-
1
-
-
67650436064
-
Recent advances in techniques for hyperspectral image processing
-
A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, pp. S110-S122, 2009.
-
(2009)
Remote Sens. Environ.
, vol.113
, pp. S110-S122
-
-
Plaza, A.1
-
2
-
-
77953872402
-
A dynamic subspace method for hyperspectral image classification
-
Jul.
-
J.-M. Yang, B.-C. Kuo, P.-T. Yu, and C.-H. Chuang, "A dynamic subspace method for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2840-2853, Jul. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.7
, pp. 2840-2853
-
-
Yang, J.-M.1
Kuo, B.-C.2
Yu, P.-T.3
Chuang, C.-H.4
-
3
-
-
84899795478
-
A two-stage feature selection framework for hyperspectral image classification using few labeled samples
-
Apr.
-
S. Jia, Z. Zhu, L. Shen, and Q. Li, "A two-stage feature selection framework for hyperspectral image classification using few labeled samples," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1023-1035, Apr. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.4
, pp. 1023-1035
-
-
Jia, S.1
Zhu, Z.2
Shen, L.3
Li, Q.4
-
4
-
-
34249810956
-
Semisupervised classification of hyperspectral images by SVMs optimized in the primal
-
Jun.
-
M. Chi and L. Bruzzone, "Semisupervised classification of hyperspectral images by SVMs optimized in the primal," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1870-1880, Jun. 2007.
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.6
, pp. 1870-1880
-
-
Chi, M.1
Bruzzone, L.2
-
5
-
-
39049145967
-
Semi-supervised graph-based hyperspectral image classification
-
Oct.
-
G. Camps-Valls, T. Bandos Marsheva, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.10
, pp. 3044-3054
-
-
Camps-Valls, G.1
Bandos Marsheva, T.2
Zhou, D.3
-
6
-
-
33745456231
-
-
Dept. Computer Science, Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530
-
X. Zhu, "Semi-supervised learning literature survey," Dept. Computer Science, Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530, 2006, vol. 2, p. 3.
-
(2006)
Semi-supervised Learning Literature Survey
, vol.2
, pp. 3
-
-
Zhu, X.1
-
7
-
-
84861338885
-
A fast and robust sparse approach for hyperspectral data classification using a few labeled samples
-
Jun.
-
Q. Samiul Haq, L. Tao, F. Sun, and S. Yang, "A fast and robust sparse approach for hyperspectral data classification using a few labeled samples," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2287-2302, Jun. 2012.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.6
, pp. 2287-2302
-
-
Samiul Haq, Q.1
Tao, L.2
Sun, F.3
Yang, S.4
-
8
-
-
14644421528
-
Investigation of the random forest framework for classification of hyperspectral data
-
Mar.
-
J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, Issue.3
, pp. 492-501
-
-
Ham, J.1
Chen, Y.2
Crawford, M.M.3
Ghosh, J.4
-
9
-
-
35648938713
-
Hyperspectral image classification by bootstrap AdaBoost with random decision stumps
-
Nov.
-
S. Kawaguchi and R. Nishii, "Hyperspectral image classification by bootstrap AdaBoost with random decision stumps," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3845-3851, Nov. 2007.
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.11
, pp. 3845-3851
-
-
Kawaguchi, S.1
Nishii, R.2
-
10
-
-
84888299612
-
Hyperspectral remote sensing image classification based on rotation forest
-
Jan.
-
J. Xia, P. Du, X. He, and J. Chanussot, "Hyperspectral remote sensing image classification based on rotation forest," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 239-243, Jan. 2014.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.1
, pp. 239-243
-
-
Xia, J.1
Du, P.2
He, X.3
Chanussot, J.4
-
11
-
-
84899990796
-
Optimizing subspace SVM ensemble for hyperspectral imagery classification
-
Apr.
-
Y. Chen, X. Zhao, and Z. Lin, "Optimizing subspace SVM ensemble for hyperspectral imagery classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1306-1313, Apr. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.4
, pp. 1306-1313
-
-
Chen, Y.1
Zhao, X.2
Lin, Z.3
-
12
-
-
84899896987
-
E2LMs: Ensemble extreme learning machines for hyperspectral image classification
-
Apr.
