메뉴 건너뛰기




Volumn 8, Issue 6, 2015, Pages 2784-2797

Band Selection Using Improved Sparse Subspace Clustering for Hyperspectral Imagery Classification

Author keywords

Band selection; classification; hyperspectral imagery (HSI); improved sparse subspace clustering (ISSC)

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; FACTORIZATION; MATRIX ALGEBRA; OPTIMIZATION; PRINCIPAL COMPONENT ANALYSIS; REMOTE SENSING; SPECTROSCOPY; STRUCTURE (COMPOSITION);

EID: 85027925065     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2015.2417156     Document Type: Article
Times cited : (179)

References (57)
  • 1
    • 84902073586 scopus 로고    scopus 로고
    • A discriminative metric learning based anomaly detection method
    • Nov.
    • B. Du and L. Zhang, "A discriminative metric learning based anomaly detection method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6844-6857, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 6844-6857
    • Du, B.1    Zhang, L.2
  • 2
    • 84896957991 scopus 로고    scopus 로고
    • Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia
    • R. A. Garcia, P. R. Fearns, and L. I. McKinna, "Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia," Remote Sens. Environ., vol. 147, pp. 186-205, 2014.
    • (2014) Remote Sens. Environ. , vol.147 , pp. 186-205
    • Garcia, R.A.1    Fearns, P.R.2    McKinna, L.I.3
  • 3
    • 84889672730 scopus 로고    scopus 로고
    • Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping
    • L. Demarchi et al., "Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping," ISPRS J. Photogramm. Remote Sens., vol. 87, pp. 166-179, 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.87 , pp. 166-179
    • Demarchi, L.1
  • 4
    • 84898634853 scopus 로고    scopus 로고
    • Urban tree species mapping using hyperspectral and lidar data fusion
    • M. Alonzo, B. Bookhagen, and D. A. Roberts, "Urban tree species mapping using hyperspectral and lidar data fusion," Remote Sens. Environ., vol. 148, pp. 70-83, 2014.
    • (2014) Remote Sens. Environ. , vol.148 , pp. 70-83
    • Alonzo, M.1    Bookhagen, B.2    Roberts, D.A.3
  • 5
    • 84866367216 scopus 로고    scopus 로고
    • Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields
    • 2011
    • W. D. Hively et al., "Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields," Appl. Environ. Soil Sci., vol. 2011, pp. 1-13, 2011.
    • (2011) Appl. Environ. Soil Sci. , pp. 1-13
    • Hively, W.D.1
  • 6
    • 84886729836 scopus 로고    scopus 로고
    • Ground-level hyperspectral imagery for detecting weeds in wheat fields
    • I. Herrmann et al., "Ground-level hyperspectral imagery for detecting weeds in wheat fields," Precis. Agric., vol. 14, no. 6, pp. 637-659, 2013.
    • (2013) Precis. Agric. , vol.14 , Issue.6 , pp. 637-659
    • Herrmann, I.1
  • 7
    • 84869886422 scopus 로고    scopus 로고
    • Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430-970 nm)
    • R. J. Murphy and S. T. Monteiro, "Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430-970 nm)," ISPRS J. Photogramm. Remote Sens., vol. 75, pp. 29-39, 2013.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.75 , pp. 29-39
    • Murphy, R.J.1    Monteiro, S.T.2
  • 8
    • 84904474157 scopus 로고    scopus 로고
    • Using airborne hyperspectral data to characterize the surface pH and mineralogy of pyrite mine tailings
    • N. Zabcic et al., "Using airborne hyperspectral data to characterize the surface pH and mineralogy of pyrite mine tailings," Int. J. Appl. Earth Observ. Geoinf., vol. 32, pp. 152-162, 2014.
    • (2014) Int. J. Appl. Earth Observ. Geoinf. , vol.32 , pp. 152-162
    • Zabcic, N.1
  • 10
    • 14644435059 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
    • Mar.
    • A. Plaza et al., "Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 466-479, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 466-479
    • Plaza, A.1
  • 11
    • 34249865650 scopus 로고    scopus 로고
    • Feature extraction of hyperspectral images using wavelet and matching pursuit
    • P. H. Hsu, "Feature extraction of hyperspectral images using wavelet and matching pursuit," ISPRS J. Photogramm. Remote Sens., vol. 62, no. 2, pp. 78-92, 2007.
    • (2007) ISPRS J. Photogramm. Remote Sens. , vol.62 , Issue.2 , pp. 78-92
    • Hsu, P.H.1
  • 12
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • May
