메뉴 건너뛰기




Volumn 8, Issue 6, 2015, Pages 2427-2438

Hyperspectral Image Classification with Limited Labeled Training Samples Using Enhanced Ensemble Learning and Conditional Random Fields

Author keywords

Ada Boost; conditional random fields (Crfs); hyperspectral data classification; rotation forests (Rof)

Indexed keywords

ADAPTIVE BOOSTING; CLASSIFICATION (OF INFORMATION); FORESTRY; IMAGE SEGMENTATION; RANDOM PROCESSES; REMOTE SENSING; SAMPLING; SPECTROSCOPY;

EID: 85027945747     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2015.2414816     Document Type: Article
Times cited : (60)

References (55)
  • 1
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, pp. S110-S122, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , pp. S110-S122
    • Plaza, A.1
  • 2
    • 77953872402 scopus 로고    scopus 로고
    • A dynamic subspace method for hyperspectral image classification
    • Jul.
    • J.-M. Yang, B.-C. Kuo, P.-T. Yu, and C.-H. Chuang, "A dynamic subspace method for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2840-2853, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2840-2853
    • Yang, J.-M.1    Kuo, B.-C.2    Yu, P.-T.3    Chuang, C.-H.4
  • 3
    • 84899795478 scopus 로고    scopus 로고
    • A two-stage feature selection framework for hyperspectral image classification using few labeled samples
    • Apr.
    • S. Jia, Z. Zhu, L. Shen, and Q. Li, "A two-stage feature selection framework for hyperspectral image classification using few labeled samples," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1023-1035, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1023-1035
    • Jia, S.1    Zhu, Z.2    Shen, L.3    Li, Q.4
  • 4
    • 34249810956 scopus 로고    scopus 로고
    • Semisupervised classification of hyperspectral images by SVMs optimized in the primal
    • Jun.
    • M. Chi and L. Bruzzone, "Semisupervised classification of hyperspectral images by SVMs optimized in the primal," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1870-1880, Jun. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.6 , pp. 1870-1880
    • Chi, M.1    Bruzzone, L.2
  • 5
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. Bandos Marsheva, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos Marsheva, T.2    Zhou, D.3
  • 6
    • 33745456231 scopus 로고    scopus 로고
    • Dept. Computer Science, Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530
    • X. Zhu, "Semi-supervised learning literature survey," Dept. Computer Science, Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530, 2006, vol. 2, p. 3.
    • (2006) Semi-supervised Learning Literature Survey , vol.2 , pp. 3
    • Zhu, X.1
  • 7
    • 84861338885 scopus 로고    scopus 로고
    • A fast and robust sparse approach for hyperspectral data classification using a few labeled samples
    • Jun.
    • Q. Samiul Haq, L. Tao, F. Sun, and S. Yang, "A fast and robust sparse approach for hyperspectral data classification using a few labeled samples," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2287-2302, Jun. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.6 , pp. 2287-2302
    • Samiul Haq, Q.1    Tao, L.2    Sun, F.3    Yang, S.4
  • 8
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar.
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 9
    • 35648938713 scopus 로고    scopus 로고
    • Hyperspectral image classification by bootstrap AdaBoost with random decision stumps
    • Nov.
    • S. Kawaguchi and R. Nishii, "Hyperspectral image classification by bootstrap AdaBoost with random decision stumps," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3845-3851, Nov. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.11 , pp. 3845-3851
    • Kawaguchi, S.1    Nishii, R.2
  • 10
    • 84888299612 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based on rotation forest
    • Jan.
    • J. Xia, P. Du, X. He, and J. Chanussot, "Hyperspectral remote sensing image classification based on rotation forest," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 239-243, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 239-243
    • Xia, J.1    Du, P.2    He, X.3    Chanussot, J.4
  • 11
    • 84899990796 scopus 로고    scopus 로고
    • Optimizing subspace SVM ensemble for hyperspectral imagery classification
    • Apr.
    • Y. Chen, X. Zhao, and Z. Lin, "Optimizing subspace SVM ensemble for hyperspectral imagery classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1306-1313, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1306-1313
    • Chen, Y.1    Zhao, X.2    Lin, Z.3
  • 12
    • 84899896987 scopus 로고    scopus 로고
    • E2LMs: Ensemble extreme learning machines for hyperspectral image classification
    • Apr.
    • S. Liu, J. Li, A. Samat, P. Du, and L. Cheng, "E2LMs: Ensemble extreme learning machines for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1060-1069, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1060-1069
    • Liu, S.1    Li, J.2    Samat, A.3    Du, P.4    Cheng, L.5
  • 13
    • 84905820825 scopus 로고    scopus 로고
    • Classification of hyperspectral data using an AdaBoostSVM technique applied on band clusters
    • Jun.
