메뉴 건너뛰기




Volumn 54, Issue 5, 2016, Pages 2615-2626

Kernel-Based Domain-Invariant Feature Selection in Hyperspectral Images for Transfer Learning

Author keywords

Domain adaptation; feature selection; hyperspectral images; image classification; kernel methods; remote sensing; support vector machines (SVMs); transfer learning

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); IMAGE CLASSIFICATION; MULTIOBJECTIVE OPTIMIZATION; OPTIMIZATION; PARETO PRINCIPLE; SPECTROSCOPY;

EID: 84951310856     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2503885     Document Type: Article
Times cited : (114)

References (50)
  • 1
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers, " IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 2
    • 0036564114 scopus 로고    scopus 로고
    • An adaptive method for combined covari-ance estimation and classification
    • May
    • Q. Jackson and D. Landgrebe, "An adaptive method for combined covari-ance estimation and classification, " IEEE Trans. Geosci. Remote Sens., vol. 40, no. 5, pp. 1082-1087, May 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.5 , pp. 1082-1087
    • Jackson, Q.1    Landgrebe, D.2
  • 3
    • 84963670776 scopus 로고    scopus 로고
    • Approaches based on support vector machine to classification of remote sensing data
    • C. Chen, Ed. Singapore: World Scientific ch. 3.2
    • L. Bruzzone and C. Persello, "Approaches based on support vector machine to classification of remote sensing data, " in Handbook of Pattern Recognition and Computer Vision, C. Chen, Ed. Singapore: World Scientific, 2009, ch. 3.2, pp. 329-352.
    • (2009) Handbook of Pattern Recognition and Computer Vision , pp. 329-352
    • Bruzzone, L.1    Persello, C.2
  • 4
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines, " IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 5
    • 41849112041 scopus 로고    scopus 로고
    • Customizing kernel functions for SVM-based hyperspectral image classification
    • Apr.
    • B. Guo, S. R. Gunn, R. I. Damper, and J. D. B. Nelson, "Customizing kernel functions for SVM-based hyperspectral image classification, " IEEE Trans. Image. Process., vol. 17, no. 4, pp. 622-629, Apr. 2008.
    • (2008) IEEE Trans. Image. Process. , vol.17 , Issue.4 , pp. 622-629
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 6
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyper-spectral data by SVM
    • May
    • M. Pal and G. M. Foody, "Feature selection for classification of hyper-spectral data by SVM, " IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 7
    • 70349332954 scopus 로고    scopus 로고
    • A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability
    • Sep.
    • L. Bruzzone and C. Persello, "A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 9, pp. 3180-3191, Sep. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.9 , pp. 3180-3191
    • Bruzzone, L.1    Persello, C.2
  • 8
    • 0036762743 scopus 로고    scopus 로고
    • A multiple cascade-classifier system for a robust a partially unsupervised updating of land-cover maps
    • Sep.
    • L. Bruzzone and R. Cossu, "A multiple cascade-classifier system for a robust a partially unsupervised updating of land-cover maps, " IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 1984-1996, Sep. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.9 , pp. 1984-1996
    • Bruzzone, L.1    Cossu, R.2
  • 9
    • 0036896357 scopus 로고    scopus 로고
    • Combining parametric and non-parametric algorithms for a partially unsupervised classification of multi-temporal remote-sensing images
    • Dec.
    • L. Bruzzone, R. Cossu, and G. Vernazza, "Combining parametric and non-parametric algorithms for a partially unsupervised classification of multi-temporal remote-sensing images, " Inf. Fusion, vol. 3, no. 4, pp. 289-297, Dec. 2002.
    • (2002) Inf. Fusion , vol.3 , Issue.4 , pp. 289-297
    • Bruzzone, L.1    Cossu, R.2    Vernazza, G.3
  • 10
    • 63149099144 scopus 로고    scopus 로고
    • Toward an automatic updating of land-cover maps by a domain adaptation SVM classifier and a circular validation strategy
    • Apr.
    • L. Bruzzone and M. Marconcini, "Toward an automatic updating of land-cover maps by a domain adaptation SVM classifier and a circular validation strategy, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1108-1122, Apr. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1108-1122
    • Bruzzone, L.1    Marconcini, M.2
  • 11
    • 77949852900 scopus 로고    scopus 로고
    • Domain adaptation problems: A DASVM classification technique and a circular validation strategy
    • May
    • L. Bruzzone and M. Marconcini, "Domain adaptation problems: A DASVM classification technique and a circular validation strategy, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 770-787, May 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.5 , pp. 770-787
    • Bruzzone, L.1    Marconcini, M.2
  • 12
    • 84870901798 scopus 로고    scopus 로고
