메뉴 건너뛰기




Volumn 5, Issue 4, 2008, Pages 625-629

Limitations of principal components analysis for hyperspectral target recognition

Author keywords

Dimensionality reduction; Feature extraction; Hyperspectral; Image classification; Pattern classification

Indexed keywords

ATMOSPHERICS; DISCRIMINANT ANALYSIS; ELECTRIC NETWORK ANALYSIS; FEATURE EXTRACTION; IMAGE ANALYSIS; IMAGE CLASSIFICATION; KETONES; REMOTE SENSING; SPACE OPTICS; STATISTICAL METHODS;

EID: 55649122577     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2008.2001282     Document Type: Article
Times cited : (318)

References (14)
  • 1
    • 18844429785 scopus 로고    scopus 로고
    • Using FCMC, FVS, and PCA techniques for feature extraction of multispectral images
    • Apr
    • Z. Sun, D. Huang, Y. Cheung, J. Liu, and G. Huang, "Using FCMC, FVS, and PCA techniques for feature extraction of multispectral images," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 108-112, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett , vol.2 , Issue.2 , pp. 108-112
    • Sun, Z.1    Huang, D.2    Cheung, Y.3    Liu, J.4    Huang, G.5
  • 2
    • 18844429782 scopus 로고    scopus 로고
    • On the impact of PCA dimension reduction for hyperspectral detection of difficult targets
    • Apr
    • M. D. Farrell and R. M. Mersereau, "On the impact of PCA dimension reduction for hyperspectral detection of difficult targets," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 192-195, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett , vol.2 , Issue.2 , pp. 192-195
    • Farrell, M.D.1    Mersereau, R.M.2
  • 4
    • 0242709857 scopus 로고    scopus 로고
    • Why principal component analysis is not an appropriate feature extraction method for hyperspectral data
    • Jul
    • A. Cheriyadat and L. M. Bruce, "Why principal component analysis is not an appropriate feature extraction method for hyperspectral data," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2003, vol. 6, pp. 3420-3422.
    • (2003) Proc. IEEE Int. Geosci. Remote Sens. Symp , vol.6 , pp. 3420-3422
    • Cheriyadat, A.1    Bruce, L.M.2
  • 5
    • 0035570836 scopus 로고    scopus 로고
    • Automated detection of Pueraria Montana (kudzu) through Haar analysis of hyperspectral reflectance data
    • Jul
    • J. Li, L. M. Bruce, J. Byrd, and J. Barnett, "Automated detection of Pueraria Montana (kudzu) through Haar analysis of hyperspectral reflectance data," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2001, vol. 5, pp. 2247-2249.
    • (2001) Proc. IEEE Int. Geosci. Remote Sens. Symp , vol.5 , pp. 2247-2249
    • Li, J.1    Bruce, L.M.2    Byrd, J.3    Barnett, J.4
  • 6
    • 53349127642 scopus 로고    scopus 로고
    • Decision fusion with confidence based weight assignment for hyperspectral target recognition
    • May
    • S. Prasad and L. M. Bruce, "Decision fusion with confidence based weight assignment for hyperspectral target recognition," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1448-1456, May 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.5 , pp. 1448-1456
    • Prasad, S.1    Bruce, L.M.2
  • 7
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • Jul
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Best-bases feature extraction algorithms for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1368-1379, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 9
    • 21244494853 scopus 로고    scopus 로고
    • A two-stage linear discriminant analysis via QR-decomposition
    • Jun
    • J. Ye and Q. Li, "A two-stage linear discriminant analysis via QR-decomposition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 929-941, Jun. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , Issue.6 , pp. 929-941
    • Ye, J.1    Li, Q.2
  • 10
    • 0030214923 scopus 로고    scopus 로고
    • Using discriminating eigenfeatures for image retrieval
    • Aug
    • D. L. Swets and J. Went, "Using discriminating eigenfeatures for image retrieval," IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8, pp. 831-836, Aug. 1996.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell , vol.18 , Issue.8 , pp. 831-836
    • Swets, D.L.1    Went, J.2
  • 12
    • 1842812871 scopus 로고    scopus 로고
    • An efficient algorithm to solve the small sample size problem for LDA
    • May
    • W. Zheng, L. Zhao, and C. Zou, "An efficient algorithm to solve the small sample size problem for LDA," Pattern Recognit., vol. 37, no. 5, pp. 1077-1079, May 2004.
    • (2004) Pattern Recognit , vol.37 , Issue.5 , pp. 1077-1079
    • Zheng, W.1    Zhao, L.2    Zou, C.3
  • 14
    • 0037560727 scopus 로고    scopus 로고
    • Multisource remote sensing data classification based on consensus and pruning
    • Apr
    • J. A. Benediktsson and J. R. Sveinsson, "Multisource remote sensing data classification based on consensus and pruning," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 4, pp. 932-936, Apr. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.4 , pp. 932-936
    • Benediktsson, J.A.1    Sveinsson, J.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.