    • P. Ramzi, F. Samadzadegan, and P. Reinartz, "Classification of hyperspectral data using an AdaBoostSVM technique applied on band clusters," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2066-2079, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2066-2079
    • Ramzi, P.1    Samadzadegan, F.2    Reinartz, P.3
  • 14
    • 78951491903 scopus 로고    scopus 로고
    • A review of ensemble methods in bioinformatics
    • P. Yang, Y. H. Yang, B. B. Zhou, and A. Y. Zomaya, "A review of ensemble methods in bioinformatics," Curr. Bioinf., vol. 5, no. 4, pp. 296-308, 2010.
    • (2010) Curr. Bioinf. , vol.5 , Issue.4 , pp. 296-308
    • Yang, P.1    Yang, Y.H.2    Zhou, B.B.3    Zomaya, A.Y.4
  • 15
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
    • Jul.
    • B.Waske, S. van der Linden, J. A. Benediktsson, A. Rabe, and P. Hostert, "Sensitivity of support vector machines to random feature selection in classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2880-2889, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2880-2889
    • Waske, B.1    Vander Linden, S.2    Benediktsson, J.A.3    Rabe, A.4    Hostert, P.5
  • 16
    • 84887587607 scopus 로고    scopus 로고
    • A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery
    • L. Xu, J. Li, and A. Brenning, "A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery," Remote Sens. Environ., vol. 141, pp. 14-23, 2014.
    • (2014) Remote Sens. Environ. , vol.141 , pp. 14-23
    • Xu, L.1    Li, J.2    Brenning, A.3
  • 17
    • 84869491579 scopus 로고    scopus 로고
    • An overview and comparison of smooth labeling methods for land-cover classification
    • Nov.
    • K. Schindler, "An overview and comparison of smooth labeling methods for land-cover classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4534-4545, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4534-4545
    • Schindler, K.1
  • 18
    • 77958017904 scopus 로고    scopus 로고
    • SVM-and MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 19
    • 84888305489 scopus 로고    scopus 로고
    • Hyperspectral image classification using Gaussian mixture models and Markov random fields
    • Jan.
    • W. Li, S. Prasad, and J. E. Fowler, "Hyperspectral image classification using gaussian mixture models andMarkov random fields," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 153-157, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 153-157
    • Li, W.1    Prasad, S.2    Fowler, J.E.3
  • 20
    • 84899943917 scopus 로고    scopus 로고
    • Ensemble learning in hyperspectral image classification: Toward selecting a favorable bias-variance tradeoff
    • Apr.
    • A. Merentitis, C. Debes, and R. Heremans, "Ensemble learning in hyperspectral image classification: Toward selecting a favorable bias-variance tradeoff," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1089-1102, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1089-1102
    • Merentitis, A.1    Debes, C.2    Heremans, R.3
  • 21
    • 77953710563 scopus 로고    scopus 로고
    • Learning conditional random fields for classification of hyperspectral images
    • Jul.
    • P. Zhong and R. Wang, "Learning conditional random fields for classification of hyperspectral images," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, Jul. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2
  • 22
    • 84862801737 scopus 로고    scopus 로고
    • Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification
    • Sep.
    • G. Zhang and X. Jia, "Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 5, pp. 856-860, Sep. 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.5 , pp. 856-860
    • Zhang, G.1    Jia, X.2
  • 23
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 24
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Comput., vol. 4, no. 1, pp. 1-58, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 25
    • 0012937288 scopus 로고    scopus 로고
    • A unified bias-variance decomposition
    • P. Domingos, "A unified bias-variance decomposition," in Proc. Int. Conf. Mach. Learn., 2000, pp. 231-238.
    • (2000) Proc. Int. Conf. Mach. Learn. , pp. 231-238
    • Domingos, P.1
  • 27
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Y. Freund et al., "Experiments with a new boosting algorithm," in Proc. Int. Conf. Mach. Learn., 1996, vol. 96, pp. 148-156.
    • (1996) Proc. Int. Conf. Mach. Learn. , vol.96 , pp. 148-156
    • Freund, Y.1
  • 28
    • 84983110889 scopus 로고
    • A desicion-theoretic generalization of online learning and an application to boosting
    • New York, NY, USA: Springer
    • Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of online learning and an application to boosting," in Computational Learning Theory. New York, NY, USA: Springer, 1995, pp. 23-37.
    • (1995) Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 29
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Ann. Statist., vol. 28, no. 2, pp. 337-407, 2000.
    • (2000) Ann. Statist. , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 30
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • New York, NY, USA: Springer
    • R. Meir and G. Rätsch, "An introduction to boosting and leveraging," in Advanced Lectures on Machine Learning. New York, NY, USA: Springer, 2003, pp. 118-183.
