메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages

Erratum to: A molecular genetic toolbox for Yarrowia lipolytica (Biotechnol Biofuels (2017) 10 (2) DOI: 10.1186/s13068-016-0687-7);A molecular genetic toolbox for Yarrowia lipolytica

Author keywords

Genome sequence; GFP localization; Hygromycin B; Isogenic; Organelle labeling; Overexpression plasmid; Protein tagging; Superfolder GFP; Tools; Yarrowia lipolytica

Indexed keywords

CYTOLOGY; GENES; PROTEINS; TOOLS;

EID: 85007610605     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-017-0731-2     Document Type: Erratum
Times cited : (52)

References (137)
  • 1
    • 84964354678 scopus 로고    scopus 로고
    • Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum: Chromosome transfer and exchange in F. oxysporum
    • Vlaardingerbroek I, Beerens B, Rose L, Fokkens L, Cornelissen BJC, Rep M. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum: chromosome transfer and exchange in F. oxysporum. Environ Microbiol. 2016. doi: 10.1111/1462-2920.13281.
    • (2016) Environ Microbiol
    • Vlaardingerbroek, I.1    Beerens, B.2    Rose, L.3    Fokkens, L.4    Cornelissen, B.J.C.5    Rep, M.6
  • 2
    • 79960949108 scopus 로고    scopus 로고
    • Mechanisms of chromosome number evolution in yeast
    • 1:CAS:528:DC%2BC3MXhtVGqs7fN (Fay JC, editor)
    • Gordon JL, Byrne KP, Wolfe KH. Mechanisms of chromosome number evolution in yeast. PLoS Genet. 2011;7:e1002190 (Fay JC, editor).
    • (2011) PLoS Genet. , vol.7
    • Gordon, J.L.1    Byrne, K.P.2    Wolfe, K.H.3
  • 3
    • 62149122605 scopus 로고    scopus 로고
    • Neocentromeres form efficiently at multiple possible loci in Candida albicans
    • Copenhaver GP, editor
    • Ketel C, Wang HSW, McClellan M, Bouchonville K, Selmecki A, Lahav T, et al. Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet. 2009;5:e1000400 (Copenhaver GP, editor).
    • (2009) PLoS Genet. , vol.5
    • Ketel, C.1    Wang, H.S.W.2    McClellan, M.3    Bouchonville, K.4    Selmecki, A.5    Lahav, T.6
  • 5
    • 0027252075 scopus 로고
    • Chromosomal polymorphism of the yeast Yarrowia lipolytica and related species: Electrophoretic karyotyping and hybridization with cloned genes
    • 1:CAS:528:DyaK3sXltFSgt70%3D
    • Naumova E, Naumov G, Fournier P, Nguyen HV, Gaillardin C. Chromosomal polymorphism of the yeast Yarrowia lipolytica and related species: electrophoretic karyotyping and hybridization with cloned genes. Curr Genet. 1993;23:450-4.
    • (1993) Curr Genet , vol.23 , pp. 450-454
    • Naumova, E.1    Naumov, G.2    Fournier, P.3    Nguyen, H.V.4    Gaillardin, C.5
  • 6
    • 79956121131 scopus 로고    scopus 로고
    • The hydrocarbon-degrading oleaginous yeast Yarrowia lipolytica
    • Timmis KN, editor. [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; Accessed 10 Jun 2016
    • Beopoulos A, Desfougeres T, Sabirova J, Zinjarde S, Neuvéglise C, Nicaud J-M. The hydrocarbon-degrading oleaginous yeast Yarrowia lipolytica. In: Timmis KN, editor. Handb. Hydrocarb. Lipid Microbiol. [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 2111-2121. http://link.springer.com/10.1007/978-3-540-77587-4-152. Accessed 10 Jun 2016.
    • (2010) Handb. Hydrocarb. Lipid Microbiol. , pp. 2111-2121
    • Beopoulos, A.1    Desfougeres, T.2    Sabirova, J.3    Zinjarde, S.4    Neuvéglise, C.5    Nicaud, J.-M.6
  • 7
    • 0344002683 scopus 로고    scopus 로고
    • Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica
    • 1:CAS:528:DC%2BD3cXislWju78%3D
    • Madzak C, Tréton B, Blanchin-Roland S. Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol. 2000;2:207-16.