-
S. Liu, J. Li, A. Samat, P. Du, and L. Cheng, "E2LMs: Ensemble extreme learning machines for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1060-1069, Apr. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.4
, pp. 1060-1069
-
-
Liu, S.1
Li, J.2
Samat, A.3
Du, P.4
Cheng, L.5
-
13
-
-
84905820825
-
Classification of hyperspectral data using an AdaBoostSVM technique applied on band clusters
-
Jun.
-
P. Ramzi, F. Samadzadegan, and P. Reinartz, "Classification of hyperspectral data using an AdaBoostSVM technique applied on band clusters," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2066-2079, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.6
, pp. 2066-2079
-
-
Ramzi, P.1
Samadzadegan, F.2
Reinartz, P.3
-
14
-
-
78951491903
-
A review of ensemble methods in bioinformatics
-
P. Yang, Y. H. Yang, B. B. Zhou, and A. Y. Zomaya, "A review of ensemble methods in bioinformatics," Curr. Bioinf., vol. 5, no. 4, pp. 296-308, 2010.
-
(2010)
Curr. Bioinf.
, vol.5
, Issue.4
, pp. 296-308
-
-
Yang, P.1
Yang, Y.H.2
Zhou, B.B.3
Zomaya, A.Y.4
-
15
-
-
77953871614
-
Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
-
Jul.
-
B.Waske, S. van der Linden, J. A. Benediktsson, A. Rabe, and P. Hostert, "Sensitivity of support vector machines to random feature selection in classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2880-2889, Jul. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.7
, pp. 2880-2889
-
-
Waske, B.1
Vander Linden, S.2
Benediktsson, J.A.3
Rabe, A.4
Hostert, P.5
-
16
-
-
84887587607
-
A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery
-
L. Xu, J. Li, and A. Brenning, "A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery," Remote Sens. Environ., vol. 141, pp. 14-23, 2014.
-
(2014)
Remote Sens. Environ.
, vol.141
, pp. 14-23
-
-
Xu, L.1
Li, J.2
Brenning, A.3
-
17
-
-
84869491579
-
An overview and comparison of smooth labeling methods for land-cover classification
-
Nov.
-
K. Schindler, "An overview and comparison of smooth labeling methods for land-cover classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4534-4545, Nov. 2012.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.11
, pp. 4534-4545
-
-
Schindler, K.1
-
18
-
-
77958017904
-
SVM-and MRF-based method for accurate classification of hyperspectral images
-
Oct.
-
Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
-
(2010)
IEEE Geosci. Remote Sens. Lett.
, vol.7
, Issue.4
, pp. 736-740
-
-
Tarabalka, Y.1
Fauvel, M.2
Chanussot, J.3
Benediktsson, J.A.4
-
19
-
-
84888305489
-
Hyperspectral image classification using Gaussian mixture models and Markov random fields
-
Jan.
-
W. Li, S. Prasad, and J. E. Fowler, "Hyperspectral image classification using gaussian mixture models andMarkov random fields," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 153-157, Jan. 2014.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.1
, pp. 153-157
-
-
Li, W.1
Prasad, S.2
Fowler, J.E.3
-
20
-
-
84899943917
-
Ensemble learning in hyperspectral image classification: Toward selecting a favorable bias-variance tradeoff
-
Apr.
-
A. Merentitis, C. Debes, and R. Heremans, "Ensemble learning in hyperspectral image classification: Toward selecting a favorable bias-variance tradeoff," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1089-1102, Apr. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.4
, pp. 1089-1102
-
-
Merentitis, A.1
Debes, C.2
Heremans, R.3
-
21
-
-
77953710563
-
Learning conditional random fields for classification of hyperspectral images
-
Jul.
-
P. Zhong and R. Wang, "Learning conditional random fields for classification of hyperspectral images," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, Jul. 2010.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.7
, pp. 1890-1907
-
-
Zhong, P.1
Wang, R.2
-
22
-
-
84862801737
-
Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification
-
Sep.
-
G. Zhang and X. Jia, "Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 5, pp. 856-860, Sep. 2012.
-
(2012)
IEEE Geosci. Remote Sens. Lett.
, vol.9
, Issue.5
, pp. 856-860
-
-
Zhang, G.1
Jia, X.2
-
23
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
24
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Comput., vol. 4, no. 1, pp. 1-58, 1992.
-
(1992)
Neural Comput.
