-
2
-
-
84901050860
-
Gut microbiota-generated metabolites in animal health and disease
-
Lee, W.-J., and K. Hase. 2014. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10: 416-424
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 416-424
-
-
Lee, W.-J.1
Hase, K.2
-
3
-
-
82755184864
-
The footprints of gut microbialmammalian co-metabolism
-
Zheng, X., G. Xie, A. Zhao, L. Zhao, C. Yao, N. H. L. Chiu, Z. Zhou, Y. Bao, W. Jia, J. K. Nicholson, and W. Jia. 2011. The footprints of gut microbialmammalian co-metabolism. J. Proteome Res. 10: 5512-5522
-
(2011)
J. Proteome Res.
, vol.10
, pp. 5512-5522
-
-
Zheng, X.1
Xie, G.2
Zhao, A.3
Zhao, L.4
Yao, C.5
Chiu, N.H.L.6
Zhou, Z.7
Bao, Y.8
Jia, W.9
Nicholson, J.K.10
Jia, W.11
-
4
-
-
85027916691
-
AhRdependent pathways in immune regulation
-
Gargaro, M., M. Pirro, R. Romani, T. Zelante, and F. Fallarino. 2016. AhRdependent pathways in immune regulation. Am. J. Transplant. 16: 2270-2276
-
(2016)
Am. J. Transplant.
, vol.16
, pp. 2270-2276
-
-
Gargaro, M.1
Pirro, M.2
Romani, R.3
Zelante, T.4
Fallarino, F.5
-
5
-
-
84931023881
-
Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity
-
Gaudet, R. G., A. Sintsova, C. M. Buckwalter, N. Leung, A. Cochrane, J. Li, A. D. Cox, J. Moffat, and S. D. Gray-Owen. 2015. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science 348: 1251-1255
-
(2015)
Science
, vol.348
, pp. 1251-1255
-
-
Gaudet, R.G.1
Sintsova, A.2
Buckwalter, C.M.3
Leung, N.4
Cochrane, A.5
Li, J.6
Cox, A.D.7
Moffat, J.8
Gray-Owen, S.D.9
-
6
-
-
79952740974
-
Essential role for retinoic acid in the promotion of CD4(+) T cell effector responses via retinoic acid receptor alpha
-
Hall, J. A., J. L. Cannons, J. R. Grainger, L. M. Dos Santos, T. W. Hand, S. Naik, E. A. Wohlfert, D. B. Chou, G. Oldenhove, M. Robinson, et al. 2011. Essential role for retinoic acid in the promotion of CD4(+) T cell effector responses via retinoic acid receptor alpha. Immunity 34: 435-447
-
(2011)
Immunity
, vol.34
, pp. 435-447
-
-
Hall, J.A.1
Cannons, J.L.2
Grainger, J.R.3
Dos Santos, L.M.4
Hand, T.W.5
Naik, S.6
Wohlfert, E.A.7
Chou, D.B.8
Oldenhove, G.9
Robinson, M.10
-
7
-
-
84966526506
-
CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands
-
Lamas, B., M. L. Richard, V. Leducq, H.-P. Pham, M.-L. Michel, G. Da Costa, C. Bridonneau, S. Jegou, T. W. Hoffmann, J. M. Natividad, et al. 2016. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22: 598-605
-
(2016)
Nat. Med.
, vol.22
, pp. 598-605
-
-
Lamas, B.1
Richard, M.L.2
Leducq, V.3
Pham, H.-P.4
Michel, M.-L.5
Da Costa, G.6
Bridonneau, C.7
Jegou, S.8
Hoffmann, T.W.9
Natividad, J.M.10
-
8
-
-
77950858310
-
Formyl peptide receptormediated proinflammatory consequences of peptide deformylase inhibition in Staphylococcus aureus
-
Mader, D., M. J. Rabiet, F. Boulay, and A. Peschel. 2010. Formyl peptide receptormediated proinflammatory consequences of peptide deformylase inhibition in Staphylococcus aureus. Microbes Infect. 12: 415-419
-
(2010)
Microbes Infect.
, vol.12
, pp. 415-419
-
-
Mader, D.1
Rabiet, M.J.2
Boulay, F.3
Peschel, A.4
-
9
-
-
84902657771
-
Diet, metabolites, and "western-lifestyle" inflammatory diseases
-
Thorburn, A. N., L. Macia, and C. R. Mackay. 2014. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity 40: 833-842
-
(2014)
Immunity
, vol.40
, pp. 833-842
-
-
Thorburn, A.N.1
Macia, L.2
Mackay, C.R.3
-
10
-
-
84891363464
-
The role of short-chain fatty acids in health and disease
-
Tan, J., C. McKenzie, M. Potamitis, A. N. Thorburn, C. R. Mackay, and L. Macia. 2014. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121: 91-119
-
(2014)
Adv. Immunol.
, vol.121
, pp. 91-119
-
-
Tan, J.1
McKenzie, C.2
Potamitis, M.3
Thorburn, A.N.4
Mackay, C.R.5
Macia, L.6
-
11
-
-
84966658995
-
Type i interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor
-
Rothhammer, V., I. D. Mascanfroni, L. Bunse, M. C. Takenaka, J. E. Kenison, L. Mayo, C.-C. Chao, B. Patel, R. Yan, M. Blain, et al. 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22: 586-597
-
(2016)
Nat. Med.
, vol.22
, pp. 586-597
-
-
Rothhammer, V.1
Mascanfroni, I.D.2
Bunse, L.3
Takenaka, M.C.4
Kenison, J.E.5
Mayo, L.6
Chao, C.-C.7
Patel, B.8
Yan, R.9
Blain, M.10
-
12
-
-
20444364844
-
Activation of microglia by aggregated b-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-g and IL-4 render them protective
-
Butovsky, O., A. E. Talpalar, K. Ben-Yaakov, and M. Schwartz. 2005. Activation of microglia by aggregated b-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-g and IL-4 render them protective. Mol. Cell. Neurosci. 29: 381-393
-
(2005)
Mol. Cell. Neurosci.