    • (2000) J Mol Microbiol Biotechnol , vol.2 , pp. 207-216
    • Madzak, C.1    Tréton, B.2    Blanchin-Roland, S.3
  • 8
    • 37049228872 scopus 로고
    • Sexual reproduction in Candida lipolytica
    • 1:STN:280:DyaE3c%2FovVKktA%3D%3D
    • Wickerham LJ, Kurtzman CP, Herman AI. Sexual reproduction in Candida lipolytica. Science. 1970;167:1141.
    • (1970) Science , vol.167 , pp. 1141
    • Wickerham, L.J.1    Kurtzman, C.P.2    Herman, A.I.3
  • 9
    • 85009461393 scopus 로고    scopus 로고
    • Draft genome sequence of the dimorphic yeast Yarrowia lipolytica strain W29
    • Pomraning KR, Baker SE. Draft genome sequence of the dimorphic yeast Yarrowia lipolytica strain W29. Genome Announc. 2015;3:e01211-5.
    • (2015) Genome Announc. , vol.3 , pp. e01211-e01215
    • Pomraning, K.R.1    Baker, S.E.2
  • 10
    • 85003638105 scopus 로고    scopus 로고
    • Draft genome sequence of the oleaginous yeast Yarrowia lipolytica PO1f, a commonly used metabolic engineering host
    • Liu L, Alper HS. Draft genome sequence of the oleaginous yeast Yarrowia lipolytica PO1f, a commonly used metabolic engineering host. Genome Announc. 2014;2:e00652-14.
    • (2014) Genome Announc. , vol.2 , pp. e00652-e00714
    • Liu, L.1    Alper, H.S.2
  • 11
    • 84891588399 scopus 로고    scopus 로고
    • Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining
    • 1:CAS:528:DC%2BC3sXmsVWrs7g%3D
    • Kretzschmar A, Otto C, Holz M, Werner S, Hübner L, Barth G. Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining. Curr Genet. 2013;59:63-72.
    • (2013) Curr Genet , vol.59 , pp. 63-72
    • Kretzschmar, A.1    Otto, C.2    Holz, M.3    Werner, S.4    Hübner, L.5    Barth, G.6
  • 12
    • 84874802005 scopus 로고    scopus 로고
    • Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains
    • 1:CAS:528:DC%2BC3sXjsleisrc%3D
    • Verbeke J, Beopoulos A, Nicaud J-M. Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains. Biotechnol Lett. 2013;35:571-6.
    • (2013) Biotechnol Lett , vol.35 , pp. 571-576
    • Verbeke, J.1    Beopoulos, A.2    Nicaud, J.-M.3
  • 13
    • 0034627808 scopus 로고    scopus 로고
    • Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica
    • 1:CAS:528:DC%2BD3cXjvVKmug%3D%3D
    • Titorenko VI, Chan H, Rachubinski RA. Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J Cell Biol. 2000;148:29-44.
    • (2000) J Cell Biol , vol.148 , pp. 29-44
    • Titorenko, V.I.1    Chan, H.2    Rachubinski, R.A.3
  • 14
    • 80053459194 scopus 로고    scopus 로고
    • The lipases from Yarrowia lipolytica: Genetics, production, regulation, biochemical characterization and biotechnological applications
    • 1:CAS:528:DC%2BC3MXht1Kktb3I
    • Fickers P, Marty A, Nicaud JM. The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv. 2011;29:632-44.
    • (2011) Biotechnol Adv , vol.29 , pp. 632-644
    • Fickers, P.1    Marty, A.2    Nicaud, J.M.3
  • 15
    • 84991244043 scopus 로고    scopus 로고
    • Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica
    • Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. Npj Syst Biol Appl. 2016;2:16005.
