus 로고    scopus 로고
    • Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts
    • [22] Rapisarda, A., et al. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res. 64:19 (2004), 6845–6848.
    • (2004) Cancer Res. , vol.64 , Issue.19 , pp. 6845-6848
    • Rapisarda, A.1
  • 23
    • 84904406680 scopus 로고    scopus 로고
    • Tumor-associated macrophages: from mechanisms to therapy
    • [23] Noy, R., Pollard, J.W., Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:1 (2014), 49–61.
    • (2014) Immunity , vol.41 , Issue.1 , pp. 49-61
    • Noy, R.1    Pollard, J.W.2
  • 24
    • 85000977755 scopus 로고    scopus 로고
    • Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy
    • [24] Chen, W.-H., et al. Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy. Biomaterials 117 (2017), 54–65.
    • (2017) Biomaterials , vol.117 , pp. 54-65
    • Chen, W.-H.1
  • 25
    • 84949517418 scopus 로고    scopus 로고
    • Hypoxia induced by upconversion-based photodynamic therapy: towards highly effective synergistic bioreductive therapy in tumors
    • [25] Liu, Y., et al. Hypoxia induced by upconversion-based photodynamic therapy: towards highly effective synergistic bioreductive therapy in tumors. Angew. Chem. 127:28 (2015), 8223–8227.
    • (2015) Angew. Chem. , vol.127 , Issue.28 , pp. 8223-8227
    • Liu, Y.1
  • 26
    • 84864117497 scopus 로고    scopus 로고
    • Hypoxia promotes tumor growth in linking angiogenesis to immune escape
    • [26] Chouaib, S., et al. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front. Immunol. 3 (2012), 1–21.
    • (2012) Front. Immunol. , vol.3 , pp. 1-21
    • Chouaib, S.1
  • 27
    • 72849115544 scopus 로고    scopus 로고
    • Development of HIF-1 inhibitors for cancer therapy
    • [27] Onnis, B., Rapisarda, A., Melillo, G., Development of HIF-1 inhibitors for cancer therapy. J. Cell. Mol. Med. 13:9A (2009), 2780–2786.
    • (2009) J. Cell. Mol. Med. , vol.13 , Issue.9A , pp. 2780-2786
    • Onnis, B.1    Rapisarda, A.2    Melillo, G.3
  • 28
    • 84859445000 scopus 로고    scopus 로고
    • Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy
    • [28] Semenza, G.L., Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33:4 (2012), 207–214.
    • (2012) Trends Pharmacol. Sci. , vol.33 , Issue.4 , pp. 207-214
    • Semenza, G.L.1
  • 29
    • 79959955993 scopus 로고    scopus 로고
    • Cancer therapeutic agents targeting hypoxia-inducible factor-1
    • [29] Wang, R., Zhou, S., Li, S., Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr. Med. Chem. 18:21 (2011), 3168–3189.
    • (2011) Curr. Med. Chem. , vol.18 , Issue.21 , pp. 3168-3189
    • Wang, R.1    Zhou, S.2    Li, S.3
  • 30
    • 84876133472 scopus 로고    scopus 로고
    • Hypoxia inducible factor pathway inhibitors as anticancer therapeutics
    • [30] Burroughs, S.K., et al. Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. Future Med. Chem. 5:5 (2013), 553–572.
    • (2013) Future Med. Chem. , vol.5 , Issue.5 , pp. 553-572
    • Burroughs, S.K.1
  • 31
    • 0036569704 scopus 로고    scopus 로고
    • Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells
    • [31] Mabjeesh, N.J., et al. Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res. 62:9 (2002), 2478–2482.
    • (2002) Cancer Res. , vol.62 , Issue.9 , pp. 2478-2482
    • Mabjeesh, N.J.1
  • 32
    • 33749362031 scopus 로고    scopus 로고
    • Inhibiting hypoxia-inducible factor 1 for cancer therapy
    • [32] Melillo, G., Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol. Cancer Res. 4:9 (2006), 601–605.
    • (2006) Mol. Cancer Res. , vol.4 , Issue.9 , pp. 601-605
    • Melillo, G.1
  • 33
    • 79952734485 scopus 로고    scopus 로고
    • A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors
    • [33] Pacey, S., et al. A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin. Cancer Res. 17:6 (2011), 1561–1570.
    • (2011) Clin. Cancer Res. , vol.17 , Issue.6 , pp. 1561-1570
    • Pacey, S.1
  • 34
    • 33747691089 scopus 로고    scopus 로고
    • A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma
    • [34] Ronnen, E.A., et al. A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Investig. New Drugs 24:6 (2006), 543–546.
    • (2006) Investig. New Drugs , vol.24 , Issue.6 , pp. 543-546
    • Ronnen, E.A.1
  • 35
    • 58149340657 scopus 로고    scopus 로고
    • Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma
    • [35] Solit, D.B., et al. Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin. Cancer Res. 14:24 (2008), 8302–8307.
    • (2008) Clin. Cancer Res. , vol.14 , Issue.24 , pp. 8302-8307
    • Solit, D.B.1
  • 36
    • 34249982595 scopus 로고    scopus 로고
    • YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia
    • [36] Sun, H.L., et al. YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene 26:27 (2007), 3941–3951.
    • (2007) Oncogene , vol.26 , Issue.27 , pp. 3941-3951
    • Sun, H.L.1
  • 37
    • 39749101689 scopus 로고    scopus 로고
    • Hypoxia-selective targeting by the bioreductive prodrug AQ4N in patients with solid tumors: results of a phase I study
    • [37] Albertella, M.R., et al. Hypoxia-selective targeting by the bioreductive prodrug AQ4N in patients with solid tumors: results of a phase I study. Clin. Cancer Res. 14:4 (2008), 1096–1104.
    • (2008) Clin. Cancer Res. , vol.14 , Issue.4 , pp. 1096-1104
    • Albertella, M.R.1
  • 38
    • 56249131779 scopus 로고    scopus 로고
    • A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth
    • [38] Greenberger, L.M., et al. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol. Cancer Ther. 7:11 (2008), 3598–3608.
    • (2008) Mol. Cancer Ther. , vol.7 , Issue.11 , pp. 3598-3608
    • Greenberger, L.M.1
  • 39
    • 84896032490 scopus 로고    scopus 로고
    • Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1α), in patients with refractory solid tumors
    • [39] Jeong, W., et al. Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1α), in patients with refractory solid tumors. Cancer Chemother. Pharmacol. 73:2 (2014), 343–348.
    • (2014) Cancer Chemother. Pharmacol. , vol.73 , Issue.2 , pp. 343-348
    • Jeong, W.1
  • 40
    • 85015847429 scopus 로고    scopus 로고
    • EZN-2968, a novel hypoxia-inducible factor-1 {alpha}(HIF-1 {alpha}) messenger ribonucleic acid (mRNA) antagonist: Results of a phase I, pharmacokinetic (PK), dose-escalation study of daily administration in patients (pts) with advanced malignancies
    • [40] Patnaik, A., et al. EZN-2968, a novel hypoxia-inducible factor-1 {alpha}(HIF-1 {alpha}) messenger ribonucleic acid (mRNA) antagonist: Results of a phase I, pharmacokinetic (PK), dose-escalation study of daily administration in patients (pts) with advanced malignancies. ASCO Annual Meeting Proceedings, 2009.