, vol.29
, pp. 381-393
-
-
Butovsky, O.1
Talpalar, A.E.2
Ben-Yaakov, K.3
Schwartz, M.4
-
13
-
-
84864614787
-
Host remodeling of the gut microbiome and metabolic changes during pregnancy
-
Koren, O., J. K. Goodrich, T. C. Cullender, A. Spor, K. Laitinen, H. K. Bäckhed, A. Gonzalez, J. J. Werner, L. T. Angenent, R. Knight, et al. 2012. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150: 470-480
-
(2012)
Cell
, vol.150
, pp. 470-480
-
-
Koren, O.1
Goodrich, J.K.2
Cullender, T.C.3
Spor, A.4
Laitinen, K.5
Bäckhed, H.K.6
Gonzalez, A.7
Werner, J.J.8
Angenent, L.T.9
Knight, R.10
-
14
-
-
32944466887
-
Ecological and evolutionary forces shaping microbial diversity in the human intestine
-
Ley, R. E., D. A. Peterson, and J. I. Gordon. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837-848
-
(2006)
Cell
, vol.124
, pp. 837-848
-
-
Ley, R.E.1
Peterson, D.A.2
Gordon, J.I.3
-
15
-
-
77957368030
-
Dietary modulation of gut functional ecology studied by fecal metabonomics
-
Martin, F. P. J., N. Sprenger, I. Montoliu, S. Rezzi, S. Kochhar, and J. K. Nicholson. 2010. Dietary modulation of gut functional ecology studied by fecal metabonomics. J. Proteome Res. 9: 5284-5295
-
(2010)
J. Proteome Res.
, vol.9
, pp. 5284-5295
-
-
Martin, F.P.J.1
Sprenger, N.2
Montoliu, I.3
Rezzi, S.4
Kochhar, S.5
Nicholson, J.K.6
-
16
-
-
84934312516
-
Metabolome progression during early gut microbial colonization of gnotobiotic mice
-
Marcobal, A., T. Yusufaly, S. Higginbottom, M. Snyder, J. L. Sonnenburg, and G. I. Mias. 2015. Metabolome progression during early gut microbial colonization of gnotobiotic mice. Sci. Rep. 5: 11589
-
(2015)
Sci. Rep.
, vol.5
, pp. 11589
-
-
Marcobal, A.1
Yusufaly, T.2
Higginbottom, S.3
Snyder, M.4
Sonnenburg, J.L.5
Mias, G.I.6
-
17
-
-
84859773739
-
Impact of intestinal microbiota on intestinal luminal metabolome
-
Matsumoto, M., R. Kibe, T. Ooga, Y. Aiba, S. Kurihara, E. Sawaki, Y. Koga, and Y. Benno. 2012. Impact of intestinal microbiota on intestinal luminal metabolome. Sci. Rep. 2: 233
-
(2012)
Sci. Rep.
, vol.2
, pp. 233
-
-
Matsumoto, M.1
Kibe, R.2
Ooga, T.3
Aiba, Y.4
Kurihara, S.5
Sawaki, E.6
Koga, Y.7
Benno, Y.8
-
18
-
-
0345714918
-
NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats
-
Nicholls, A. W., R. J. Mortishire-Smith, and J. K. Nicholson. 2003. NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem. Res. Toxicol. 16: 1395-1404
-
(2003)
Chem. Res. Toxicol.
, vol.16
, pp. 1395-1404
-
-
Nicholls, A.W.1
Mortishire-Smith, R.J.2
Nicholson, J.K.3
-
19
-
-
0037126667
-
The microbiology of butyrate formation in the human colon
-
Pryde, S. E., S. H. Duncan, G. L. Hold, C. S. Stewart, and H. J. Flint. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217: 133-139
-
(2002)
FEMS Microbiol. Lett.
, vol.217
, pp. 133-139
-
-
Pryde, S.E.1
Duncan, S.H.2
Hold, G.L.3
Stewart, C.S.4
Flint, H.J.5
-
20
-
-
0034959553
-
Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides
-
Topping, D. L., and P. M. Clifton. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81: 1031-1064
-
(2001)
Physiol. Rev.
, vol.81
, pp. 1031-1064
-
-
Topping, D.L.1
Clifton, P.M.2
-
21
-
-
84905398519
-
Vitamin K metabolism: Current knowledge and future research
-
Card, D. J., R. Gorska, J. Cutler, and D. J. Harrington. 2014. Vitamin K metabolism: current knowledge and future research. Mol. Nutr. Food Res. 58: 1590-1600
-
(2014)
Mol. Nutr. Food Res.
, vol.58
, pp. 1590-1600
-
-
Card, D.J.1
Gorska, R.2
Cutler, J.3
Harrington, D.J.4
-
22
-
-
84878442532
-
Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement
-
Xu, Z., Q. Qiu, J. Tian, J. S. Smith, G. M. Conenello, T. Morita, and A. P. Byrnes. 2013. Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat. Med. 19: 452-457
-
(2013)
Nat. Med.
, vol.19
, pp. 452-457
-
-
Xu, Z.1
Qiu, Q.2
Tian, J.3
Smith, J.S.4
Conenello, G.M.5
Morita, T.6
Byrnes, A.P.7
-
23
-
-
84978863269
-
Nutrition meets the microbiome: Micronutrients and the microbiota
-
Biesalski, H. K. 2016. Nutrition meets the microbiome: micronutrients and the microbiota. Ann. N. Y. Acad. Sci. 1372: 53-64
-
(2016)
Ann. N. Y. Acad. Sci.
, vol.1372
, pp. 53-64
-
-
Biesalski, H.K.1
-
24
-
-
84892633509
-
The role of menaquinones (Vitamin K2) in human health
-
Beulens, J. W. J., S. L. Booth, E. G. H. M. van den Heuvel, E. Stoecklin, A. Baka, and C. Vermeer. 2013. The role of menaquinones (Vitamin K2) in human health. Br. J. Nutr. 110: 1357-1368
-
(2013)
Br. J. Nutr.
, vol.110
, pp. 1357-1368
-
-
Beulens, J.W.J.1
Booth, S.L.2
Van Den Heuvel, M.H.E.G.3
Stoecklin, E.4
Baka, A.5
Vermeer, C.6
-
25
-
-
0028670856
-
Reduction of Vitamin K2 concentrations in human liver associated with the use of broad spectrum antimicrobials
-
Conly, J., and K. Stein. 1994. Reduction of Vitamin K2 concentrations in human liver associated with the use of broad spectrum antimicrobials. Clin. Invest. Med. 17: 531-539
-
(1994)
Clin. Invest. Med.