    • (2016) Npj Syst Biol Appl. , vol.2 , pp. 16005
    • Kerkhoven, E.J.1    Pomraning, K.R.2    Baker, S.E.3    Nielsen, J.4
  • 16
    • 84945151760 scopus 로고    scopus 로고
    • Optimization of lipid production with a genome-scale model of Yarrowia lipolytica
    • [Internet]. Accessed 15 Jan 2016
    • Kavšček M, Bhutada G, Madl T, Natter K. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Syst Biol [Internet]. 2015; 9. http://www.biomedcentral.com/1752-0509/9/72. Accessed 15 Jan 2016.
    • (2015) BMC Syst Biol , pp. 9
    • Kavšček, M.1    Bhutada, G.2    Madl, T.3    Natter, K.4
  • 17
    • 84892840633 scopus 로고    scopus 로고
    • Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production
    • [Internet]. Accessed 15 Jan 2016
    • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun [Internet]. 2014; 5. http://www.nature.com/doifinder/10.1038/ncomms4131. Accessed 15 Jan 2016.
    • (2014) Nat Commun , pp. 5
    • Blazeck, J.1    Hill, A.2    Liu, L.3    Knight, R.4    Miller, J.5    Pan, A.6
  • 18
    • 84894048651 scopus 로고    scopus 로고
    • Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica
    • Matthaus F, Ketelhot M, Gatter M, Barth G. Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl Environ Microbiol. 2014;80:1660-9.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 1660-1669
    • Matthaus, F.1    Ketelhot, M.2    Gatter, M.3    Barth, G.4
  • 19
    • 84883802093 scopus 로고    scopus 로고
    • Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica
    • 1:CAS:528:DC%2BC3sXhtFCisr7L
    • Xue Z, Sharpe PL, Hong S-P, Yadav NS, Xie D, Short DR, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol. 2013;31:734-40.
    • (2013) Nat Biotechnol , vol.31 , pp. 734-740
    • Xue, Z.1    Sharpe, P.L.2    Hong, S.-P.3    Yadav, N.S.4    Xie, D.5    Short, D.R.6
  • 21
    • 84922239633 scopus 로고    scopus 로고
    • Fluorescence Staining of Mitochondria for morphology analysis in Saccharomyces cerevisiae
    • Xiao W, editor. [Internet]. New York: Springer New York; Accessed 28 Mar 2016
    • Dimmer KS. Fluorescence Staining of Mitochondria for morphology analysis in Saccharomyces cerevisiae. In: Xiao W, editor. Yeast Protoc [Internet]. New York: Springer New York; 2014. p. 131-52. http://link.springer.com/10.1007/978-1-4939-0799-1-9. Accessed 28 Mar 2016.
    • (2014) Yeast Protoc , pp. 131-152
    • Dimmer, K.S.1
  • 22
    • 84924023989 scopus 로고    scopus 로고
    • Microscopic and spectroscopic techniques to investigate lipid droplet formation and turnover in yeast
    • 1:CAS:528:DC%2BC28Xls12rtLw%3D
    • Wolinski H, Kohlwein SD. Microscopic and spectroscopic techniques to investigate lipid droplet formation and turnover in yeast. Methods Mol Biol Clifton NJ. 2015;1270:289-305.
    • (2015) Methods Mol Biol Clifton NJ. , vol.1270 , pp. 289-305
    • Wolinski, H.1    Kohlwein, S.D.2
  • 23
    • 2642696057 scopus 로고    scopus 로고
    • Cell wall and secreted proteins of Candida albicans: Identification, function, and expression
    • 1:CAS:528:DyaK1cXitF2jsb8%3D
    • Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev. 1998;62:130-80.
    • (1998) Microbiol Mol Biol Rev , vol.62 , pp. 130-180
    • Chaffin, W.L.1    López-Ribot, J.L.2    Casanova, M.3    Gozalbo, D.4    Martínez, J.P.5
  • 24
    • 34447556219 scopus 로고    scopus 로고
    • Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red
    • 1:CAS:528:DC%2BD2sXhtFGjtLrK
    • Ram AFJ, Klis FM. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc. 2006;1:2253-6.
    • (2006) Nat Protoc , vol.1 , pp. 2253-2256
    • Ram, A.F.J.1    Klis, F.M.2
  • 25
    • 36849043112 scopus 로고    scopus 로고
    • Multidrug resistance in fungi
    • 1:CAS:528:DC%2BD2sXhsVahtLzJ
    • Gulshan K, Moye-Rowley WS. Multidrug resistance in fungi. Eukaryot Cell. 2007;6:1933-42.