    • (2003) Advanced Lectures on Machine Learning , pp. 118-183
    • Meir, R.1    Rätsch, G.2
  • 31
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 32
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Aug.
    • T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 35
    • 44449124996 scopus 로고    scopus 로고
    • RotBoost: A technique for combining rotation forest and AdaBoost
    • C.-X. Zhang and J.-S. Zhang, "RotBoost: A technique for combining rotation forest and AdaBoost," Pattern Recognit. Lett., vol. 29, no. 10, pp. 1524-1536, 2008.
    • (2008) Pattern Recognit. Lett. , vol.29 , Issue.10 , pp. 1524-1536
    • Zhang, C.-X.1    Zhang, J.-S.2
  • 36
    • 37249046891 scopus 로고    scopus 로고
    • An experimental study on rotation forest ensembles
    • New York, NY, USA: Springer
    • L. I. Kuncheva and J. J. Rodríguez, "An experimental study on rotation forest ensembles," in Multiple Classifier Systems. New York, NY, USA: Springer, 2007, pp. 459-468.
    • (2007) Multiple Classifier Systems , pp. 459-468
    • Kuncheva, L.I.1    Rodríguez, J.J.2
  • 38
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," Mach. Learn., vol. 37, no. 3, pp. 297-336, 1999.
    • (1999) Mach. Learn. , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 39
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Statist., vol. 26, no. 5, pp. 1651-1686, 1998.
    • (1998) Ann. Statist. , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 41
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Nov.
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 6, pp. 721-741, Nov. 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 43
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. C. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. Int. Conf. Mach. Learn., 2001, pp. 282-289.
    • (2001) Proc. Int. Conf. Mach. Learn. , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.3
  • 44
    • 36348971282 scopus 로고    scopus 로고
    • A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images
    • Dec.
    • P. Zhong and R. Wang, "A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3978-3988, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 3978-3988
    • Zhong, P.1    Wang, R.2
  • 45
    • 84899887971 scopus 로고    scopus 로고
    • A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery
    • Apr.
    • Y. Zhong, X. Lin, and L. Zhang, "A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1314-1330, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1314-1330
    • Zhong, Y.1    Lin, X.2    Zhang, L.3
  • 46
    • 84926736518 scopus 로고
    • Some generalized order-disorder transformations
    • Cambridge, U.K.: Cambridge Univ. Press
    • R. B. Potts, "Some generalized order-disorder transformations," in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 48. Cambridge, U.K.: Cambridge Univ. Press, 1952, pp. 106-109.
    • (1952) Mathematical Proceedings of the Cambridge Philosophical Society , vol.48 , pp. 106-109
    • Potts, R.B.1
  • 47
    • 84911401831 scopus 로고    scopus 로고
    • URC: Unsupervised regional clustering of remote sensing imagery
    • P. Siva and A. Wong, "URC: Unsupervised regional clustering of remote sensing imagery," in Proc. Int. Geosci. Remote Sens. Symp., 2014, pp. 4938-4941.
    • (2014) Proc. Int. Geosci. Remote Sens. Symp. , pp. 4938-4941
    • Siva, P.1    Wong, A.2
  • 48
    • 0002425879 scopus 로고    scopus 로고
    • Loopy belief propagation for approximate inference: An empirical study
    • K. P. Murphy, Y. Weiss, and M. I. Jordan, "Loopy belief propagation for approximate inference: An empirical study," in Proc. Uncertainty Artif. Intell., 1999, pp. 467-475.
    • (1999) Proc. Uncertainty Artif. Intell. , pp. 467-475
    • Murphy, K.P.1    Weiss, Y.2    Jordan, M.I.3
  • 50
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Nov.
    • Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1222-1239, Nov. 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.11 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 51
    • 43249091850 scopus 로고    scopus 로고
    • A comparative study of energy minimization methods for Markov random fields with smoothness-based priors
    • Jun.
    • R. Szeliski et al., "A comparative study of energy minimization methods for Markov random fields with smoothness-based priors," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 6, pp. 1068-1080, Jun. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.6 , pp. 1068-1080
    • Szeliski, R.1
  • 52
    • 0023854011 scopus 로고
    • A transformation for orderingmultispectral data in terms of image quality with implications for noise removal
    • Jan.
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for orderingmultispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988.
    • (1988) IEEE Trans. Geosci. Remote Sens. , vol.26 , Issue.1 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 53
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multiclass classification by pairwise coupling
    • T.-F. Wu, C.-J. Lin, and R. C. Weng, "Probability estimates for multiclass classification by pairwise coupling," J. Mach. Learn. Res., vol. 5, pp. 975-1005, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.