, vol.17
, pp. 531-539
-
-
Conly, J.1
Stein, K.2
-
26
-
-
0023687531
-
Newly developed model for Vitamin K deficiency in germfree mice
-
Komai, M., H. Shirakawa, and S. Kimura. 1988. Newly developed model for Vitamin K deficiency in germfree mice. Int. J. Vitam. Nutr. Res. 58: 55-59
-
(1988)
Int. J. Vitam. Nutr. Res.
, vol.58
, pp. 55-59
-
-
Komai, M.1
Shirakawa, H.2
Kimura, S.3
-
27
-
-
0031915196
-
Conversion of dietary phylloquinone to tissue menaquinone-4 in rats is not dependent on gut bacteria
-
Davidson, R. T., A. L. Foley, J. A. Engelke, and J. W. Suttie. 1998. Conversion of dietary phylloquinone to tissue menaquinone-4 in rats is not dependent on gut bacteria. J. Nutr. 128: 220-223
-
(1998)
J. Nutr.
, vol.128
, pp. 220-223
-
-
Davidson, R.T.1
Foley, A.L.2
Engelke, J.A.3
Suttie, J.W.4
-
28
-
-
77955272538
-
Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-Vitamin content of a fermented soy beverage
-
Champagne, C. P., T. A. Tompkins, N. D. Buckley, and J. M. Green-Johnson. 2010. Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-Vitamin content of a fermented soy beverage. Food Microbiol. 27: 968-972
-
(2010)
Food Microbiol.
, vol.27
, pp. 968-972
-
-
Champagne, C.P.1
Tompkins, T.A.2
Buckley, N.D.3
Green-Johnson, J.M.4
-
29
-
-
33846166436
-
Folate production by bifidobacteria as a potential probiotic property
-
Pompei, A., L. Cordisco, A. Amaretti, S. Zanoni, D. Matteuzzi, and M. Rossi. 2007. Folate production by bifidobacteria as a potential probiotic property. Appl. Environ. Microbiol. 73: 179-185
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 179-185
-
-
Pompei, A.1
Cordisco, L.2
Amaretti, A.3
Zanoni, S.4
Matteuzzi, D.5
Rossi, M.6
-
30
-
-
84910142845
-
Vitamin B12 as a modulator of gut microbial ecology
-
Degnan, P. H., M. E. Taga, and A. L. Goodman. 2014. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 20: 769-778
-
(2014)
Cell Metab.
, vol.20
, pp. 769-778
-
-
Degnan, P.H.1
Taga, M.E.2
Goodman, A.L.3
-
31
-
-
84882664672
-
Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
-
Zelante, T., R. G. Iannitti, C. Cunha, A. De Luca, G. Giovannini, G. Pieraccini, R. Zecchi, C. D'Angelo, C. Massi-Benedetti, F. Fallarino, et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39: 372-385
-
(2013)
Immunity
, vol.39
, pp. 372-385
-
-
Zelante, T.1
Iannitti, R.G.2
Cunha, C.3
De Luca, A.4
Giovannini, G.5
Pieraccini, G.6
Zecchi, R.7
D'Angelo, C.8
Massi-Benedetti, C.9
Fallarino, F.10
-
32
-
-
84864270714
-
ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation
-
Hashimoto, T., T. Perlot, A. Rehman, J. Trichereau, H. Ishiguro, M. Paolino, V. Sigl, T. Hanada, R. Hanada, S. Lipinski, et al. 2012. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487: 477-481
-
(2012)
Nature
, vol.487
, pp. 477-481
-
-
Hashimoto, T.1
Perlot, T.2
Rehman, A.3
Trichereau, J.4
Ishiguro, H.5
Paolino, M.6
Sigl, V.7
Hanada, T.8
Hanada, R.9
Lipinski, S.10
-
34
-
-
84991053856
-
Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism
-
Wahlström, A., S. I. Sayin, H.-U. Marschall, and F. Bäckhed. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24: 41-50
-
(2016)
Cell Metab.
, vol.24
, pp. 41-50
-
-
Wahlström, A.1
Sayin, S.I.2
Marschall, H.-U.3
Bäckhed, F.4
-
35
-
-
33244467651
-
Bile salt biotransformations by human intestinal bacteria
-
Ridlon, J. M., D.-J. Kang, and P. B. Hylemon. 2006. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47: 241-259
-
(2006)
J. Lipid Res.
, vol.47
, pp. 241-259
-
-
Ridlon, J.M.1
Kang, D.-J.2
Hylemon, P.B.3
-
36
-
-
79952749979
-
Systemic gut microbial modulation of bile acid metabolism in host tissue compartments
-
Swann, J. R., E. J. Want, F. M. Geier, K. Spagou, I. D. Wilson, J. E. Sidaway, J. K. Nicholson, and E. Holmes. 2011. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl. Acad. Sci. USA 108(Suppl. 1): 4523-4530
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 4523-4530
-
-
Swann, J.R.1
Want, E.J.2
Geier, F.M.3
Spagou, K.4
Wilson, I.D.5
Sidaway, J.E.6
Nicholson, J.K.7
Holmes, E.8
-
37
-
-
0033026760
-
Endogenous bile acids are ligands for the nuclear receptor FXR/BAR
-
Wang, H., J. Chen, K. Hollister, L. C. Sowers, and B. M. Forman. 1999. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3: 543-553
-
(1999)
Mol. Cell
, vol.3
, pp. 543-553
-
-
Wang, H.1
Chen, J.2
Hollister, K.3
Sowers, L.C.4
Forman, B.M.5
-
38
-
-
33644867569
-
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor
-
Inagaki, T., A. Moschetta, Y.-K. Lee, L. Peng, G. Zhao, M. Downes, R. T. Yu, J. M. Shelton, J. A. Richardson, J. J. Repa, et al. 2006. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl. Acad. Sci. USA 103: 3920-3925
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 3920-3925
-
-
Inagaki, T.1
Moschetta, A.2
Lee, Y.-K.3
Peng, L.4
Zhao, G.5
Downes, M.6
Yu, R.T.7
Shelton, J.M.8
Richardson, J.A.9
Repa, J.J.10
-
39
-
-
82955168360
-
TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading
-
Pols, T. W. H., M. Nomura, T. Harach, G. Lo Sasso, M. H. Oosterveer, C. Thomas, G. Rizzo, A. Gioiello, L. Adorini, R. Pellicciari, et al. 2011. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14: 747-757
-
(2011)
Cell Metab.