    • (2007) Eukaryot Cell , vol.6 , pp. 1933-1942
    • Gulshan, K.1    Moye-Rowley, W.S.2
  • 26
    • 84861000651 scopus 로고    scopus 로고
    • Never say dye: New roles for an old fluorochrome
    • 1:CAS:528:DC%2BC38Xhtl2lu7%2FM
    • Fotopoulos V. Never say dye: new roles for an old fluorochrome. Plant Signal Behav. 2012;7:342-4.
    • (2012) Plant Signal Behav. , vol.7 , pp. 342-344
    • Fotopoulos, V.1
  • 27
    • 0035948246 scopus 로고    scopus 로고
    • Intracellular pH-dependent efflux of the fluorescent probe pyranine in the yeast Yarrowia lipolytica
    • 1:CAS:528:DC%2BD3MXks1Oms7c%3D
    • Aguedo M, Waché Y, Belin J-M. Intracellular pH-dependent efflux of the fluorescent probe pyranine in the yeast Yarrowia lipolytica. FEMS Microbiol Lett. 2001;200:185-9.
    • (2001) FEMS Microbiol Lett , vol.200 , pp. 185-189
    • Aguedo, M.1    Waché, Y.2    Belin, J.-M.3
  • 28
    • 84929378123 scopus 로고    scopus 로고
    • Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis
    • Nowrousian M, editor
    • Pomraning KR, Wei S, Karagiosis SA, Kim Y-M, Dohnalkova AC, Arey BW, et al. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis. PLOS ONE. 2015;10:e0123188 (Nowrousian M, editor).
    • (2015) PLOS ONE , vol.10
    • Pomraning, K.R.1    Wei, S.2    Karagiosis, S.A.3    Kim, Y.-M.4    Dohnalkova, A.C.5    Arey, B.W.6
  • 29
    • 23444431611 scopus 로고
    • Green fluorescent protein as a marker for gene expression
    • 1:CAS:528:DyaK2cXitFWkurc%3D
    • Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D. Green fluorescent protein as a marker for gene expression. Science. 1994;263:802-5.
    • (1994) Science , vol.263 , pp. 802-805
    • Chalfie, M.1    Tu, Y.2    Euskirchen, G.3    Ward, W.4    Prasher, D.5
  • 31
    • 0000837748 scopus 로고    scopus 로고
    • Yarrowia lipolytica
    • [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; Accessed 4 May 2016
    • Barth G, Gaillardin C. Yarrowia lipolytica. Nonconv Yeasts Biotechnol [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1996. p. 313-88. http://www.springerlink.com/index/10.1007/978-3-642-79856-6-10. Accessed 4 May 2016.
    • (1996) Nonconv Yeasts Biotechnol , pp. 313-388
    • Barth, G.1    Gaillardin, C.2
  • 32
    • 84873450128 scopus 로고    scopus 로고
    • Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109
    • 1:CAS:528:DC%2BC3sXjtFWjtrw%3D
    • Wang Z-P, Xu H-M, Wang G-Y, Chi Z, Chi Z-M. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta BBA-Mol Cell Biol Lipids. 2013;1831:675-82.
    • (2013) Biochim Biophys Acta BBA-Mol Cell Biol Lipids. , vol.1831 , pp. 675-682
    • Wang, Z.-P.1    Xu, H.-M.2    Wang, G.-Y.3    Chi, Z.4    Chi, Z.-M.5
  • 33
    • 84908501374 scopus 로고    scopus 로고
    • The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica
    • 1:CAS:528:DC%2BC2cXhsV2nsrjF
    • Dulermo R, Gamboa-Meléndez H, Dulermo T, Thevenieau F, Nicaud J-M. The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica. FEMS Yeast Res. 2014;14:883-96.