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
25
-
-
0012937288
-
A unified bias-variance decomposition
-
P. Domingos, "A unified bias-variance decomposition," in Proc. Int. Conf. Mach. Learn., 2000, pp. 231-238.
-
(2000)
Proc. Int. Conf. Mach. Learn.
, pp. 231-238
-
-
Domingos, P.1
-
27
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Y. Freund et al., "Experiments with a new boosting algorithm," in Proc. Int. Conf. Mach. Learn., 1996, vol. 96, pp. 148-156.
-
(1996)
Proc. Int. Conf. Mach. Learn.
, vol.96
, pp. 148-156
-
-
Freund, Y.1
-
28
-
-
84983110889
-
A desicion-theoretic generalization of online learning and an application to boosting
-
New York, NY, USA: Springer
-
Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of online learning and an application to boosting," in Computational Learning Theory. New York, NY, USA: Springer, 1995, pp. 23-37.
-
(1995)
Computational Learning Theory
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
-
29
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Ann. Statist., vol. 28, no. 2, pp. 337-407, 2000.
-
(2000)
Ann. Statist.
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
30
-
-
35248862907
-
An introduction to boosting and leveraging
-
New York, NY, USA: Springer
-
R. Meir and G. Rätsch, "An introduction to boosting and leveraging," in Advanced Lectures on Machine Learning. New York, NY, USA: Springer, 2003, pp. 118-183.
-
(2003)
Advanced Lectures on Machine Learning
, pp. 118-183
-
-
Meir, R.1
Rätsch, G.2
-
31
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
32
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Aug.
-
T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
33
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
Oct.
-
J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, "Rotation forest: A new classifier ensemble method," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1619-1630, Oct. 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodriguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
34
-
-
25144515389
-
Bias and variance of rotation-based ensembles
-
New York, NY, USA: Springer
-
J. J. Rodríguez, C. J. Alonso, and O. J. Prieto, "Bias and variance of rotation-based ensembles," in Computational Intelligence and Bioinspired Systems. New York, NY, USA: Springer, 2005, pp. 779-786.
-
(2005)
Computational Intelligence and Bioinspired Systems
, pp. 779-786
-
-
Rodríguez, J.J.1
Alonso, C.J.2
Prieto, O.J.3
-
35
-
-
44449124996
-
RotBoost: A technique for combining rotation forest and AdaBoost
-
C.-X. Zhang and J.-S. Zhang, "RotBoost: A technique for combining rotation forest and AdaBoost," Pattern Recognit. Lett., vol. 29, no. 10, pp. 1524-1536, 2008.
-
(2008)
Pattern Recognit. Lett.
, vol.29
, Issue.10
, pp. 1524-1536
-
-
Zhang, C.-X.1
Zhang, J.-S.2
-
36
-
-
37249046891
-
An experimental study on rotation forest ensembles
-
New York, NY, USA: Springer
-
L. I. Kuncheva and J. J. Rodríguez, "An experimental study on rotation forest ensembles," in Multiple Classifier Systems. New York, NY, USA: Springer, 2007, pp. 459-468.
-
(2007)
Multiple Classifier Systems
, pp. 459-468
-
-
Kuncheva, L.I.1
Rodríguez, J.J.2
-
38
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," Mach. Learn., vol. 37, no. 3, pp. 297-336, 1999.
-
(1999)
Mach. Learn.
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
39
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Statist., vol. 26, no. 5, pp. 1651-1686, 1998.
-
(1998)
Ann. Statist.
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
40
-
-
77958028886
-
Multi-class AdaBoost
-
J. Zhu, H. Zou, S. Rosset, and T. Hastie, "Multi-class AdaBoost," Statist. Interface, vol. 2, pp. 349-360, 2009.
-
(2009)
Statist. Interface
, vol.2
, pp. 349-360
-
-
Zhu, J.1
Zou, H.2
Rosset, S.3
Hastie, T.4
-
41
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
Nov.
-
S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 6, pp. 721-741, Nov. 1984.
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.6
, Issue.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
42
-
-
0003925908
-
-
New York, NY, USA: Springer
-
S. Z. Li and S. Singh, Markov Random Field Modeling in Image Analysis, vol. 26. New York, NY, USA: Springer, 2009.
-
(2009)
Markov Random Field Modeling in Image Analysis
, vol.26
-
-
Li, S.Z.1
Singh, S.2
-
43
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. C. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. Int. Conf. Mach. Learn., 2001, pp. 282-289.