, vol.14
, pp. 747-757
-
-
Pols, T.W.H.1
Nomura, M.2
Harach, T.3
Lo Sasso, G.4
Oosterveer, M.H.5
Thomas, C.6
Rizzo, G.7
Gioiello, A.8
Adorini, L.9
Pellicciari, R.10
-
40
-
-
77149159568
-
The bile acid receptor FXR is a modulator of intestinal innate immunity
-
Vavassori, P., A. Mencarelli, B. Renga, E. Distrutti, and S. Fiorucci. 2009. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183: 6251-6261
-
(2009)
J. Immunol.
, vol.183
, pp. 6251-6261
-
-
Vavassori, P.1
Mencarelli, A.2
Renga, B.3
Distrutti, E.4
Fiorucci, S.5
-
41
-
-
84883478660
-
Gut microbiota from twins discordant for obesity modulate metabolism in mice
-
Ridaura, V. K., J. J. Faith, F. E. Rey, J. Cheng, A. E. Duncan, A. L. Kau, N. W. Griffin, V. Lombard, B. Henrissat, J. R. Bain, et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341: 1241214
-
(2013)
Science
, vol.341
, pp. 1241214
-
-
Ridaura, V.K.1
Faith, J.J.2
Rey, F.E.3
Cheng, J.4
Duncan, A.E.5
Kau, A.L.6
Griffin, N.W.7
Lombard, V.8
Henrissat, B.9
Bain, J.R.10
-
42
-
-
84879888338
-
Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome
-
Yoshimoto, S., T. M. Loo, K. Atarashi, H. Kanda, S. Sato, S. Oyadomari, Y. Iwakura, K. Oshima, H. Morita, M. Hattori, et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499: 97-101
-
(2013)
Nature
, vol.499
, pp. 97-101
-
-
Yoshimoto, S.1
Loo, T.M.2
Atarashi, K.3
Kanda, H.4
Sato, S.5
Oyadomari, S.6
Iwakura, Y.7
Oshima, K.8
Morita, H.9
Hattori, M.10
-
43
-
-
84949255269
-
Microbiotamodulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling
-
Levy, M., C. A. Thaiss, D. Zeevi, L. Dohnalová, G. Zilberman-Schapira, J. A. Mahdi, E. David, A. Savidor, T. Korem, Y. Herzig, et al. 2015. Microbiotamodulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163: 1428-1443
-
(2015)
Cell
, vol.163
, pp. 1428-1443
-
-
Levy, M.1
Thaiss, C.A.2
Zeevi, D.3
Dohnalová, L.4
Zilberman-Schapira, G.5
Mahdi, J.A.6
David, E.7
Savidor, A.8
Korem, T.9
Herzig, Y.10
-
44
-
-
84866974822
-
Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes
-
Donohoe, D. R., A. Wali, B. P. Brylawski, and S. J. Bultman. 2012. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS One 7: e46589
-
(2012)
PLoS One
, vol.7
, pp. e46589
-
-
Donohoe, D.R.1
Wali, A.2
Brylawski, B.P.3
Bultman, S.J.4
-
45
-
-
79955579989
-
The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon
-
Donohoe, D. R., N. Garge, X. Zhang, W. Sun, T. M. O'Connell, M. K. Bunger, and S. J. Bultman. 2011. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13: 517-526
-
(2011)
Cell Metab.
, vol.13
, pp. 517-526
-
-
Donohoe, D.R.1
Garge, N.2
Zhang, X.3
Sun, W.4
O'Connell, T.M.5
Bunger, M.K.6
Bultman, S.J.7
-
46
-
-
4444236381
-
Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium
-
Sanderson, I. R. 2004. Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium. J. Nutr. 134: 2450S-2454S
-
(2004)
J. Nutr.
, vol.134
, pp. 2450S-2454S
-
-
Sanderson, I.R.1
-
48
-
-
84862637797
-
Gut immune maturation depends on colonization with a host-specific microbiota
-
Chung, H., S. J. Pamp, J. A. Hill, N. K. Surana, S. M. Edelman, E. B. Troy, N. C. Reading, E. J. Villablanca, S. Wang, J. R. Mora, et al. 2012. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149: 1578-1593
-
(2012)
Cell
, vol.149
, pp. 1578-1593
-
-
Chung, H.1
Pamp, S.J.2
Hill, J.A.3
Surana, N.K.4
Edelman, S.M.5
Troy, E.B.6
Reading, N.C.7
Villablanca, E.J.8
Wang, S.9
Mora, J.R.10
-
49
-
-
9244245819
-
Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose
-
Gaudier, E., A. Jarry, H. M. Blottière, P. de Coppet, M. P. Buisine, J. P. Aubert, C. Laboisse, C. Cherbut, and C. Hoebler. 2004. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am. J. Physiol. Gastrointest. Liver Physiol. 287: G1168-G1174
-
(2004)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.287
, pp. G1168-G1174
-
-
Gaudier, E.1
Jarry, A.2
Blottière, H.M.3
De Coppet, P.4
Buisine, M.P.5
Aubert, J.P.6
Laboisse, C.7
Cherbut, C.8
Hoebler, C.9
-
50
-
-
0141645569
-
Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts
-
Willemsen, L. E. M., M. A. Koetsier, S. J. van Deventer, and E. A. van Tol. 2003. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52: 1442-1447
-
(2003)
Gut
, vol.52
, pp. 1442-1447
-
-
Willemsen, L.E.M.1
Koetsier, M.A.2
Van Deventer, S.J.3
Van Tol, E.A.4
-
51
-
-
84877913270
-
Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent
-
Wrzosek, L., S. Miquel, M.-L. Noordine, S. Bouet, M. Joncquel Chevalier-Curt, V. Robert, C. Philippe, C. Bridonneau, C. Cherbuy, C. Robbe-Masselot, et al. 2013. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 11: 61
-
(2013)
BMC Biol.