    • (2014) FEMS Yeast Res , vol.14 , pp. 883-896
    • Dulermo, R.1    Gamboa-Meléndez, H.2    Dulermo, T.3    Thevenieau, F.4    Nicaud, J.-M.5
  • 34
    • 84949234923 scopus 로고    scopus 로고
    • Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica
    • 1:STN:280:DC%2BC2MfnvF2ntA%3D%3D (Nielsen J, editor)
    • Tenagy, Park JS, Iwama R, Kobayashi S, Ohta A, Horiuchi H, et al. Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica. FEMS Yeast Res. 2015;15:fov031 (Nielsen J, editor).
    • (2015) FEMS Yeast Res. , vol.15 , pp. fov031
    • Tenagy1    Park, J.S.2    Iwama, R.3    Kobayashi, S.4    Ohta, A.5    Horiuchi, H.6
  • 35
    • 83055177124 scopus 로고    scopus 로고
    • Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach
    • 1:CAS:528:DC%2BC3MXhs1GqtrnL
    • Blazeck J, Liu L, Redden H, Alper H. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol. 2011;77:7905-14.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 7905-7914
    • Blazeck, J.1    Liu, L.2    Redden, H.3    Alper, H.4
  • 36
    • 84879466329 scopus 로고    scopus 로고
    • Identification of the transcription factor Znc1p, which regulates the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica
    • 1:CAS:528:DC%2BC3sXhtVyht77P (Bassilana M, editor)
    • Martinez-Vazquez A, Gonzalez-Hernandez A, Domínguez Á, Rachubinski R, Riquelme M, Cuellar-Mata P, et al. Identification of the transcription factor Znc1p, which regulates the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. PLoS ONE. 2013;8:e66790 (Bassilana M, editor).
    • (2013) PLoS ONE. , vol.8 , pp. e66790
    • Martinez-Vazquez, A.1    Gonzalez-Hernandez, A.2    Domínguez, Á.3    Rachubinski, R.4    Riquelme, M.5    Cuellar-Mata, P.6
  • 38
    • 0242384024 scopus 로고    scopus 로고
    • New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica
    • 1:CAS:528:DC%2BD3sXos1Kmsb0%3D
    • Fickers P, Le Dall M, Gaillardin C, Thonart P, Nicaud J. New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods. 2003;55:727-37.
    • (2003) J Microbiol Methods , vol.55 , pp. 727-737
    • Fickers, P.1    Le Dall, M.2    Gaillardin, C.3    Thonart, P.4    Nicaud, J.5
  • 39
    • 84897501206 scopus 로고    scopus 로고
    • Hygromycin-resistance vectors for gene expression in Pichia pastoris
    • 1:CAS:528:DC%2BC2cXivVCjsLo%3D
    • Yang J, Nie L, Chen B, Liu Y, Kong Y, Wang H, et al. Hygromycin-resistance vectors for gene expression in Pichia pastoris. Yeast Chichester Engl. 2014;31:115-25.
    • (2014) Yeast Chichester Engl. , vol.31 , pp. 115-125
    • Yang, J.1    Nie, L.2    Chen, B.3    Liu, Y.4    Kong, Y.5    Wang, H.6
  • 41
    • 0003121852 scopus 로고
    • Barbara valent. Improved vectors for selecting resistance to hygromycin
    • Carroll Anne M, Sweigard James A. Barbara valent. Improved vectors for selecting resistance to hygromycin. Fungal Genet Newsl. 1994;41:22.
    • (1994) Fungal Genet Newsl. , vol.41 , pp. 22
    • Carroll, A.M.1    Sweigard, J.A.2
  • 42
    • 0023512725 scopus 로고
    • Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli
    • 1:CAS:528:DyaL2sXmtlSmsL0%3D
    • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene. 1987;56:117-24.
    • (1987) Gene , vol.56 , pp. 117-124
    • Punt, P.J.1    Oliver, R.P.2    Dingemanse, M.A.3    Pouwels, P.H.4    Van Den Hondel, C.A.5
  • 43
    • 0028287703 scopus 로고
    • Multiple-copy integration in the yeast Yarrowia lipolytica
    • Le Dall MT, Nicaud JM, Gaillardin C. Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet. 1994;26:38-44.