    • Interactive domain adaptation for the classification of remote sensing images using active learning
    • Jul.
    • C. Persello, "Interactive domain adaptation for the classification of remote sensing images using active learning, " IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 736-740, Jul. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.4 , pp. 736-740
    • Persello, C.1
  • 14
    • 84862996106 scopus 로고    scopus 로고
    • A novel domain adaptation Bayesian classifier for updating land-cover maps with class differences in source and target domains
    • Jul.
    • K. Bahirat, F. Bovolo, L. Bruzzone, and S. Chaudhuri, "A novel domain adaptation Bayesian classifier for updating land-cover maps with class differences in source and target domains, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2810-2826, Jul. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.7 , pp. 2810-2826
    • Bahirat, K.1    Bovolo, F.2    Bruzzone, L.3    Chaudhuri, S.4
  • 15
    • 84871725096 scopus 로고    scopus 로고
    • Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach
    • Jan.
    • B. Demir, F. Bovolo, and L. Bruzzone, "Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 300-312, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 300-312
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 16
    • 0035248272 scopus 로고    scopus 로고
    • Unsupervised retraining of a maximum-likelihood classifier for the analysis of multitemporal remote sensing images
    • Feb.
    • L. Bruzzone and D. F. Prieto, "Unsupervised retraining of a maximum-likelihood classifier for the analysis of multitemporal remote sensing images, " IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 456-460, Feb. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.2 , pp. 456-460
    • Bruzzone, L.1    Prieto, D.F.2
  • 17
    • 78049256476 scopus 로고    scopus 로고
    • Adaptive classification for hyperspectral image data using manifold regularization kernel machines
    • Nov.
    • W. Kim and M. M. Crawford, "Adaptive classification for hyperspectral image data using manifold regularization kernel machines, " IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4110-4121, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4110-4121
    • Kim, W.1    Crawford, M.M.2
  • 19
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • Feb.
    • S. J. Pan, I. W. Tsang, J. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis, " IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199-210, Feb. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.2 , pp. 199-210
    • Pan, S.J.1    Tsang, I.W.2    Kwok, J.3    Yang, Q.4
  • 20
    • 80052880025 scopus 로고    scopus 로고
    • DAML: Domain adaptation metric learning
    • Oct.
    • B. Geng, D. Tao, and C. Xu, "DAML: Domain adaptation metric learning, " IEEE Trans. Image. Process., vol. 20, no. 10, pp. 2980-2989, Oct. 2011.
    • (2011) IEEE Trans. Image. Process. , vol.20 , Issue.10 , pp. 2980-2989
    • Geng, B.1    Tao, D.2    Xu, C.3
  • 23
    • 84869490360 scopus 로고    scopus 로고
    • Active learning for domain adaptation in the supervised classification of remote sensing images
    • Nov.
    • C. Persello and L. Bruzzone, "Active learning for domain adaptation in the supervised classification of remote sensing images, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4468-4483, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4468-4483
    • Persello, C.1    Bruzzone, L.2
  • 24
    • 84869491853 scopus 로고    scopus 로고
    • SVM-based boosting of active learning strategies for efficient domain adaptation
    • Oct.
    • G. Matasci, D. Tuia, and M. Kanevski, "SVM-based boosting of active learning strategies for efficient domain adaptation, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 5, pp. 1335-1343, Oct. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.5 , pp. 1335-1343
    • Matasci, G.1    Tuia, D.2    Kanevski, M.3
  • 25
    • 84902080705 scopus 로고    scopus 로고
    • Active and semisupervised learning for the classification of remote sensing images
    • Nov.
    • C. Persello and L. Bruzzone, "Active and semisupervised learning for the classification of remote sensing images, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6937-6956, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 6937-6956
    • Persello, C.1    Bruzzone, L.2
  • 26
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Sep.
    • P. M. Narendra and K. Fukunaga, "A branch and bound algorithm for feature subset selection, " IEEE Trans. Comput., vol. C-26, no. 9, pp. 917-922, Sep. 1977.
    • (1977) IEEE Trans. Comput. , vol.C-26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 27
    • 84863417951 scopus 로고    scopus 로고
    • Efficient feature subset selection and subset size optimization
    • A. Herout, Ed. Rijeka, Croatia: IntechOpen
    • P. Somol, J. Novovicova, and P. Pudil, "Efficient feature subset selection and subset size optimization, " in Pattern Recognition Recent Advances, A. Herout, Ed. Rijeka, Croatia: IntechOpen, 2010.