, vol.11
, pp. 61
-
-
Wrzosek, L.1
Miquel, S.2
Noordine, M.-L.3
Bouet, S.4
Joncquel Chevalier-Curt, M.5
Robert, V.6
Philippe, C.7
Bridonneau, C.8
Cherbuy, C.9
Robbe-Masselot, C.10
-
52
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia, N., C. Campbell, X. Fan, S. Dikiy, J. van der Veeken, P. deRoos, H. Liu, J. R. Cross, K. Pfeffer, P. J. Coffer, and A. Y. Rudensky. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504: 451-455
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
Campbell, C.2
Fan, X.3
Dikiy, S.4
Van Der Veeken, J.5
DeRoos, P.6
Liu, H.7
Cross, J.R.8
Pfeffer, K.9
Coffer, P.J.10
Rudensky, A.Y.11
-
53
-
-
84893859801
-
The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
-
Chang, P. V., L. Hao, S. Offermanns, and R. Medzhitov. 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 111: 2247-2252
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 2247-2252
-
-
Chang, P.V.1
Hao, L.2
Offermanns, S.3
Medzhitov, R.4
-
54
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis
-
Smith, P. M., M. R. Howitt, N. Panikov, M. Michaud, C. A. Gallini, M. Bohlooly-Y, J. N. Glickman, and W. S. Garrett. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science 341: 569-573
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
Michaud, M.4
Gallini, C.A.5
Bohlooly-Y, M.6
Glickman, J.N.7
Garrett, W.S.8
-
55
-
-
84890564250
-
Commensal microbederived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa, Y., Y. Obata, S. Fukuda, T. A. Endo, G. Nakato, D. Takahashi, Y. Nakanishi, C. Uetake, K. Kato, T. Kato, et al. 2013. Commensal microbederived butyrate induces the differentiation of colonic regulatory T cells. Nature 504: 446-450
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
Endo, T.A.4
Nakato, G.5
Takahashi, D.6
Nakanishi, Y.7
Uetake, C.8
Kato, K.9
Kato, T.10
-
56
-
-
84892449521
-
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
-
Singh, N., A. Gurav, S. Sivaprakasam, E. Brady, R. Padia, H. Shi, M. Thangaraju, P. D. Prasad, S. Manicassamy, D. H. Munn, et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40: 128-139
-
(2014)
Immunity
, vol.40
, pp. 128-139
-
-
Singh, N.1
Gurav, A.2
Sivaprakasam, S.3
Brady, E.4
Padia, R.5
Shi, H.6
Thangaraju, M.7
Prasad, P.D.8
Manicassamy, S.9
Munn, D.H.10
-
57
-
-
84934987107
-
Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites
-
Thorburn, A. N., C. I. McKenzie, S. Shen, D. Stanley, L. Macia, L. J. Mason, L. K. Roberts, C. H. Y. Wong, R. Shim, R. Robert, et al. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320
-
(2015)
Nat. Commun.
, vol.6
, pp. 7320
-
-
Thorburn, A.N.1
McKenzie, C.I.2
Shen, S.3
Stanley, D.4
Macia, L.5
Mason, L.J.6
Roberts, L.K.7
Wong, C.H.Y.8
Shim, R.9
Robert, R.10
-
58
-
-
80051471073
-
Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils
-
Vinolo, M. A. R., H. G. Rodrigues, E. Hatanaka, F. T. Sato, S. C. Sampaio, and R. Curi. 2011. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J. Nutr. Biochem. 22: 849-855
-
(2011)
J. Nutr. Biochem.
, vol.22
, pp. 849-855
-
-
Vinolo, M.A.R.1
Rodrigues, H.G.2
Hatanaka, E.3
Sato, F.T.4
Sampaio, S.C.5
Curi, R.6
-
59
-
-
42949171444
-
Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells
-
Usami, M., K. Kishimoto, A. Ohata, M. Miyoshi, M. Aoyama, Y. Fueda, and J. Kotani. 2008. Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr. Res. 28: 321-328
-
(2008)
Nutr. Res.
, vol.28
, pp. 321-328
-
-
Usami, M.1
Kishimoto, K.2
Ohata, A.3
Miyoshi, M.4
Aoyama, M.5
Fueda, Y.6
Kotani, J.7
-
60
-
-
84893704050
-
Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
-
Trompette, A., E. S. Gollwitzer, K. Yadava, A. K. Sichelstiel, N. Sprenger, C. Ngom-Bru, C. Blanchard, T. Junt, L. P. Nicod, N. L. Harris, and B. J. Marsland. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159-166
-
(2014)
Nat. Med.
, vol.20
, pp. 159-166
-
-
Trompette, A.1
Gollwitzer, E.S.2
Yadava, K.3
Sichelstiel, A.K.4
Sprenger, N.5
Ngom-Bru, C.6
Blanchard, C.7
Junt, T.8
Nicod, L.P.9
Harris, N.L.10
Marsland, B.J.11
-
61
-
-
77956237892
-
Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases
-
Singh, N., M. Thangaraju, P. D. Prasad, P. M. Martin, N. A. Lambert, T. Boettger, S. Offermanns, and V. Ganapathy. 2010. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J. Biol. Chem. 285: 27601-27608
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 27601-27608
-
-
Singh, N.1
Thangaraju, M.2
Prasad, P.D.3
Martin, P.M.4
Lambert, N.A.5
Boettger, T.6
Offermanns, S.7
Ganapathy, V.8
-
62
-
-
84926367699
-
Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome
-
Macia, L., J. Tan, A. T. Vieira, K. Leach, D. Stanley, S. Luong, M. Maruya, C. Ian McKenzie, A. Hijikata, C. Wong, et al. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6: 6734
-
(2015)
Nat. Commun.