    • (2009) ASCO Annual Meeting Proceedings
    • Patnaik, A.1
  • 41
    • 77956286559 scopus 로고    scopus 로고
    • Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1alpha expression in an AhR-independent fashion
    • [41] Terzuoli, E., et al. Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1alpha expression in an AhR-independent fashion. Cancer Res. 70:17 (2010), 6837–6848.
    • (2010) Cancer Res. , vol.70 , Issue.17 , pp. 6837-6848
    • Terzuoli, E.1
  • 42
    • 67651166780 scopus 로고    scopus 로고
    • Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition
    • [42] Rapisarda, A., et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol. Cancer Ther. 8:7 (2009), 1867–1877.
    • (2009) Mol. Cancer Ther. , vol.8 , Issue.7 , pp. 1867-1877
    • Rapisarda, A.1
  • 43
    • 1242271198 scopus 로고    scopus 로고
    • Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications
    • [43] Rapisarda, A., et al. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res. 64:4 (2004), 1475–1482.
    • (2004) Cancer Res. , vol.64 , Issue.4 , pp. 1475-1482
    • Rapisarda, A.1
  • 44
    • 84870715169 scopus 로고    scopus 로고
    • Safety, pharmacokinetics, and activity of EZN-2208, a novel conjugate of polyethylene glycol and SN38, in patients with advanced malignancies
    • [44] Kurzrock, R., et al. Safety, pharmacokinetics, and activity of EZN-2208, a novel conjugate of polyethylene glycol and SN38, in patients with advanced malignancies. Cancer 118:24 (2012), 6144–6151.
    • (2012) Cancer , vol.118 , Issue.24 , pp. 6144-6151
    • Kurzrock, R.1
  • 45
    • 84878651631 scopus 로고    scopus 로고
    • Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer
    • [45] Patnaik, A., et al. Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother. Pharmacol. 71:6 (2013), 1499–1506.
    • (2013) Cancer Chemother. Pharmacol. , vol.71 , Issue.6 , pp. 1499-1506
    • Patnaik, A.1
  • 46
    • 58149374576 scopus 로고    scopus 로고
    • Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth
    • [46] Zhang, H., et al. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. PNAS 105:50 (2008), 19579–19586.
    • (2008) PNAS , vol.105 , Issue.50 , pp. 19579-19586
    • Zhang, H.1
  • 47
    • 77954425345 scopus 로고    scopus 로고
    • Treatment with HIF-1alpha antagonist PX-478 inhibits progression and spread of orthotopic human small cell lung cancer and lung adenocarcinoma in mice
    • [47] Jacoby, J.J., et al. Treatment with HIF-1alpha antagonist PX-478 inhibits progression and spread of orthotopic human small cell lung cancer and lung adenocarcinoma in mice. J. Thorac. Oncol. 5:7 (2010), 940–949.
    • (2010) J. Thorac. Oncol. , vol.5 , Issue.7 , pp. 940-949
    • Jacoby, J.J.1
  • 48
    • 38349092288 scopus 로고    scopus 로고
    • Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha
    • [48] Koh, M.Y., et al. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol. Cancer Ther. 7:1 (2008), 90–100.
    • (2008) Mol. Cancer Ther. , vol.7 , Issue.1 , pp. 90-100
    • Koh, M.Y.1
  • 49
    • 0034017489 scopus 로고    scopus 로고
    • Development of a hypoxia-responsive vector for tumor-specific gene therapy
    • [49] Shibata, T., Giaccia, A.J., Brown, J.M., Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Ther. 7:6 (2000), 493–498.
    • (2000) Gene Ther. , vol.7 , Issue.6 , pp. 493-498
    • Shibata, T.1    Giaccia, A.J.2    Brown, J.M.3
  • 50
    • 0036328116 scopus 로고    scopus 로고
    • Oxygen-sensitive enzyme-prodrug gene therapy for the eradication of radiation-resistant solid tumours
    • [50] Patterson, A.V., et al. Oxygen-sensitive enzyme-prodrug gene therapy for the eradication of radiation-resistant solid tumours. Gene Ther. 9:14 (2002), 946–954.
    • (2002) Gene Ther. , vol.9 , Issue.14 , pp. 946-954
    • Patterson, A.V.1
  • 51
    • 84903216444 scopus 로고    scopus 로고
    • Hypoxia-targeted triple suicide gene therapy radiosensitizes human colorectal cancer cells
    • [51] Hsiao, H.T., et al. Hypoxia-targeted triple suicide gene therapy radiosensitizes human colorectal cancer cells. Oncol. Rep. 32:2 (2014), 723–729.
    • (2014) Oncol. Rep. , vol.32 , Issue.2 , pp. 723-729
    • Hsiao, H.T.1
  • 52
    • 77954815583 scopus 로고    scopus 로고
    • Antisense HIF-1alpha prevents acquired tumor resistance to angiostatin gene therapy
    • [52] Sun, X., et al. Antisense HIF-1alpha prevents acquired tumor resistance to angiostatin gene therapy. Cancer Gene Ther. 17:8 (2010), 532–540.
    • (2010) Cancer Gene Ther. , vol.17 , Issue.8 , pp. 532-540
    • Sun, X.1
  • 53
    • 84893499123 scopus 로고    scopus 로고
    • Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia
    • [53] Guise, C.P., et al. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia. Chin. J. Cancer 33:2 (2014), 80–86.
    • (2014) Chin. J. Cancer , vol.33 , Issue.2 , pp. 80-86
    • Guise, C.P.1
  • 54
    • 2942590732 scopus 로고    scopus 로고
    • Exploiting tumour hypoxia in cancer treatment
    • [54] Brown, J.M., Wilson, W.R., Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4:6 (2004), 437–447.
    • (2004) Nat. Rev. Cancer , vol.4 , Issue.6 , pp. 437-447
    • Brown, J.M.1    Wilson, W.R.2
  • 55
    • 0030913953 scopus 로고    scopus 로고
    • Phase II trial of tirapazamine combined with cisplatin in chemotherapy of advanced malignant melanoma
    • [55] Bedikian, A.Y., et al. Phase II trial of tirapazamine combined with cisplatin in chemotherapy of advanced malignant melanoma. Ann. Oncol. 8:4 (1997), 363–367.
    • (1997) Ann. Oncol. , vol.8 , Issue.4 , pp. 363-367
    • Bedikian, A.Y.1
  • 56
    • 0034104328 scopus 로고    scopus 로고
    • Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: a report of the international CATAPULT I study group. Cisplatin and tirapazamine in subjects with advanced previously untreated non-small-cell lung tumors
    • [56] von Pawel, J., et al. Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: a report of the international CATAPULT I study group. Cisplatin and tirapazamine in subjects with advanced previously untreated non-small-cell lung tumors. J. Clin. Oncol. 18:6 (2000), 1351–1359.