-
(2001)
Proc. Int. Conf. Mach. Learn.
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.C.3
-
44
-
-
36348971282
-
A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images
-
Dec.
-
P. Zhong and R. Wang, "A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3978-3988, Dec. 2007.
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.12
, pp. 3978-3988
-
-
Zhong, P.1
Wang, R.2
-
45
-
-
84899887971
-
A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery
-
Apr.
-
Y. Zhong, X. Lin, and L. Zhang, "A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1314-1330, Apr. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.4
, pp. 1314-1330
-
-
Zhong, Y.1
Lin, X.2
Zhang, L.3
-
46
-
-
84926736518
-
Some generalized order-disorder transformations
-
Cambridge, U.K.: Cambridge Univ. Press
-
R. B. Potts, "Some generalized order-disorder transformations," in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 48. Cambridge, U.K.: Cambridge Univ. Press, 1952, pp. 106-109.
-
(1952)
Mathematical Proceedings of the Cambridge Philosophical Society
, vol.48
, pp. 106-109
-
-
Potts, R.B.1
-
47
-
-
84911401831
-
URC: Unsupervised regional clustering of remote sensing imagery
-
P. Siva and A. Wong, "URC: Unsupervised regional clustering of remote sensing imagery," in Proc. Int. Geosci. Remote Sens. Symp., 2014, pp. 4938-4941.
-
(2014)
Proc. Int. Geosci. Remote Sens. Symp.
, pp. 4938-4941
-
-
Siva, P.1
Wong, A.2
-
48
-
-
0002425879
-
Loopy belief propagation for approximate inference: An empirical study
-
K. P. Murphy, Y. Weiss, and M. I. Jordan, "Loopy belief propagation for approximate inference: An empirical study," in Proc. Uncertainty Artif. Intell., 1999, pp. 467-475.
-
(1999)
Proc. Uncertainty Artif. Intell.
, pp. 467-475
-
-
Murphy, K.P.1
Weiss, Y.2
Jordan, M.I.3
-
49
-
-
0000111836
-
Exact maximum a posteriori estimation for binary images
-
D. Greig, B. Porteous, and A. H. Seheult, "Exact maximum a posteriori estimation for binary images," J. Roy. Statist. Soc. Ser. B (Methodol.), pp. 271-279, 1989.
-
(1989)
J. Roy. Statist. Soc. Ser. B (Methodol.)
, pp. 271-279
-
-
Greig, D.1
Porteous, B.2
Seheult, A.H.3
-
50
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
Nov.
-
Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1222-1239, Nov. 2001.
-
(2001)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.23
, Issue.11
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
51
-
-
43249091850
-
A comparative study of energy minimization methods for Markov random fields with smoothness-based priors
-
Jun.
-
R. Szeliski et al., "A comparative study of energy minimization methods for Markov random fields with smoothness-based priors," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 6, pp. 1068-1080, Jun. 2008.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.6
, pp. 1068-1080
-
-
Szeliski, R.1
-
52
-
-
0023854011
-
A transformation for orderingmultispectral data in terms of image quality with implications for noise removal
-
Jan.
-
A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for orderingmultispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988.
-
(1988)
IEEE Trans. Geosci. Remote Sens.
, vol.26
, Issue.1
, pp. 65-74
-
-
Green, A.A.1
Berman, M.2
Switzer, P.3
Craig, M.D.4
-
53
-
-
51349159085
-
Probability estimates for multiclass classification by pairwise coupling
-
T.-F. Wu, C.-J. Lin, and R. C. Weng, "Probability estimates for multiclass classification by pairwise coupling," J. Mach. Learn. Res., vol. 5, pp. 975-1005, 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 975-1005
-
-
Wu, T.-F.1
Lin, C.-J.2
Weng, R.C.3
-
55
-
-
70350487954
-
Dimensionality reduction: A comparative review
-
L. J. van der Maaten, E. O. Postma, and H. J. van den Herik, "Dimensionality reduction: A comparative review," J. Mach. Learn. Res., vol. 10, no. 1-41, pp. 66-71, 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, Issue.1-41
, pp. 66-71
-
-
Vander Maaten, L.J.1
Postma, E.O.2
Vanden Herik, H.J.3
|