, vol.6
, pp. 6734
-
-
Macia, L.1
Tan, J.2
Vieira, A.T.3
Leach, K.4
Stanley, D.5
Luong, S.6
Maruya, M.7
Ian McKenzie, C.8
Hijikata, A.9
Wong, C.10
-
63
-
-
79251584066
-
Bifidobacteria can protect from enteropathogenic infection through production of acetate
-
Fukuda, S., H. Toh, K. Hase, K. Oshima, Y. Nakanishi, K. Yoshimura, T. Tobe, J. M. Clarke, D. L. Topping, T. Suzuki, et al. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469: 543-547
-
(2011)
Nature
, vol.469
, pp. 543-547
-
-
Fukuda, S.1
Toh, H.2
Hase, K.3
Oshima, K.4
Nakanishi, Y.5
Yoshimura, K.6
Tobe, T.7
Clarke, J.M.8
Topping, D.L.9
Suzuki, T.10
-
64
-
-
84983780960
-
The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome
-
Gury-BenAri, M., C. A. Thaiss, N. Serafini, D. R. Winter, A. Giladi, D. Lara-Astiaso, M. Levy, T. M. Salame, A. Weiner, E. David, et al. 2016. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166: 1231-1246.e13
-
(2016)
Cell
, vol.166
, pp. 1231-1246e13
-
-
Gury-BenAri, M.1
Thaiss, C.A.2
Serafini, N.3
Winter, D.R.4
Giladi, A.5
Lara-Astiaso, D.6
Levy, M.7
Salame, T.M.8
Weiner, A.9
David, E.10
-
65
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov, I. I., K. Atarashi, N. Manel, E. L. Brodie, T. Shima, U. Karaoz, D. Wei, K. C. Goldfarb, C. A. Santee, S. V. Lynch, et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139: 485-498
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
Atarashi, K.2
Manel, N.3
Brodie, E.L.4
Shima, T.5
Karaoz, U.6
Wei, D.7
Goldfarb, K.C.8
Santee, C.A.9
Lynch, S.V.10
-
66
-
-
84898679249
-
Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
-
Goto, Y., C. Panea, G. Nakato, A. Cebula, C. Lee, M. G. Diez, T. M. Laufer, L. Ignatowicz, and I. I. Ivanov. 2014. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40: 594-607
-
(2014)
Immunity
, vol.40
, pp. 594-607
-
-
Goto, Y.1
Panea, C.2
Nakato, G.3
Cebula, A.4
Lee, C.5
Diez, M.G.6
Laufer, T.M.7
Ignatowicz, L.8
Ivanov, I.I.9
-
67
-
-
70350666634
-
Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
-
Maslowski, K. M., A. T. Vieira, A. Ng, J. Kranich, F. Sierro, D. Yu, H. C. Schilter, M. S. Rolph, F. Mackay, D. Artis, et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461: 1282-1286
-
(2009)
Nature
, vol.461
, pp. 1282-1286
-
-
Maslowski, K.M.1
Vieira, A.T.2
Ng, A.3
Kranich, J.4
Sierro, F.5
Yu, D.6
Schilter, H.C.7
Rolph, M.S.8
Mackay, F.9
Artis, D.10
-
68
-
-
78650616947
-
Toward defining the autoimmune microbiome for type 1 diabetes
-
Giongo, A., K. A. Gano, D. B. Crabb, N. Mukherjee, L. L. Novelo, G. Casella, J. C. Drew, J. Ilonen, M. Knip, H. Hyöty, et al. 2011. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5: 82-91
-
(2011)
ISME J.
, vol.5
, pp. 82-91
-
-
Giongo, A.1
Gano, K.A.2
Crabb, D.B.3
Mukherjee, N.4
Novelo, L.L.5
Casella, G.6
Drew, J.C.7
Ilonen, J.8
Knip, M.9
Hyöty, H.10
-
69
-
-
84886284340
-
Role of the intestinal microbiome in liver disease
-
Henao-Mejia, J., E. Elinav, C. A. Thaiss, P. Licona-Limon, and R. A. Flavell. 2013. Role of the intestinal microbiome in liver disease. J. Autoimmun. 46: 66-73
-
(2013)
J. Autoimmun.
, vol.46
, pp. 66-73
-
-
Henao-Mejia, J.1
Elinav, E.2
Thaiss, C.A.3
Licona-Limon, P.4
Flavell, R.A.5
-
70
-
-
84898809123
-
The microbiome in inflammatory bowel disease: Current status and the future ahead
-
Kostic, A. D., R. J. Xavier, and D. Gevers. 2014. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146: 1489-1499
-
(2014)
Gastroenterology
, vol.146
, pp. 1489-1499
-
-
Kostic, A.D.1
Xavier, R.J.2
Gevers, D.3
-
71
-
-
84896078883
-
Microbes, microbiota, and colon cancer
-
Sears, C. L., and W. S. Garrett. 2014. Microbes, microbiota, and colon cancer. Cell Host Microbe 15: 317-328
-
(2014)
Cell Host Microbe
, vol.15
, pp. 317-328
-
-
Sears, C.L.1
Garrett, W.S.2
-
72
-
-
25844467765
-
Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children
-
Parracho, H. M. R. T., M. O. Bingham, G. R. Gibson, and A. L. McCartney. 2005. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 54: 987-991
-
(2005)
J. Med. Microbiol.
, vol.54
, pp. 987-991
-
-
Parracho, T.H.M.R.1
Bingham, M.O.2
Gibson, G.R.3
McCartney, A.L.4
-
73
-
-
84907486084
-
The contributory role of gut microbiota in cardiovascular disease
-
Tang, W. H. W., and S. L. Hazen. 2014. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 124: 4204-4211
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 4204-4211
-
-
Tang, W.H.W.1
Hazen, S.L.2
-
74
-
-
84882668842
-
Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora
-
Qiu, J., X. Guo, Z.-M. E. Chen, L. He, G. F. Sonnenberg, D. Artis, Y.-X. Fu, and L. Zhou. 2013. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39: 386-399
-
(2013)
Immunity
, vol.39
, pp. 386-399
-
-
Qiu, J.1
Guo, X.2
Chen, Z.-M.E.3
He, L.4
Sonnenberg, G.F.5
Artis, D.6
Fu, Y.-X.7
Zhou, L.8
-
75
-
-
80155164160
-
Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation
-
Li, Y., S. Innocentin, D. R. Withers, N. A. Roberts, A. R. Gallagher, E. F. Grigorieva, C. Wilhelm, and M. Veldhoen. 2011. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147: 629-640
-
(2011)
Cell
, vol.147
, pp. 629-640
-
-
Li, Y.1
Innocentin, S.2
Withers, D.R.3
Roberts, N.A.4
Gallagher, A.R.5
Grigorieva, E.F.6
Wilhelm, C.7
Veldhoen, M.8
-
76
-
-
84922163095
-
Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway
-
Park, J., M. Kim, S. G. Kang, A. H. Jannasch, B. Cooper, J. Patterson, and C. H. Kim. 2015. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8: 80-93
-
(2015)
Mucosal Immunol.