    • (1994) Curr Genet , vol.26 , pp. 38-44
    • Le Dall, M.T.1    Nicaud, J.M.2    Gaillardin, C.3
  • 46
    • 0027178449 scopus 로고
    • Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica
    • 1:CAS:528:DyaK3sXkvVyjur4%3D
    • Fournier P, Abbas A, Chasles M, Kudla B, Ogrydziak DM, Yaver D, et al. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc Natl Acad Sci USA. 1993;90:4912-6.
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 4912-4916
    • Fournier, P.1    Abbas, A.2    Chasles, M.3    Kudla, B.4    Ogrydziak, D.M.5    Yaver, D.6
  • 47
    • 84870867053 scopus 로고    scopus 로고
    • Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica
    • 1:CAS:528:DC%2BC38XhvV2qtr%2FE
    • Pan P, Hua Q. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS ONE. 2012;7:e51535.
    • (2012) PLoS ONE , vol.7 , pp. e51535
    • Pan, P.1    Hua, Q.2
  • 48
    • 0036359804 scopus 로고    scopus 로고
    • The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms
    • 1:CAS:528:DC%2BD38XotFOgu74%3D
    • Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002;51:1-51.
    • (2002) Adv Appl Microbiol , vol.51 , pp. 1-51
    • Ratledge, C.1    Wynn, J.P.2
  • 49
    • 84930200537 scopus 로고    scopus 로고
    • Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis
    • 1:CAS:528:DC%2BC2MXot1WmtLw%3D
    • Dulermo T, Lazar Z, Dulermo R, Rakicka M, Haddouche R, Nicaud J-M. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. Biochim Biophys Acta. 2015;1851:1107-17.
    • (2015) Biochim Biophys Acta , vol.1851 , pp. 1107-1117
    • Dulermo, T.1    Lazar, Z.2    Dulermo, R.3    Rakicka, M.4    Haddouche, R.5    Nicaud, J.-M.6
  • 50
    • 84924657793 scopus 로고    scopus 로고
    • Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica
    • 1:CAS:528:DC%2BC2MXjvVGgsbg%3D
    • Qiao K, Imam Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N, et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng. 2015;29:56-65.
    • (2015) Metab Eng , vol.29 , pp. 56-65
    • Qiao, K.1    Imam Abidi, S.H.2    Liu, H.3    Zhang, H.4    Chakraborty, S.5    Watson, N.6
  • 51
    • 84870674137 scopus 로고    scopus 로고
    • Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production
    • 1:CAS:528:DC%2BC3sXnvFWqtw%3D%3D
    • Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng. 2013;15:1-9.
    • (2013) Metab Eng , vol.15 , pp. 1-9
    • Tai, M.1    Stephanopoulos, G.2
  • 52
    • 0030698668 scopus 로고    scopus 로고
    • Yeast acetyl-CoA carboxylase is associated with the cytoplasmic surface of the endoplasmic reticulum
    • 1:CAS:528:DyaK2sXnvFCis78%3D
    • Ivessa AS, Schneiter R, Kohlwein SD. Yeast acetyl-CoA carboxylase is associated with the cytoplasmic surface of the endoplasmic reticulum. Eur J Cell Biol. 1997;74:399-406.
    • (1997) Eur J Cell Biol , vol.74 , pp. 399-406
    • Ivessa, A.S.1    Schneiter, R.2    Kohlwein, S.D.3
  • 53
    • 2542478792 scopus 로고    scopus 로고
    • HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD2cXjvF2ktbk%3D
    • Hoja U, Marthol S, Hofmann J, Stegner S, Schulz R, Meier S, et al. HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. J Biol Chem. 2004;279:21779-86.
    • (2004) J Biol Chem , vol.279 , pp. 21779-21786
    • Hoja, U.1    Marthol, S.2    Hofmann, J.3    Stegner, S.4    Schulz, R.5    Meier, S.6
  • 54
    • 0029904850 scopus 로고    scopus 로고
    • Structure-function relationships of the Saccharomyces cerevisiae fatty acid synthase. Three-dimensional structure
    • 1:CAS:528:DyaK28XmvVehtr8%3D
    • Kolodziej SJ, Penczek PA, Schroeter JP, Stoops JK. Structure-function relationships of the Saccharomyces cerevisiae fatty acid synthase. Three-dimensional structure. J Biol Chem. 1996;271:28422-9.