    • M. Pal and G. M. Foody, "Feature selection for classification of hyperspectral data by SVM," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 13
    • 84894515623 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction via the ENH-LTSA method for hyperspectral image classification
    • Feb.
    • W. Sun et al., "Nonlinear dimensionality reduction via the ENH-LTSA method for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 2, pp. 375-388, Feb. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.2 , pp. 375-388
    • Sun, W.1
  • 14
    • 84939246471 scopus 로고    scopus 로고
    • Unsupervised feature extraction and band subset selection techniques based on relative entropy criteria for hyperspectral data analysis
    • E. Arzuaga-Cruz, L. O. Jimenez-Rodriguez, and M. Velez-Reyes, "Unsupervised feature extraction and band subset selection techniques based on relative entropy criteria for hyperspectral data analysis," AeroSense, vol. 2003, pp. 462-473, 2003.
    • (2003) AeroSense , vol.2003 , pp. 462-473
    • Arzuaga-Cruz, E.1    Jimenez-Rodriguez, L.O.2    Velez-Reyes, M.3
  • 15
    • 4143064738 scopus 로고    scopus 로고
    • Methodology for hyperspectral band selection
    • P. Bajcsy and P. Groves, "Methodology for hyperspectral band selection," Photogramm. Eng. Remote Sens., vol. 70, no. 7, pp. 793-802, 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.7 , pp. 793-802
    • Bajcsy, P.1    Groves, P.2
  • 16
    • 33750590333 scopus 로고    scopus 로고
    • Band selection for hyperspectral image classification using mutual information
    • Oct.
    • B. Guo et al., "Band selection for hyperspectral image classification using mutual information," IEEE Geosci. Remote Sens. Lett., vol. 3, no. 4, pp. 522-526, Oct. 2006.
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , Issue.4 , pp. 522-526
    • Guo, B.1
  • 17
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • Jun.
    • C.-I. Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575-1585, Jun. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 18
    • 36348942491 scopus 로고    scopus 로고
    • Clustering-based hyperspectral band selection using information measures
    • Dec.
    • A. Martínez-Usó et al., "Clustering-based hyperspectral band selection using information measures," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4158-4171, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 4158-4171
    • Martínez-Usó, A.1
  • 19
    • 84861735806 scopus 로고    scopus 로고
    • Unsupervised band selection for hyperspectral imagery classification without manual band removal
    • Apr.
    • S. Jia et al., "Unsupervised band selection for hyperspectral imagery classification without manual band removal," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 531-543, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 531-543
    • Jia, S.1
  • 20
    • 0025199172 scopus 로고
    • Optimum band selection for supervised classification of multispectral data
    • P. Mausel, W. Kramber, and J. Lee, "Optimum band selection for supervised classification of multispectral data," Photogramm. Eng. Remote Sens., vol. 56, pp. 55-60, 1990.
    • (1990) Photogramm. Eng. Remote Sens. , vol.56 , pp. 55-60
    • Mausel, P.1    Kramber, W.2    Lee, J.3
  • 21
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Oct.
    • Q. Du and H. Yang, "Similarity-based unsupervised band selection for hyperspectral image analysis," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 564-568, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 22
    • 84879900101 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery: A new approach based on complex networks
    • Sep.
    • W. Xia, B. Wang, and L. Zhang, "Band selection for hyperspectral imagery: A new approach based on complex networks," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5, pp. 1229-1233, Sep. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.5 , pp. 1229-1233
    • Xia, W.1    Wang, B.2    Zhang, L.3
  • 23
    • 84945278269 scopus 로고    scopus 로고
    • Band selection and its impact on target detection and classification in hyperspectral image analysis
    • Oct. 27-28
    • Q. Du, "Band selection and its impact on target detection and classification in hyperspectral image analysis," in Proc. IEEE Workshop Adv. Tech. Anal. Remotely Sens. Data, Greenbelt, MD, USA, Oct. 27-28, 2003, pp. 374-377.