, vol.8
, pp. 80-93
-
-
Park, J.1
Kim, M.2
Kang, S.G.3
Jannasch, A.H.4
Cooper, B.5
Patterson, J.6
Kim, C.H.7
-
77
-
-
84871261032
-
Butyrate increases IL-23 production by stimulated dendritic cells
-
Berndt, B. E., M. Zhang, S. Y. Owyang, T. S. Cole, T. W. Wang, J. Luther, N. a. Veniaminova, J. L. Merchant, C. C. Chen, G. B. Huffnagle, and J. Y. Kao. 2012. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 303: G1384-G1392
-
(2012)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.303
, pp. G1384-G1392
-
-
Berndt, B.E.1
Zhang, M.2
Owyang, S.Y.3
Cole, T.S.4
Wang, T.W.5
Luther, J.6
Veniaminova, A.N.7
Merchant, J.L.8
Chen, C.C.9
Huffnagle, G.B.10
Kao, J.Y.11
-
78
-
-
0037129380
-
Nonalcoholic fatty liver disease
-
Angulo, P. 2002. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346: 1221-1231
-
(2002)
N. Engl. J. Med.
, vol.346
, pp. 1221-1231
-
-
Angulo, P.1
-
79
-
-
68949148889
-
Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease
-
Miele, L., V. Valenza, G. La Torre, M. Montalto, G. Cammarota, R. Ricci, R. Mascianè, A. Forgione, M. L. Gabrieli, G. Perotti, et al. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877-1887
-
(2009)
Hepatology
, vol.49
, pp. 1877-1887
-
-
Miele, L.1
Valenza, V.2
La Torre, G.3
Montalto, M.4
Cammarota, G.5
Ricci, R.6
Mascianè, R.7
Forgione, A.8
Gabrieli, M.L.9
Perotti, G.10
-
80
-
-
0035125052
-
The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis
-
Wigg, A. J., I. C. Roberts-Thomson, R. B. Dymock, P. J. McCarthy, R. H. Grose, and A. G. Cummins. 2001. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48: 206-211
-
(2001)
Gut
, vol.48
, pp. 206-211
-
-
Wigg, A.J.1
Roberts-Thomson, I.C.2
Dymock, R.B.3
McCarthy, P.J.4
Grose, R.H.5
Cummins, A.G.6
-
81
-
-
79957576718
-
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
-
Elinav, E., T. Strowig, A. L. Kau, J. Henao-Mejia, C. A. Thaiss, C. J. Booth, D. R. Peaper, J. Bertin, S. C. Eisenbarth, J. I. Gordon, and R. A. Flavell. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145: 745-757
-
(2011)
Cell
, vol.145
, pp. 745-757
-
-
Elinav, E.1
Strowig, T.2
Kau, A.L.3
Henao-Mejia, J.4
Thaiss, C.A.5
Booth, C.J.6
Peaper, D.R.7
Bertin, J.8
Eisenbarth, S.C.9
Gordon, J.I.10
Flavell, R.A.11
-
82
-
-
84856957894
-
Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
-
Henao-Mejia, J., E. Elinav, C. Jin, L. Hao, W. Z. Mehal, T. Strowig, C. A. Thaiss, A. L. Kau, S. C. Eisenbarth, M. J. Jurczak, et al. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482: 179-185
-
(2012)
Nature
, vol.482
, pp. 179-185
-
-
Henao-Mejia, J.1
Elinav, E.2
Jin, C.3
Hao, L.4
Mehal, W.Z.5
Strowig, T.6
Thaiss, C.A.7
Kau, A.L.8
Eisenbarth, S.C.9
Jurczak, M.J.10
-
83
-
-
84937576853
-
Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease
-
Jiang, W., N. Wu, X. Wang, Y. Chi, Y. Zhang, X. Qiu, Y. Hu, J. Li, and Y. Liu. 2015. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5: 8096
-
(2015)
Sci. Rep.
, vol.5
, pp. 8096
-
-
Jiang, W.1
Wu, N.2
Wang, X.3
Chi, Y.4
Zhang, Y.5
Qiu, X.6
Hu, Y.7
Li, J.8
Liu, Y.9
-
84
-
-
84978115999
-
The microbiome and innate immunity
-
Thaiss, C. A., N. Zmora, M. Levy, and E. Elinav. 2016. The microbiome and innate immunity. Nature 535: 65-74
-
(2016)
Nature
, vol.535
, pp. 65-74
-
-
Thaiss, C.A.1
Zmora, N.2
Levy, M.3
Elinav, E.4
-
85
-
-
0034648768
-
Atherosclerosis
-
Lusis, A. J. 2000. Atherosclerosis. Nature 407: 233-241
-
(2000)
Nature
, vol.407
, pp. 233-241
-
-
Lusis, A.J.1
-
86
-
-
84886797808
-
Macrophages in atherosclerosis: A dynamic balance
-
Moore, K. J., F. J. Sheedy, and E. A. Fisher. 2013. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13: 709-721
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 709-721
-
-
Moore, K.J.1
Sheedy, F.J.2
Fisher, E.A.3
-
87
-
-
84877331372
-
Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis
-
Koeth, R. A., Z. Wang, B. S. Levison, J. A. Buffa, E. Org, B. T. Sheehy, E. B. Britt, X. Fu, Y. Wu, L. Li, et al. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19: 576-585
-
(2013)
Nat. Med.
, vol.19
, pp. 576-585
-
-
Koeth, R.A.1
Wang, Z.2
Levison, B.S.3
Buffa, J.A.4
Org, E.5
Sheehy, B.T.6
Britt, E.B.7
Fu, X.8
Wu, Y.9
Li, L.10
-
88
-
-
84876563088
-
Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk
-
Tang, W. H. W., Z. Wang, B. S. Levison, R. A. Koeth, E. B. Britt, X. Fu, Y. Wu, and S. L. Hazen. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368: 1575-1584
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 1575-1584
-
-
Tang, W.H.W.1
Wang, Z.2
Levison, B.S.3
Koeth, R.A.4
Britt, E.B.5
Fu, X.6
Wu, Y.7
Hazen, S.L.8
-
89
-
-
84950297830
-
Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis
-
Wang, Z., A. B. Roberts, J. A. Buffa, B. S. Levison, W. Zhu, E. Org, X. Gu, Y. Huang, M. Zamanian-Daryoush, M. K. Culley, et al. 2015. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163: 1585-1595
-
(2015)
Cell
, vol.163
, pp. 1585-1595
-
-
Wang, Z.1
Roberts, A.B.2
Buffa, J.A.3
Levison, B.S.4
Zhu, W.5
Org, E.6
Gu, X.7
Huang, Y.8
Zamanian-Daryoush, M.9
Culley, M.K.10
-
90
-
-
84975168249
-
Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways
-
Tan, J., C. McKenzie, P. J. Vuillermin, G. Goverse, C. G. Vinuesa, R. E. Mebius, L. Macia, and C. R. Mackay. 2016. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 15: 2809-2824
-
(2016)
Cell Rep.