    • (2010) Pattern Recognition Recent Advances
    • Somol, P.1    Novovicova, J.2    Pudil, P.3
  • 28
    • 0028547556 scopus 로고
    • Floating search methods for feature selection
    • Nov.
    • P. Pudil, J. Novovicova, and J. Kittler, "Floating search methods for feature selection, " Pattern Recognit. Lett., vol. 15, no. 11, pp. 1119-1125, Nov. 1994.
    • (1994) Pattern Recognit. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 29
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • Jul.
    • S. B. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images, " IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1360-1367, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 30
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • Nov.
    • W. Siedlecki and J. Sklansky, "A note on genetic algorithms for large-scale feature selection, " Pattern Recognit. Lett., vol. 10, no. 5, pp. 335-347, Nov. 1989.
    • (1989) Pattern Recognit. Lett. , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 32
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Apr.
    • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II, " IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, Apr. 2002.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 34
    • 0029407869 scopus 로고
    • An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection
    • Nov.
    • L. Bruzzone, F. Roli, and S. B. Serpico, "An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection, " IEEE Trans. Geosci. Remote Sens., vol. 33, no. 6, pp. 1318-1321, Nov. 1995.
    • (1995) IEEE Trans. Geosci. Remote Sens. , vol.33 , Issue.6 , pp. 1318-1321
    • Bruzzone, L.1    Roli, F.2    Serpico, S.B.3
  • 36
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Jul.
    • R. Battiti, "Using mutual information for selecting features in supervised neural net learning, " IEEE Trans. Neural Netw., vol. 5, no. 4, pp. 537-550, Jul. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 37
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Aug.
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 38
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Jan.
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines, " Mach. Learn., vol. 46, no. 1-3, pp. 389-422, Jan. 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 39
    • 34547964410 scopus 로고    scopus 로고
    • Supervised feature selection via dependence estimation
    • L. Song, A. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo, "Supervised feature selection via dependence estimation, " in Proc. ICML, 2007, pp. 823-830.
    • (2007) Proc. ICML , pp. 823-830
    • Song, L.1    Smola, A.2    Gretton, A.3    Borgwardt, K.M.4    Bedo, J.5
  • 40
    • 77954623833 scopus 로고    scopus 로고
    • Remote sensing feature selection by kernel dependence measures
    • Jul.
    • G. Camps-Valls, J. Mooij, and B. Schölkopf, "Remote sensing feature selection by kernel dependence measures, " IEEE Geosci. Remote Sens. Lett., vol. 7, no. 3, pp. 587-591, Jul. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.3 , pp. 587-591
    • Camps-Valls, G.1    Mooij, J.2    Schölkopf, B.3
  • 43
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • Jan.
    • K. Fukumizu, F. R. Bach, and M. I. Jordan, "Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces, " J. Mach. Learn. Res., vol. 5, pp. 73-99, Jan. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 44
    • 33646528415 scopus 로고    scopus 로고
    • Measuring statistical dependence with Hilbert-Schmidt norms
    • A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, "Measuring statistical dependence with Hilbert-Schmidt norms, " in Proc. ALT, 2005, pp. 63-77.
    • (2005) Proc. ALT , pp. 63-77
    • Gretton, A.1    Bousquet, O.2    Smola, A.3    Schölkopf, B.4
  • 46
    • 71149099279 scopus 로고    scopus 로고
    • Hilbert space embed-dings of conditional distributions with applications to dynamical systems
    • L. Song, J. Huang, A. Smola, and K. Fukumizu, "Hilbert space embed-dings of conditional distributions with applications to dynamical systems, " in Proc. ICML, 2009, pp. 961-968.
    • (2009) Proc. ICML , pp. 961-968
    • Song, L.1    Huang, J.2    Smola, A.3    Fukumizu, K.4
  • 47
    • 85032751252 scopus 로고    scopus 로고
    • Kernel embeddings of conditional distributions
    • Jul.
    • L. Song, K. Fukumizu, and A. Gretton, "Kernel embeddings of conditional distributions, " IEEE Signal Process. Mag., vol. 30, no. 4, pp. 98-111, Jul. 2013.
    • (2013) IEEE Signal Process. Mag. , vol.30 , Issue.4 , pp. 98-111
    • Song, L.1    Fukumizu, K.2    Gretton, A.3
  • 48
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar.
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 49
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • Apr.
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification, " IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.