    • (2003) Proc. IEEE Workshop Adv. Tech. Anal. Remotely Sens. Data, Greenbelt, MD, USA , pp. 374-377
    • Du, Q.1
  • 24
    • 78650930212 scopus 로고    scopus 로고
    • An efficient method for supervised hyperspectral band selection
    • Jan.
    • H. Yang et al., "An efficient method for supervised hyperspectral band selection," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 138-142, Jan. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 138-142
    • Yang, H.1
  • 25
    • 84907464023 scopus 로고    scopus 로고
    • A sparse representation-based binary hypothesis model for target detection in hyperspectral images
    • Mar.
    • Y. Zhang, B. Du, and L. Zhang, "A sparse representation-based binary hypothesis model for target detection in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1346-1354, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1346-1354
    • Zhang, Y.1    Du, B.2    Zhang, L.3
  • 26
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 27
    • 79957470922 scopus 로고    scopus 로고
    • Sparse representation for target detection in hyperspectral imagery
    • Jun.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Sparse representation for target detection in hyperspectral imagery," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 629-640, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 629-640
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 29
    • 79960071363 scopus 로고    scopus 로고
    • Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization
    • J. M. Li and Y. T. Qian, "Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization," J. Zhejiang Univ. Sci. C, vol. 12, no. 7, pp. 542-549, 2011.
    • (2011) J. Zhejiang Univ. Sci. C , vol.12 , Issue.7 , pp. 542-549
    • Li, J.M.1    Qian, Y.T.2
  • 31
    • 84906231043 scopus 로고    scopus 로고
    • Band selection in hyperspectral imagery using sparse support vector machines
    • S. Chepushtanova, C. Gittins, and M. Kirby, "Band selection in hyperspectral imagery using sparse support vector machines," in Proc. SPIE DSS Conf., 2014, p. 90881F.
    • (2014) Proc. SPIE DSS Conf. , pp. 90881F
    • Chepushtanova, S.1    Gittins, C.2    Kirby, M.3
  • 33
    • 84884541998 scopus 로고    scopus 로고
    • Sparse subspace clustering: Algorithm, theory, and applications
    • Nov.
    • E. Elhamifar and R. Vidal, "Sparse subspace clustering: Algorithm, theory, and applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2765-2781, Nov. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.11 , pp. 2765-2781
    • Elhamifar, E.1    Vidal, R.2
  • 34
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. Von Luxburg, "A tutorial on spectral clustering," Statist. Comput., vol. 17, no. 4, pp. 395-416, 2007.
    • (2007) Statist. Comput. , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 36
    • 34547688865 scopus 로고    scopus 로고
    • An interior-point method for largescale L1-regularized logistic regression
    • K. Koh, S.-J. Kim, and S. P. Boyd, "An interior-point method for largescale L1-regularized logistic regression," J. Mach. Learn. Res., vol. 8, no. 8, pp. 1519-1555, 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , Issue.8 , pp. 1519-1555
    • Koh, K.1    Kim, S.-J.2    Boyd, S.P.3
  • 37
    • 0032131292 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33-61, 1999.
    • (1999) SIAM J. Sci. Comput. , vol.20 , Issue.1 , pp. 33-61
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 38
    • 79952307213 scopus 로고    scopus 로고
    • Alternating direction algorithms for L1-problems in compressive sensing
    • J. Yang and Y. Zhang, "Alternating direction algorithms for L1-problems in compressive sensing," SIAM J. Sci. Comput., vol. 33, no. 1, pp. 250-278, 2011.
    • (2011) SIAM J. Sci. Comput. , vol.33 , Issue.1 , pp. 250-278
    • Yang, J.1    Zhang, Y.2
  • 39
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Stat. Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Stat. Soc. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 40
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," J. Roy. Stat. Soc. B, vol. 67, no. 2, pp. 301-320, 2005.
    • (2005) J. Roy. Stat. Soc. B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 42
    • 84867854316 scopus 로고    scopus 로고
    • Robust and efficient subspace segmentation via least squares regression