    • (2000) J. Clin. Oncol. , vol.18 , Issue.6 , pp. 1351-1359
    • von Pawel, J.1
  • 57
    • 85015930283 scopus 로고    scopus 로고
    • Dose-defining Study of Tirapazamine Combined With Embolization in Liver Cancer
    • National Library of Medicine (US) Bethesda (MD) (Internet)
    • [57] Ltd, T., Dose-defining Study of Tirapazamine Combined With Embolization in Liver Cancer. 2014, National Library of Medicine (US), Bethesda (MD) ClinicalTrials.gov (Internet).
    • (2014)
    • Ltd, T.1
  • 58
    • 84897575376 scopus 로고    scopus 로고
    • Phase III randomized trial of weekly cisplatin and irradiation versus cisplatin and tirapazamine and irradiation in stages IB2, IIA, IIB, IIIB, and IVA cervical carcinoma limited to the pelvis: a Gynecologic Oncology Group study
    • [58] DiSilvestro, P.A., et al. Phase III randomized trial of weekly cisplatin and irradiation versus cisplatin and tirapazamine and irradiation in stages IB2, IIA, IIB, IIIB, and IVA cervical carcinoma limited to the pelvis: a Gynecologic Oncology Group study. J. Clin. Oncol. 32:5 (2014), 458–464.
    • (2014) J. Clin. Oncol. , vol.32 , Issue.5 , pp. 458-464
    • DiSilvestro, P.A.1
  • 59
    • 0031282095 scopus 로고    scopus 로고
    • Phase I study of tirapazamine and cisplatin in patients with recurrent cervical cancer
    • [59] Aghajanian, C., et al. Phase I study of tirapazamine and cisplatin in patients with recurrent cervical cancer. Gynecol. Oncol. 67:2 (1997), 127–130.
    • (1997) Gynecol. Oncol. , vol.67 , Issue.2 , pp. 127-130
    • Aghajanian, C.1
  • 60
    • 35548961829 scopus 로고    scopus 로고
    • Tirapazamine: from bench to clinical trials
    • [60] Marcu, L., Olver, I., Tirapazamine: from bench to clinical trials. Curr. Clin. Pharmacol. 1:1 (2006), 71–79.
    • (2006) Curr. Clin. Pharmacol. , vol.1 , Issue.1 , pp. 71-79
    • Marcu, L.1    Olver, I.2
  • 61
    • 77958060317 scopus 로고    scopus 로고
    • Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors
    • [61] Hicks, K.O., et al. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin. Cancer Res. 16:20 (2010), 4946–4957.
    • (2010) Clin. Cancer Res. , vol.16 , Issue.20 , pp. 4946-4957
    • Hicks, K.O.1
  • 62
    • 0035914266 scopus 로고    scopus 로고
    • A novel strategy for NQO1 (NAD(P)H:quinone oxidoreductase, EC 1.6.99.2) mediated therapy of bladder cancer based on the pharmacological properties of EO9
    • [62] Choudry, G.A., et al. A novel strategy for NQO1 (NAD(P)H:quinone oxidoreductase, EC 1.6.99.2) mediated therapy of bladder cancer based on the pharmacological properties of EO9. Br. J. Cancer 85:8 (2001), 1137–1146.
    • (2001) Br. J. Cancer , vol.85 , Issue.8 , pp. 1137-1146
    • Choudry, G.A.1
  • 63
    • 1242319559 scopus 로고    scopus 로고
    • NAD (P) H: quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics
    • [63] Ross, D., Siegel, D., NAD (P) H: quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. 382 (2004), 115–144.
    • (2004) Methods Enzymol. , vol.382 , pp. 115-144
    • Ross, D.1    Siegel, D.2
  • 64
    • 0028338822 scopus 로고
    • Phase I and pharmacologic study of the novel indoloquinone bioreductive alkylating cytotoxic drug E09
    • [64] Schellens, J.H.M., et al. Phase I and pharmacologic study of the novel indoloquinone bioreductive alkylating cytotoxic drug E09. J. Natl. Cancer Inst. 86:12 (1994), 906–912.
    • (1994) J. Natl. Cancer Inst. , vol.86 , Issue.12 , pp. 906-912
    • Schellens, J.H.M.1
  • 65
    • 84929346406 scopus 로고    scopus 로고
    • Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer
    • [65] Borad, M.J., et al. Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol., 2014, 1474–1481.
    • (2014) J. Clin. Oncol. , pp. 1474-1481
    • Borad, M.J.1
  • 66
    • 84859378451 scopus 로고    scopus 로고
    • Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302
    • [66] Meng, F., et al. Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. Mol. Cancer Ther. 11:3 (2012), 740–751.
    • (2012) Mol. Cancer Ther. , vol.11 , Issue.3 , pp. 740-751
    • Meng, F.1
  • 67
    • 84863012236 scopus 로고    scopus 로고
    • Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer
    • [67] Sun, J.D., et al. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin. Cancer Res. 18:3 (2012), 758–770.
    • (2012) Clin. Cancer Res. , vol.18 , Issue.3 , pp. 758-770
    • Sun, J.D.1
  • 68
    • 79955490434 scopus 로고    scopus 로고
    • Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies
    • [68] Weiss, G.J., et al. Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin. Cancer Res. 17:9 (2011), 2997–3004.
    • (2011) Clin. Cancer Res. , vol.17 , Issue.9 , pp. 2997-3004
    • Weiss, G.J.1
  • 69
    • 76749161362 scopus 로고    scopus 로고
    • The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3
    • [69] Guise, C.P., et al. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res. 70:4 (2010), 1573–1584.
    • (2010) Cancer Res. , vol.70 , Issue.4 , pp. 1573-1584
    • Guise, C.P.1
  • 70
    • 84455170365 scopus 로고    scopus 로고
    • Diflavin oxidoreductases activate the bioreductive prodrug PR-104A under hypoxia
    • [70] Guise, C.P., et al. Diflavin oxidoreductases activate the bioreductive prodrug PR-104A under hypoxia. Mol. Pharmacol. 81:1 (2012), 31–40.
    • (2012) Mol. Pharmacol. , vol.81 , Issue.1 , pp. 31-40
    • Guise, C.P.1
  • 71
    • 84936081114 scopus 로고    scopus 로고
    • Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia
    • [71] Konopleva, M., et al. Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia. Haematologica 7 (2015), 927–934.
    • (2015) Haematologica , vol.7 , pp. 927-934
    • Konopleva, M.1
  • 72
    • 80053598625 scopus 로고    scopus 로고
    • A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients
    • [72] McKeage, M.J., et al. A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients. BMC Cancer, 11, 2011, 432.
