메뉴 건너뛰기




Volumn 14, Issue 2, 2012, Pages 272-277

A discriminative manifold learning based dimension reduction method for hyperspectral classification

Author keywords

Dimension reduction; Hyperspectral classification; Manifold learning

Indexed keywords

IMAGE PROCESSING; SPACE PLATFORMS; SPECTROSCOPY;

EID: 84863976875     PISSN: 15622479     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (62)

References (20)
  • 2
    • 79955590723 scopus 로고    scopus 로고
    • Random selection based anomaly detector for hyperspectral imagery
    • May
    • B. Du and L. Z hang, "Random Selection Based Anomaly Detector for Hyperspectral Imagery," IEEE Trans. on Geoscience and Remote Sensing, vol. 49, no. 5, pp. 1578-1589, May, 2011.
    • (2011) IEEE Trans. on Geoscience and Remote Sensing , vol.49 , Issue.5 , pp. 1578-1589
    • Du, B.1    Hang Z, L.2
  • 3
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • 10.1109 / TGRS.2011.2162339
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, "On Combining Multiple Features for Hyperspectral Remote Sensing Image Classification," IEEE Trans. Geosci. Remote Sens., 10.1109 / TGRS.2011.2162339, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens.
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 4
    • 4344635655 scopus 로고    scopus 로고
    • Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering
    • Cambridge, MIT Press
    • Y. Bengio, J. F. Paiement, and P. Vincent, "Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering," Advances in Neural Information Processing Systems 16, Cambridge, MIT Press, pp. 177-184, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.16 , pp. 177-184
    • Bengio, Y.1    Paiement, J.F.2    Vincent, P.3
  • 5
    • 36248950635 scopus 로고    scopus 로고
    • Orthogonal neighborhood preserving projections: A projection-based dimensionality reduction technique
    • DOI 10.1109/TPAMI.2007.1131
    • E. Kokiopoulou and Y. Saad, "Orthogonal Neighborhood Preserving Projections: A Projection-Based Dimensionality Reduction Technique," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 12, pp. 2143-2156, 2007. (Pubitemid 350124063)
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.12 , pp. 2143-2156
    • Kokiopoulou, E.1    Saad, Y.2
  • 6
    • 77954564059 scopus 로고    scopus 로고
    • Anomaly detection for hyperspectral images based on robust locally linear embedding
    • L. Ma and M. M. Crawford, "Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding," J. Infrared, Millim. Te., vol. 31, no. 6, pp. 753-762, 2010.
    • (2010) J. Infrared, Millim. Te. , vol.31 , Issue.6 , pp. 753-762
    • Ma, L.1    Crawford, M.M.2
  • 8
  • 9
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. Silva, and J. C. Langford. "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 2319, 2000.
    • (2000) Science , vol.290 , Issue.2319
    • Tenenbaum, J.B.1    Silva, V.2    Langford, J.C.3
  • 10
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 2323, 2000.
    • (2000) Science , vol.290 , Issue.2323
    • Roweis, S.T.1    Saul, L.K.2
  • 11
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," In Advances in neural information processing systems, vol. 1, pp. 585-592, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.1 , pp. 585-592
    • Belkin, M.1    Niyogi, P.2
  • 16
    • 68549120964 scopus 로고    scopus 로고
    • Patch alignment for dimensionality reduction
    • T. Zhang, D. Tao, X. Li, and J. Yang, "Patch alignment for dimensionality reduction," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1299-1313, 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1299-1313
    • Zhang, T.1    Tao, D.2    Li, X.3    Yang, J.4
  • 19
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger and L. K. Saul, "Distance metric learning for large margin nearest neighbor classification," J. Mach. Learn. Res., vol. 10, pp. 207-244, 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 20
    • 33749550361 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Vancouver, Canada, Dec.
    • K. Q. Weinberger, J. Blitzer, and L. K. Saul, "Distance metric learning for large margin nearest neighbor classification," in Proc. Adv. Neural Inf. Process. Syst., Vancouver, Canada, Dec., pp. 1475-1482, 2006.
    • (2006) Proc. Adv. Neural Inf. Process. Syst. , pp. 1475-1482
    • Weinberger, K.Q.1    Blitzer, J.2    Saul, L.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.