    • Oct. 7-13
    • C.-Y. Lu et al., "Robust and efficient subspace segmentation via least squares regression," in Proc. 12th Eur. Conf. Comput. Vis. Part VII, Florence, Italy, Oct. 7-13, 2012, pp. 347-360.
    • (2012) Proc. 12th Eur. Conf. Comput. Vis. Part VII, Florence, Italy , pp. 347-360
    • Lu, C.-Y.1
  • 43
    • 0004236492 scopus 로고    scopus 로고
    • Baltimore Maryland: Johns Hopkins University Press
    • G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, Maryland: Johns Hopkins University Press, 2012.
    • (2012) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 46
    • 84897912337 scopus 로고    scopus 로고
    • Spectral clustering of high-dimensional data exploiting sparse representation vectors
    • S. Wu, X. Feng, and W. Zhou, "Spectral clustering of high-dimensional data exploiting sparse representation vectors," Neurocomputing, vol. 135, pp. 229-239, 2014.
    • (2014) Neurocomputing , vol.135 , pp. 229-239
    • Wu, S.1    Feng, X.2    Zhou, W.3
  • 47
    • 10044254422 scopus 로고    scopus 로고
    • How many clusters? An information-theoretic perspective
    • S. Still and W. Bialek, "How many clusters? An information-theoretic perspective," Neural Comput., vol. 16, no. 12, pp. 2483-2506, 2004.
    • (2004) Neural Comput. , vol.16 , Issue.12 , pp. 2483-2506
    • Still, S.1    Bialek, W.2
  • 48
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • R. Tibshirani, G. Walther, and T. Hastie, "Estimating the number of clusters in a data set via the gap statistic," J. Roy. Stat. Soc. B, vol. 63, no. 2, pp. 411-423, 2001.
    • (2001) J. Roy. Stat. Soc. B , vol.63 , Issue.2 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 49
    • 85028199436 scopus 로고    scopus 로고
    • Classifying existing and generating new training image patterns in kernel space
    • Stanford University, CA, USA
    • M. Honarkhah and J. Caers, "Classifying existing and generating new training image patterns in kernel space," in Proc. 21st Stanford Center Reservoir Forecast. Aliate Meeting (SCRF), Stanford University, CA, USA, 2008, pp. 1-38.
    • (2008) Proc. 21st Stanford Center Reservoir Forecast. Aliate Meeting (SCRF) , pp. 1-38
    • Honarkhah, M.1    Caers, J.2
  • 50
    • 77956519059 scopus 로고    scopus 로고
    • Speaker diarization exploiting the eigengap criterion and cluster ensembles
    • Nov.
    • N. Bassiou, V. Moschou, and C. Kotropoulos, "Speaker diarization exploiting the eigengap criterion and cluster ensembles," IEEE Trans. Audio Speech Lang. Process., vol. 18, no. 8, pp. 2134-2144, Nov. 2010.
    • (2010) IEEE Trans. Audio Speech Lang. Process. , vol.18 , Issue.8 , pp. 2134-2144
    • Bassiou, N.1    Moschou, V.2    Kotropoulos, C.3
  • 52
    • 77954088141 scopus 로고    scopus 로고
    • Stochastic simulation of patterns using distance-based pattern modeling
    • M. Honarkhah and J. Caers, "Stochastic simulation of patterns using distance-based pattern modeling," Math. Geosci., vol. 42, no. 5, pp. 487-517, 2010.
    • (2010) Math. Geosci. , vol.42 , Issue.5 , pp. 487-517
    • Honarkhah, M.1    Caers, J.2
  • 53
    • 72149111677 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery using affinity propagation
    • Dec.
    • Y. Qian, F. Yao, and S. Jia, "Band selection for hyperspectral imagery using affinity propagation," IET Comput. Vis., vol. 3, no. 4, pp. 213-222, Dec. 2009.
    • (2009) IET Comput. Vis. , vol.3 , Issue.4 , pp. 213-222
    • Qian, Y.1    Yao, F.2    Jia, S.3
  • 54
    • 0033224770 scopus 로고    scopus 로고
    • A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
    • Nov.
    • C.-I. Chang et al., "A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2631-2641, Nov. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1
  • 55
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Jan.
    • T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Trans. Inf. Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 57
    • 80052341119 scopus 로고    scopus 로고
    • Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit
    • R. Rubinstein, M. Zibulevsky, and M. Elad, "Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit," CS Technion, vol. 40, pp. 1-15, 2008.
    • (2008) CS Technion , vol.40 , pp. 1-15
    • Rubinstein, R.1    Zibulevsky, M.2    Elad, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.