    • (2011) BMC Cancer , vol.11 , pp. 432
    • McKeage, M.J.1
  • 73
    • 65949102556 scopus 로고    scopus 로고
    • DNA cross-links in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism, and cytotoxicity
    • [73] Singleton, R.S., et al. DNA cross-links in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism, and cytotoxicity. Cancer Res. 69:9 (2009), 3884–3891.
    • (2009) Cancer Res. , vol.69 , Issue.9 , pp. 3884-3891
    • Singleton, R.S.1
  • 74
    • 0029054994 scopus 로고
    • AQ4N: an alkylaminoanthraquinone N-oxide showing bioreductive potential and positive interaction with radiation in vivo
    • [74] McKeown, S.R., et al. AQ4N: an alkylaminoanthraquinone N-oxide showing bioreductive potential and positive interaction with radiation in vivo. Br. J. Cancer 72:1 (1995), 76–81.
    • (1995) Br. J. Cancer , vol.72 , Issue.1 , pp. 76-81
    • McKeown, S.R.1
  • 75
    • 0034029002 scopus 로고    scopus 로고
    • Enhancement of chemotherapy and radiotherapy of murine tumours by AQ4N, a bioreductively activated anti-tumour agent
    • [75] Patterson, L.H., et al. Enhancement of chemotherapy and radiotherapy of murine tumours by AQ4N, a bioreductively activated anti-tumour agent. Br. J. Cancer 82:12 (2000), 1984–1990.
    • (2000) Br. J. Cancer , vol.82 , Issue.12 , pp. 1984-1990
    • Patterson, L.H.1
  • 76
    • 84863786833 scopus 로고    scopus 로고
    • TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules
    • [76] Liu, Q., et al. TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules. Cancer Chemother. Pharmacol. 69:6 (2012), 1487–1498.
    • (2012) Cancer Chemother. Pharmacol. , vol.69 , Issue.6 , pp. 1487-1498
    • Liu, Q.1
  • 77
    • 85015874414 scopus 로고    scopus 로고
    • Open-label Study of TH-302 and Dexamethasone With or Without Bortezomib or Pomalidomide in Subjects With Relapsed/Refractory Multiple Myeloma
    • National Library of Medicine (US) Bethesda (MD) (Internet)
    • [77] Pharmaceuticals, T., Open-label Study of TH-302 and Dexamethasone With or Without Bortezomib or Pomalidomide in Subjects With Relapsed/Refractory Multiple Myeloma. 2012, National Library of Medicine (US), Bethesda (MD) ClinicalTrials.gov (Internet).
    • (2012)
    • Pharmaceuticals, T.1
  • 78
    • 85015947951 scopus 로고    scopus 로고
    • Study of TH-302 or Placebo in Combination With Pemetrexed in Patients With Non-squamous Non-small Cell Lung Cancer
    • National Library of Medicine (US) Bethesda (MD) (Internet)
    • [78] Pharmaceuticals, T., Study of TH-302 or Placebo in Combination With Pemetrexed in Patients With Non-squamous Non-small Cell Lung Cancer. 2014, National Library of Medicine (US), Bethesda (MD) ClinicalTrials.gov (Internet).
    • (2014)
    • Pharmaceuticals, T.1
  • 79
    • 34447122556 scopus 로고    scopus 로고
    • Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104
    • [79] Patterson, A.V., et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin. Cancer Res. 13:13 (2007), 3922–3932.
    • (2007) Clin. Cancer Res. , vol.13 , Issue.13 , pp. 3922-3932
    • Patterson, A.V.1
  • 80
    • 84862830732 scopus 로고    scopus 로고
    • Nanoparticle-based combination therapy toward overcoming drug resistance in cancer
    • [80] Hu, C.M., Zhang, L., Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 83:8 (2012), 1104–1111.
    • (2012) Biochem. Pharmacol. , vol.83 , Issue.8 , pp. 1104-1111
    • Hu, C.M.1    Zhang, L.2
  • 82
    • 67649380881 scopus 로고    scopus 로고
    • Tirapazamine: a novel agent targeting hypoxic tumor cells
    • [82] Reddy, S.B., Williamson, S.K., Tirapazamine: a novel agent targeting hypoxic tumor cells. Expert Opin. Investig. Drugs 18:1 (2009), 77–87.
    • (2009) Expert Opin. Investig. Drugs , vol.18 , Issue.1 , pp. 77-87
    • Reddy, S.B.1    Williamson, S.K.2
  • 83
    • 14644394928 scopus 로고    scopus 로고
    • Tumor-associated macrophages: the double-edged sword in cancer progression
    • [83] Chen, J.J., et al. Tumor-associated macrophages: the double-edged sword in cancer progression. J. Clin. Oncol. 23:5 (2005), 953–964.
    • (2005) J. Clin. Oncol. , vol.23 , Issue.5 , pp. 953-964
    • Chen, J.J.1
  • 84
    • 77955440267 scopus 로고    scopus 로고
    • Update on macrophage clearance of inhaled micro- and nanoparticles
    • [84] Geiser, M., Update on macrophage clearance of inhaled micro- and nanoparticles. J. Aerosol. Med. Pulm. Drug Deliv. 23:4 (2010), 207–217.
    • (2010) J. Aerosol. Med. Pulm. Drug Deliv. , vol.23 , Issue.4 , pp. 207-217
    • Geiser, M.1
  • 85
    • 0037133126 scopus 로고    scopus 로고
    • Targeting to macrophages: role of physicochemical properties of particulate carriers–liposomes and microspheres–on the phagocytosis by macrophages
    • [85] Ahsan, F., et al. Targeting to macrophages: role of physicochemical properties of particulate carriers–liposomes and microspheres–on the phagocytosis by macrophages. J. Control. Release 79:1–3 (2002), 29–40.
    • (2002) J. Control. Release , vol.79 , Issue.1-3 , pp. 29-40
    • Ahsan, F.1
  • 86
    • 84857692141 scopus 로고    scopus 로고
    • Differential macrophage programming in the tumor microenvironment
    • [86] Ruffell, B., Affara, N.I., Coussens, L.M., Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33:3 (2012), 119–126.
    • (2012) Trends Immunol. , vol.33 , Issue.3 , pp. 119-126
    • Ruffell, B.1    Affara, N.I.2    Coussens, L.M.3
  • 87
    • 41149164902 scopus 로고    scopus 로고
    • The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance
    • [87] Allavena, P., et al. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol. Rev. 222 (2008), 155–161.
    • (2008) Immunol. Rev. , vol.222 , pp. 155-161
    • Allavena, P.1
  • 88
    • 84926160709 scopus 로고    scopus 로고
    • Immune evasion in cancer: mechanistic basis and therapeutic strategies
    • [88] Vinay, D.S., et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 35:Suppl (2015), S185–S198.
    • (2015) Semin. Cancer Biol. , vol.35 , pp. S185-S198
    • Vinay, D.S.1
  • 89
    • 77956976681 scopus 로고    scopus 로고
    • Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm
    • [89] Biswas, S.K., Mantovani, A., Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11:10 (2010), 889–896.