, vol.15
, pp. 2809-2824
-
-
Tan, J.1
McKenzie, C.2
Vuillermin, P.J.3
Goverse, G.4
Vinuesa, C.G.5
Mebius, R.E.6
Macia, L.7
Mackay, C.R.8
-
91
-
-
84933043202
-
Host microbiota constantly control maturation and function of microglia in the CNS
-
Erny, D., A. L. Hrabe de Angelis, D. Jaitin, P. Wieghofer, O. Staszewski, E. David, H. Keren-Shaul, T. Mahlakoiv, K. Jakobshagen, T. Buch, et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18: 965-977
-
(2015)
Nat. Neurosci.
, vol.18
, pp. 965-977
-
-
Erny, D.1
Angelis De Hrabe, A.L.2
Jaitin, D.3
Wieghofer, P.4
Staszewski, O.5
David, E.6
Keren-Shaul, H.7
Mahlakoiv, T.8
Jakobshagen, K.9
Buch, T.10
-
92
-
-
84908128112
-
Upregulation of GPR109A in Parkinson's disease
-
Wakade, C., R. Chong, E. Bradley, B. Thomas, and J. Morgan. 2014. Upregulation of GPR109A in Parkinson's disease. PLoS One 9: e109818
-
(2014)
PLoS One
, vol.9
, pp. e109818
-
-
Wakade, C.1
Chong, R.2
Bradley, E.3
Thomas, B.4
Morgan, J.5
-
93
-
-
84924862058
-
Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms
-
Fu, S.-P., J.-F. Wang, W.-J. Xue, H.-M. Liu, B. R. Liu, Y.-L. Zeng, S.-N. Li, B.-X. Huang, Q.-K. Lv, W. Wang, and J.-X. Liu. 2015. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms. J. Neuroinflammation 12: 9
-
(2015)
J. Neuroinflammation
, vol.12
, pp. 9
-
-
Fu, S.-P.1
Wang, J.-F.2
Xue, W.-J.3
Liu, H.-M.4
Liu, B.R.5
Zeng, Y.-L.6
Li, S.-N.7
Huang, B.-X.8
Lv, Q.-K.9
Wang, W.10
Liu, J.-X.11
-
94
-
-
77951878716
-
Sickness behavior induced by endotoxin can be mitigated by the dietary soluble fiber, pectin, through up-regulation of IL-4 and Th2 polarization
-
Sherry, C. L., S. S. Kim, R. N. Dilger, L. L. Bauer, M. L. Moon, R. I. Tapping, G. C. Fahey, Jr., K. A. Tappenden, and G. G. Freund. 2010. Sickness behavior induced by endotoxin can be mitigated by the dietary soluble fiber, pectin, through up-regulation of IL-4 and Th2 polarization. Brain Behav. Immun. 24: 631-640
-
(2010)
Brain Behav. Immun.
, vol.24
, pp. 631-640
-
-
Sherry, C.L.1
Kim, S.S.2
Dilger, R.N.3
Bauer, L.L.4
Moon, M.L.5
Tapping, R.I.6
Fahey, G.C.7
Tappenden, K.A.8
Freund, G.G.9
-
95
-
-
84911884131
-
The gut microbiota influences blood-brain barrier permeability in mice
-
263-158
-
Braniste, V., M. Al-Asmakh, C. Kowal, F. Anuar, A. Abbaspour, M. Toth, A. Korecka, N. Bakocevic, L. G. Ng, P. Kundu, et al. 2014. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6: 263ra158
-
(2014)
Sci. Transl. Med.
, vol.6
-
-
Braniste, V.1
Al-Asmakh, M.2
Kowal, C.3
Anuar, F.4
Abbaspour, A.5
Toth, M.6
Korecka, A.7
Bakocevic, N.8
Ng, L.G.9
Kundu, P.10
-
96
-
-
84894118144
-
Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders
-
Hsiao, E. Y., S. W. McBride, S. Hsien, G. Sharon, E. R. Hyde, T. McCue, J. A. Codelli, J. Chow, S. E. Reisman, J. F. Petrosino, et al. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155: 1451-1463
-
(2013)
Cell
, vol.155
, pp. 1451-1463
-
-
Hsiao, E.Y.1
McBride, S.W.2
Hsien, S.3
Sharon, G.4
Hyde, E.R.5
McCue, T.6
Codelli, J.A.7
Chow, J.8
Reisman, S.E.9
Petrosino, J.F.10
-
98
-
-
84959476433
-
Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition
-
Charbonneau, M. R., D. O'Donnell, L. V. Blanton, S. M. Totten, J. C. C. Davis, M. J. Barratt, J. Cheng, J. Guruge, M. Talcott, J. R. Bain, et al. 2016. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164: 859-871
-
(2016)
Cell
, vol.164
, pp. 859-871
-
-
Charbonneau, M.R.1
O'Donnell, D.2
Blanton, L.V.3
Totten, S.M.4
Davis, J.C.C.5
Barratt, M.J.6
Cheng, J.7
Guruge, J.8
Talcott, M.9
Bain, J.R.10
-
99
-
-
84947812071
-
Personalized nutrition by prediction of glycemic responses
-
Zeevi, D., T. Korem, N. Zmora, D. Israeli, D. Rothschild, A. Weinberger, O. Ben-Yacov, D. Lador, T. Avnit-Sagi, M. Lotan-Pompan, et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163: 1079-1094.
-
(2015)
Cell
, vol.163
, pp. 1079-1094
-
-
Zeevi, D.1
Korem, T.2
Zmora, N.3
Israeli, D.4
Rothschild, D.5
Weinberger, A.6
Ben-Yacov, O.7
Lador, D.8
Avnit-Sagi, T.9
Lotan-Pompan, M.10
|