    • (2010) Nat. Immunol. , vol.11 , Issue.10 , pp. 889-896
    • Biswas, S.K.1    Mantovani, A.2
  • 90
    • 33751551172 scopus 로고    scopus 로고
    • Dual role of macrophages in tumor growth and angiogenesis
    • [90] Lamagna, C., Aurrand-Lions, M., Imhof, B.A., Dual role of macrophages in tumor growth and angiogenesis. J. Leukoc. Biol. 80:4 (2006), 705–713.
    • (2006) J. Leukoc. Biol. , vol.80 , Issue.4 , pp. 705-713
    • Lamagna, C.1    Aurrand-Lions, M.2    Imhof, B.A.3
  • 91
    • 33845524204 scopus 로고    scopus 로고
    • Role of tumor-associated macrophages in tumor progression and invasion
    • [91] Mantovani, A., et al. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 25:3 (2006), 315–322.
    • (2006) Cancer Metastasis Rev. , vol.25 , Issue.3 , pp. 315-322
    • Mantovani, A.1
  • 92
    • 77950950894 scopus 로고    scopus 로고
    • Macrophage diversity enhances tumor progression and metastasis
    • [92] Qian, B.Z., Pollard, J.W., Macrophage diversity enhances tumor progression and metastasis. Cell 141:1 (2010), 39–51.
    • (2010) Cell , vol.141 , Issue.1 , pp. 39-51
    • Qian, B.Z.1    Pollard, J.W.2
  • 93
    • 70350728931 scopus 로고    scopus 로고
    • Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation
    • [93] Solinas, G., et al. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukoc. Biol. 86:5 (2009), 1065–1073.
    • (2009) J. Leukoc. Biol. , vol.86 , Issue.5 , pp. 1065-1073
    • Solinas, G.1
  • 94
    • 45149134605 scopus 로고    scopus 로고
    • “Re-educating” tumor-associated macrophages by targeting NF-kappaB
    • [94] Hagemann, T., et al. “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med. 205:6 (2008), 1261–1268.
    • (2008) J. Exp. Med. , vol.205 , Issue.6 , pp. 1261-1268
    • Hagemann, T.1
  • 95
    • 84863691003 scopus 로고    scopus 로고
    • Macrophages in tumor microenvironments and the progression of tumors
    • [95] Hao, N.B., et al. Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012 (2012), 1–11.
    • (2012) Clin. Dev. Immunol. , vol.2012 , pp. 1-11
    • Hao, N.B.1
  • 96
    • 84897556094 scopus 로고    scopus 로고
    • The M1 and M2 paradigm of macrophage activation: time for reassessment
    • [96] Martinez, F.O., Gordon, S., The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6 (2014), 1–13.
    • (2014) F1000Prime Rep. , vol.6 , pp. 1-13
    • Martinez, F.O.1    Gordon, S.2
  • 97
    • 84868030361 scopus 로고    scopus 로고
    • Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer
    • [97] Quatromoni, J.G., Eruslanov, E., Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am. J. Transl. Res. 4:4 (2012), 376–389.
    • (2012) Am. J. Transl. Res. , vol.4 , Issue.4 , pp. 376-389
    • Quatromoni, J.G.1    Eruslanov, E.2
  • 98
    • 0016184354 scopus 로고
    • Inhibition of pulmonary metastasis by intravenous injection of specifically activated macrophages
    • [98] Fidler, I.J., Inhibition of pulmonary metastasis by intravenous injection of specifically activated macrophages. Cancer Res. 34:5 (1974), 1074–1078.
    • (1974) Cancer Res. , vol.34 , Issue.5 , pp. 1074-1078
    • Fidler, I.J.1
  • 99
    • 0020047634 scopus 로고
    • Augmentation of metastasis formation by thioglycollate-elicited macrophages
    • [99] Gorelik, E., et al. Augmentation of metastasis formation by thioglycollate-elicited macrophages. Int. J. Cancer 29:5 (1982), 575–581.
    • (1982) Int. J. Cancer , vol.29 , Issue.5 , pp. 575-581
    • Gorelik, E.1
  • 100
    • 0038189215 scopus 로고    scopus 로고
    • Effect of stromal and epithelial cells derived from normal and tumorous breast tissue on the proliferation of human breast cancer cell lines in co-culture
    • [100] Dong-Le Bourhis, X., et al. Effect of stromal and epithelial cells derived from normal and tumorous breast tissue on the proliferation of human breast cancer cell lines in co-culture. Int. J. Cancer 71:1 (1997), 42–48.
    • (1997) Int. J. Cancer , vol.71 , Issue.1 , pp. 42-48
    • Dong-Le Bourhis, X.1
  • 101
    • 3342904989 scopus 로고    scopus 로고
    • Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases
    • [101] Hagemann, T., et al. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25:8 (2004), 1543–1549.
    • (2004) Carcinogenesis , vol.25 , Issue.8 , pp. 1543-1549
    • Hagemann, T.1
  • 102
    • 80051496632 scopus 로고    scopus 로고
    • Targeted liposomal drug delivery to monocytes and macrophages
    • [102] Kelly, C., Jefferies, C., Cryan, S.-A., Targeted liposomal drug delivery to monocytes and macrophages. J. Drug. Deliv. 2011 (2011), 1–11.
    • (2011) J. Drug. Deliv. , vol.2011 , pp. 1-11
    • Kelly, C.1    Jefferies, C.2    Cryan, S.-A.3
  • 103
    • 0034632936 scopus 로고    scopus 로고
    • Investigation of the role of macrophages on the cytotoxicity of doxorubicin and doxorubicin-loaded nanoparticles on M5076 cells in vitro
    • [103] Soma, C.E., et al. Investigation of the role of macrophages on the cytotoxicity of doxorubicin and doxorubicin-loaded nanoparticles on M5076 cells in vitro. J. Control. Release 68:2 (2000), 283–289.
    • (2000) J. Control. Release , vol.68 , Issue.2 , pp. 283-289
    • Soma, C.E.1
  • 104
    • 84947932903 scopus 로고    scopus 로고
    • Are macrophages in tumors good targets for novel therapeutic approaches?
    • [104] Alahari, S.V., Dong, S., Alahari, S.K., Are macrophages in tumors good targets for novel therapeutic approaches?. Mol. Cell 38:2 (2015), 95–104.
    • (2015) Mol. Cell , vol.38 , Issue.2 , pp. 95-104
    • Alahari, S.V.1    Dong, S.2    Alahari, S.K.3
  • 105
    • 84908113942 scopus 로고    scopus 로고
    • Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy
    • [105] Zhan, X., et al. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials 35:38 (2014), 10046–10057.
    • (2014) Biomaterials , vol.35 , Issue.38 , pp. 10046-10057
    • Zhan, X.1
  • 106
    • 84865147481 scopus 로고    scopus 로고
    • Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages
    • [106] Movahedi, K., et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 72:16 (2012), 4165–4177.
    • (2012) Cancer Res. , vol.72 , Issue.16 , pp. 4165-4177
    • Movahedi, K.1
  • 107
    • 84874600982 scopus 로고    scopus 로고
    • Macrophage-specific RNA interference targeting via “click”, mannosylated polymeric micelles
    • [107] Yu, S.S., et al. Macrophage-specific RNA interference targeting via “click”, mannosylated polymeric micelles. Mol. Pharm. 10:3 (2013), 975–987.
    • (2013) Mol. Pharm. , vol.10 , Issue.3 , pp. 975-987
    • Yu, S.S.1
  • 108
    • 84883567844 scopus 로고    scopus 로고
    • Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles
    • [108] Zhu, S., et al. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol. Pharm. 10:9 (2013), 3525–3530.
    • (2013) Mol. Pharm. , vol.10 , Issue.9 , pp. 3525-3530
    • Zhu, S.1
  • 109
    • 84902546715 scopus 로고    scopus 로고
    • Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy
    • [109] Ries, C.H., et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25:6 (2014), 846–859.
    • (2014) Cancer Cell , vol.25 , Issue.6 , pp. 846-859
    • Ries, C.H.1
  • 110
    • 33746718151 scopus 로고    scopus 로고
    • Targeting tumor-associated macrophages as a novel strategy against breast cancer
    • [110] Luo, Y., et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J. Clin. Invest. 116:8 (2006), 2132–2141.
    • (2006) J. Clin. Invest. , vol.116 , Issue.8 , pp. 2132-2141
    • Luo, Y.1
  • 111
    • 84858697942 scopus 로고    scopus 로고
    • Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy
    • [111] Huang, Z., et al. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J. Control. Release 158:2 (2012), 286–292.
    • (2012) J. Control. Release , vol.158 , Issue.2 , pp. 286-292
    • Huang, Z.1
  • 112
    • 55149086977 scopus 로고    scopus 로고
    • Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis
    • [112] Hong, H.Y., et al. Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis. J. Cell. Mol. Med. 12:5B (2008), 2003–2014.
    • (2008) J. Cell. Mol. Med. , vol.12 , Issue.5B , pp. 2003-2014
    • Hong, H.Y.1
  • 113
    • 84858202940 scopus 로고    scopus 로고
    • Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression
    • [113] Roth, F., et al. Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 72:6 (2012), 1373–1383.
    • (2012) Cancer Res. , vol.72 , Issue.6 , pp. 1373-1383
    • Roth, F.1
  • 114
    • 20144388299 scopus 로고    scopus 로고
    • Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production
    • [114] Allavena, P., et al. Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production. Cancer Res. 65:7 (2005), 2964–2971.
    • (2005) Cancer Res. , vol.65 , Issue.7 , pp. 2964-2971
    • Allavena, P.1
  • 115
    • 84855568783 scopus 로고    scopus 로고
    • Tumor cells and tumor-associated macrophages: secreted proteins as potential targets for therapy
    • [115] Baay, M., et al. Tumor cells and tumor-associated macrophages: secreted proteins as potential targets for therapy. Clin. Dev. Immunol. 2011 (2011), 1583–1584.
    • (2011) Clin. Dev. Immunol. , vol.2011 , pp. 1583-1584
    • Baay, M.1
  • 116
    • 84885205350 scopus 로고    scopus 로고
    • Targeting tumor-infiltrating macrophages to combat cancer
    • [116] Panni, R.Z., Linehan, D.C., DeNardo, D.G., Targeting tumor-infiltrating macrophages to combat cancer. Immunotherapy 5:10 (2013), 1075–1087.
    • (2013) Immunotherapy , vol.5 , Issue.10 , pp. 1075-1087
    • Panni, R.Z.1    Linehan, D.C.2    DeNardo, D.G.3
  • 117
    • 84872529636 scopus 로고    scopus 로고
    • Anti-tumour strategies aiming to target tumour-associated macrophages
    • [117] Tang, X., et al. Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 138:2 (2013), 93–104.
    • (2013) Immunology , vol.138 , Issue.2 , pp. 93-104
    • Tang, X.1
  • 118
    • 39049168150 scopus 로고    scopus 로고
    • Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue
    • [118] Banciu, M., et al. Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue. Neoplasia 10:2 (2008), 108–117.
    • (2008) Neoplasia , vol.10 , Issue.2 , pp. 108-117
    • Banciu, M.1
  • 119
    • 14644404958 scopus 로고    scopus 로고
    • Liposome-encapsulated prednisolone phosphate inhibits growth of established tumors in mice
    • [119] Schiffelers, R.M., et al. Liposome-encapsulated prednisolone phosphate inhibits growth of established tumors in mice. Neoplasia 7:2 (2005), 118–127.
    • (2005) Neoplasia , vol.7 , Issue.2 , pp. 118-127
    • Schiffelers, R.M.1
  • 120
    • 84872300769 scopus 로고    scopus 로고
    • Molecular targeting of liposomal nanoparticles to tumor microenvironment
    • [120] Zhao, G., Rodriguez, B.L., Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int. J. Nanomedicine 8 (2013), 61–71.
    • (2013) Int. J. Nanomedicine , vol.8 , pp. 61-71
    • Zhao, G.1    Rodriguez, B.L.2
  • 121
    • 84868275745 scopus 로고    scopus 로고
    • Depletion and reconstitution of macrophages in mice
    • [121] Weisser, S.B., van Rooijen, N., Sly, L.M., Depletion and reconstitution of macrophages in mice. J. Vis. Exp., 66, 2012, 4105.
    • (2012) J. Vis. Exp. , vol.66 , pp. 4105
    • Weisser, S.B.1    van Rooijen, N.2    Sly, L.M.3
  • 122
    • 10744228469 scopus 로고    scopus 로고
    • Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model
    • [122] Satoh, T., et al. Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res. 63:22 (2003), 7853–7860.
    • (2003) Cancer Res. , vol.63 , Issue.22 , pp. 7853-7860
    • Satoh, T.1
  • 123
    • 0034976848 scopus 로고    scopus 로고
    • Different Toll-like receptor agonists induce distinct macrophage responses
    • [123] Jones, B.W., et al. Different Toll-like receptor agonists induce distinct macrophage responses. J. Leukoc. Biol. 69:6 (2001), 1036–1044.
    • (2001) J. Leukoc. Biol. , vol.69 , Issue.6 , pp. 1036-1044
    • Jones, B.W.1
  • 124
    • 40049104684 scopus 로고    scopus 로고
    • Azithromycin alters macrophage phenotype
    • [124] Murphy, B.S., et al. Azithromycin alters macrophage phenotype. J. Antimicrob. Chemother. 61:3 (2008), 554–560.
    • (2008) J. Antimicrob. Chemother. , vol.61 , Issue.3 , pp. 554-560
    • Murphy, B.S.1
  • 125
    • 31544441610 scopus 로고    scopus 로고
    • Distinct role of macrophages in different tumor microenvironments
    • [125] Lewis, C.E., Pollard, J.W., Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66:2 (2006), 605–612.
    • (2006) Cancer Res. , vol.66 , Issue.2 , pp. 605-612
    • Lewis, C.E.1    Pollard, J.W.2
  • 126
    • 84860727651 scopus 로고    scopus 로고
    • Development of a nanoparticle-based system for the delivery of retinoic acid into macrophages
    • [126] Almouazen, E., et al. Development of a nanoparticle-based system for the delivery of retinoic acid into macrophages. Int. J. Pharm. 430:1–2 (2012), 207–215.
    • (2012) Int. J. Pharm. , vol.430 , Issue.1-2 , pp. 207-215
    • Almouazen, E.1
  • 127
    • 77955662556 scopus 로고    scopus 로고
    • Secondary cytotoxicity mediated by alveolar macrophages: a contribution to the total efficacy of nanoparticles in lung cancer therapy?
    • [127] Al-Hallak, K.M., et al. Secondary cytotoxicity mediated by alveolar macrophages: a contribution to the total efficacy of nanoparticles in lung cancer therapy?. Eur. J. Pharm. Biopharm. 76:1 (2010), 112–119.
    • (2010) Eur. J. Pharm. Biopharm. , vol.76 , Issue.1 , pp. 112-119
    • Al-Hallak, K.M.1
  • 128
    • 84867504992 scopus 로고    scopus 로고
    • The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer
    • [128] Edin, S., et al. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One, 7(10), 2012, e47045.
    • (2012) PLoS One , vol.7 , Issue.10 , pp. e47045
    • Edin, S.1
  • 129
    • 49749124618 scopus 로고    scopus 로고
    • Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy
    • [129] Ono, M., Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci. 99:8 (2008), 1501–1506.
    • (2008) Cancer Sci. , vol.99 , Issue.8 , pp. 1501-1506
    • Ono, M.1
  • 130
    • 24044461733 scopus 로고    scopus 로고
    • Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies
    • [130] Lewis, C., Murdoch, C., Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am. J. Pathol. 167:3 (2005), 627–635.
    • (2005) Am. J. Pathol. , vol.167 , Issue.3 , pp. 627-635
    • Lewis, C.1    Murdoch, C.2
  • 131
    • 84890175659 scopus 로고    scopus 로고
    • Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery
    • [131] Thambi, T., et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 35:5 (2014), 1735–1743.
    • (2014) Biomaterials , vol.35 , Issue.5 , pp. 1735-1743
    • Thambi, T.1
  • 132
    • 84870197971 scopus 로고    scopus 로고
    • Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth
    • [132] Liu, X.Q., et al. Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol. Pharm. 9:10 (2012), 2863–2874.
    • (2012) Mol. Pharm. , vol.9 , Issue.10 , pp. 2863-2874
    • Liu, X.Q.1
  • 133
    • 84937039846 scopus 로고    scopus 로고
    • Galactose-based thermosensitive nanogels for targeted drug delivery of iodoazomycin arabinofuranoside (IAZA) for theranostic management of hypoxic hepatocellular carcinoma
    • [133] Quan, S., et al. Galactose-based thermosensitive nanogels for targeted drug delivery of iodoazomycin arabinofuranoside (IAZA) for theranostic management of hypoxic hepatocellular carcinoma. Biomacromolecules 16:7 (2015), 1978–1986.
    • (2015) Biomacromolecules , vol.16 , Issue.7 , pp. 1978-1986
    • Quan, S.1
  • 134
    • 79959806796 scopus 로고    scopus 로고
    • Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia
    • [134] Poon, Z., et al. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 5:6 (2011), 4284–4292.
    • (2011) ACS Nano , vol.5 , Issue.6 , pp. 4284-4292
    • Poon, Z.1
  • 135
    • 77956446557 scopus 로고    scopus 로고
    • Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves
    • [135] Meng, H., et al. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 132:36 (2010), 12690–12697.
    • (2010) J. Am. Chem. Soc. , vol.132 , Issue.36 , pp. 12690-12697
    • Meng, H.1
  • 136
    • 84885614415 scopus 로고    scopus 로고
    • Functioning of nanovalves on polymer coated mesoporous silica nanoparticles
    • [136] Dong, J., Xue, M., Zink, J.I., Functioning of nanovalves on polymer coated mesoporous silica nanoparticles. Nano 5:21 (2013), 10300–10306.
    • (2013) Nano , vol.5 , Issue.21 , pp. 10300-10306
    • Dong, J.1    Xue, M.2    Zink, J.I.3
  • 137
    • 84960157086 scopus 로고    scopus 로고
    • Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy
    • [137] Qian, C., et al. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 28:17 (2016), 3313–3320.
    • (2016) Adv. Mater. , vol.28 , Issue.17 , pp. 3313-3320
    • Qian, C.1
  • 138
    • 79952233838 scopus 로고    scopus 로고
    • Use of macrophages to target therapeutic adenovirus to human prostate tumors
    • [138] Muthana, M., et al. Use of macrophages to target therapeutic adenovirus to human prostate tumors. Cancer Res. 71:5 (2011), 1805–1815.
    • (2011) Cancer Res. , vol.71 , Issue.5 , pp. 1805-1815
    • Muthana, M.1
  • 139
    • 84901048028 scopus 로고    scopus 로고
    • Macrophages associated with tumors as potential targets and therapeutic intermediates
    • [139] Vinogradov, S., Warren, G., Wei, X., Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine (London) 9:5 (2014), 695–707.
    • (2014) Nanomedicine (London) , vol.9 , Issue.5 , pp. 695-707
    • Vinogradov, S.1    Warren, G.2    Wei, X.3
  • 140
    • 38049131877 scopus 로고    scopus 로고
    • A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors
    • [140] Choi, M.R., et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7:12 (2007), 3759–3765.
    • (2007) Nano Lett. , vol.7 , Issue.12 , pp. 3759-3765
    • Choi, M.R.1
  • 141
    • 84858793809 scopus 로고    scopus 로고
    • Macrophages as cell-based delivery systems for nanoshells in photothermal therapy
    • [141] Madsen, S.J., et al. Macrophages as cell-based delivery systems for nanoshells in photothermal therapy. Ann. Biomed. Eng. 40:2 (2012), 507–515.
    • (2012) Ann. Biomed. Eng. , vol.40 , Issue.2 , pp. 507-515
    • Madsen, S.J.1
  • 142
    • 84945143624 scopus 로고    scopus 로고
    • Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy
    • [142] Li, Z., et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 74 (2016), 144–154.
    • (2016) Biomaterials , vol.74 , pp. 144-154
    • Li, Z.1
  • 143
    • 84862819070 scopus 로고    scopus 로고
    • Use of macrophages to deliver therapeutic and imaging contrast agents to tumors
    • [143] Choi, J., et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 33:16 (2012), 4195–4203.
    • (2012) Biomaterials , vol.33 , Issue.16 , pp. 4195-4203
    • Choi, J.1
  • 144
    • 84947976474 scopus 로고    scopus 로고
    • Irradiation enhances the ability of monocytes as nanoparticle carrier for cancer therapy
    • [144] Jiang, P.-S., et al. Irradiation enhances the ability of monocytes as nanoparticle carrier for cancer therapy. PLoS One, 10(9), 2015, e0139043.
    • (2015) PLoS One , vol.10 , Issue.9 , pp. e0139043
    • Jiang, P.-S.1
  • 145
    • 79954607446 scopus 로고    scopus 로고
    • Mathematical modeling predicts synergistic antitumor effects of combining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy
    • [145] Owen, M.R., et al. Mathematical modeling predicts synergistic antitumor effects of combining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy. Cancer Res. 71:8 (2011), 2826–2837.
    • (2011) Cancer Res. , vol.71 , Issue.8 , pp. 2826-2837
    • Owen, M.R.1
  • 146
    • 0033998433 scopus 로고    scopus 로고
    • The macrophage - a novel system to deliver gene therapy to pathological hypoxia
    • [146] Griffiths, L., et al. The macrophage - a novel system to deliver gene therapy to pathological hypoxia. Gene Ther. 7:3 (2000), 255–262.
    • (2000) Gene Ther. , vol.7 , Issue.3 , pp. 255-262
    • Griffiths, L.1
  • 147
    • 84872589778 scopus 로고    scopus 로고
    • Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation
    • [147] Muthana, M., et al. Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation. Cancer Res. 73:2 (2013), 490–495.
    • (2013) Cancer Res. , vol.73 , Issue.2 , pp. 490-495
    • Muthana, M.1
  • 148
    • 84949537945 scopus 로고    scopus 로고
    • Monocytic delivery of therapeutic oxygen bubbles for dual-modality treatment of tumor hypoxia
    • [148] Huang, W.-C., et al. Monocytic delivery of therapeutic oxygen bubbles for dual-modality treatment of tumor hypoxia. J. Control. Release 220:Part B (2015), 738–750.
    • (2015) J. Control. Release , vol.220 , pp. 738-750
    • Huang, W.-C.1
  • 149
    • 84941553043 scopus 로고    scopus 로고
    • Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia
    • [149] Huang, W.C., et al. Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia. Biomaterials 71 (2015), 71–83.
    • (2015) Biomaterials , vol.71 , pp. 71-83
    • Huang, W.C.1
  • 150
    • 84989875792 scopus 로고    scopus 로고
    • Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia
    • [150] Song, M., et al. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10:1 (2016), 633–647.
    • (2016) ACS Nano , vol.10 , Issue.1 , pp. 633-647
    • Song, M.1
  • 151
    • 84887293373 scopus 로고    scopus 로고
    • Tumour-on-a-chip provides an optical window into nanoparticle tissue transport
    • [151] Albanese, A., et al. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat. Commun., 4, 2013, 2718.
    • (2013) Nat. Commun. , vol.4 , pp. 2718
    • Albanese, A.1
  • 152
    • 84994713359 scopus 로고    scopus 로고
    • Cancer nanomedicine: progress, challenges and opportunities
    • [152] Shi, J., et al. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17:1 (2017), 20–37.
    • (2017) Nat. Rev. Cancer , vol.17 , Issue.1 , pp. 20-37
    • Shi, J.1
  • 153
    • 33748331308 scopus 로고    scopus 로고
    • The mighty mouse: genetically engineered mouse models in cancer drug development
    • [153] Sharpless, N.E., Depinho, R.A., The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5:9 (2006), 741–754.
    • (2006) Nat. Rev. Drug Discov. , vol.5 , Issue.9 , pp. 741-754
    • Sharpless, N.E.1    Depinho, R.A.2
  • 154
    • 84997047916 scopus 로고    scopus 로고
    • To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    • [154] Danhier, F., To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?. J. Control. Release 244:Part A (2016), 108–121.
    • (2016) J. Control. Release , vol.244 , pp. 108-121
    • Danhier, F.1
  • 155
    • 84919659079 scopus 로고    scopus 로고
    • Lessons from patient-derived xenografts for better in vitro modeling of human cancer
    • [155] Choi, S.Y., et al. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv. Drug Deliv. Rev. 79–80 (2014), 222–237.
    • (2014) Adv. Drug Deliv. Rev. , vol.79-80 , pp. 222-237
    • Choi, S.Y.1
  • 156
    • 84967185402 scopus 로고    scopus 로고
    • Challenges and strategies in anti-cancer nanomedicine development: an industry perspective
    • [156] Hare, J.I., et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv. Drug Deliv. Rev. 108 (2017), 25–38.
    • (2017) Adv. Drug Deliv. Rev. , vol.108 , pp. 25-38
    • Hare, J.I.1
  • 157
    • 80052408037 scopus 로고    scopus 로고
    • Nanoparticle-mediated hyperthermia in cancer therapy
    • [157] Chatterjee, D.K., Diagaradjane, P., Krishnan, S., Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2:8 (2011), 1001–1014.
    • (2011) Ther. Deliv. , vol.2 , Issue.8 , pp. 1001-1014
    • Chatterjee, D.K.1    Diagaradjane, P.2    Krishnan, S.3
  • 158
    • 84896734996 scopus 로고    scopus 로고
    • Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?
    • [158] Kobayashi, H., Watanabe, R., Choyke, P.L., Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?. Theranostics 4:1 (2013), 81–89.
    • (2013) Theranostics , vol.4 , Issue.1 , pp. 81-89
    • Kobayashi, H.1    Watanabe, R.2    Choyke, P.L.3
  • 159
    • 77951122379 scopus 로고    scopus 로고
    • The effect of mild temperature hyperthermia on tumour hypoxia and blood perfusion: relevance for radiotherapy, vascular targeting and imaging
    • [159] Sun, X., et al. The effect of mild temperature hyperthermia on tumour hypoxia and blood perfusion: relevance for radiotherapy, vascular targeting and imaging. Int. J. Hyperth. 26:3 (2010), 224–231.
    • (2010) Int. J. Hyperth. , vol.26 , Issue.3 , pp. 224-231
    • Sun, X.1
  • 160
    • 84976217379 scopus 로고    scopus 로고
    • Sonoporation enhances liposome accumulation and penetration in tumors with low EPR
    • [160] Theek, B., et al. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J. Control. Release 231 (2016), 77–85.
    • (2016) J. Control. Release , vol.231 , pp. 77-85
    • Theek, B.1
  • 161
    • 0038644403 scopus 로고    scopus 로고
    • Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells
    • [161] De Palma, M., et al. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9:6 (2003), 789–795.
    • (2003) Nat. Med. , vol.9 , Issue.6 , pp. 789-795
    • De Palma, M.1
  • 162
    • 34548798765 scopus 로고    scopus 로고
    • Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2
    • [162] Lewis, C.E., De Palma, M., Naldini, L., Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res. 67:18 (2007), 8429–8432.
    • (2007) Cancer Res. , vol.67 , Issue.18 , pp. 8429-8432
    • Lewis, C.E.1    De Palma, M.2    Naldini, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.