    • (1996) J Biol Chem , vol.271 , pp. 28422-28429
    • Kolodziej, S.J.1    Penczek, P.A.2    Schroeter, J.P.3    Stoops, J.K.4
  • 55
  • 56
    • 33645092384 scopus 로고    scopus 로고
    • Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source
    • 1:CAS:528:DC%2BD28XivVWru7g%3D
    • Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud J-M, et al. Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics. 2006;6:1450-9.
    • (2006) Proteomics , vol.6 , pp. 1450-1459
    • Athenstaedt, K.1    Jolivet, P.2    Boulard, C.3    Zivy, M.4    Negroni, L.5    Nicaud, J.-M.6
  • 57
    • 0030867130 scopus 로고    scopus 로고
    • Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae
    • 1:CAS:528:DyaK2sXnvFWjtr0%3D
    • Athenstaedt K, Daum G. Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae. J Bacteriol. 1997;179:7611-6.
    • (1997) J Bacteriol , vol.179 , pp. 7611-7616
    • Athenstaedt, K.1    Daum, G.2
  • 58
    • 35648995880 scopus 로고    scopus 로고
    • SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast
    • 1:CAS:528:DC%2BD2sXhtFGgs7%2FI
    • Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem. 2007;282:30845-55.
    • (2007) J Biol Chem , vol.282 , pp. 30845-30855
    • Benghezal, M.1    Roubaty, C.2    Veepuri, V.3    Knudsen, J.4    Conzelmann, A.5
  • 59
    • 35648981002 scopus 로고    scopus 로고
    • Identification of a novel lysophospholipid acyltransferase in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD2sXhtFGgsrbJ
    • Jain S, Stanford N, Bhagwat N, Seiler B, Costanzo M, Boone C, et al. Identification of a novel lysophospholipid acyltransferase in Saccharomyces cerevisiae. J Biol Chem. 2007;282:30562-9.
    • (2007) J Biol Chem , vol.282 , pp. 30562-30569
    • Jain, S.1    Stanford, N.2    Bhagwat, N.3    Seiler, B.4    Costanzo, M.5    Boone, C.6
  • 60
    • 84855883560 scopus 로고    scopus 로고
    • YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis
    • 1:CAS:528:DC%2BC38XhtlWqtLs%3D
    • Ayciriex S, Le Guédard M, Camougrand N, Velours G, Schoene M, Leone S, et al. YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis. Mol Biol Cell. 2012;23:233-46.
    • (2012) Mol Biol Cell , vol.23 , pp. 233-246
    • Ayciriex, S.1    Le Guédard, M.2    Camougrand, N.3    Velours, G.4    Schoene, M.5    Leone, S.6
  • 61
    • 84857424979 scopus 로고    scopus 로고
    • Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC38XnsVSmsbo%3D
    • Henry SA, Kohlwein SD, Carman GM. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics. 2012;190:317-49.
    • (2012) Genetics , vol.190 , pp. 317-349
    • Henry, S.A.1    Kohlwein, S.D.2    Carman, G.M.3
  • 62
    • 84871820511 scopus 로고    scopus 로고
    • Lipid droplets and peroxisomes: Key players in cellular lipid homeostasis or a matter of fat-store 'em up or burn'em down
    • 1:CAS:528:DC%2BC3sXjt1eqs7g%3D
    • Kohlwein SD, Veenhuis M, van der Klei IJ. Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store 'em up or burn'em down. Genetics. 2013;193:1-50.
    • (2013) Genetics , vol.193 , pp. 1-50
    • Kohlwein, S.D.1    Veenhuis, M.2    Van Der Klei, I.J.3
  • 63
    • 79959457450 scopus 로고    scopus 로고
    • Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3MXptVCntr8%3D
    • Carman GM, Han G-S. Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu Rev Biochem. 2011;80:859-83.
    • (2011) Annu Rev Biochem , vol.80 , pp. 859-883
    • Carman, G.M.1    Han, G.-S.2
  • 64
    • 84873197436 scopus 로고    scopus 로고
    • Phosphatidate phosphatase, a key regulator of lipid homeostasis
    • 1:CAS:528:DC%2BC38XhtlSntrnI
    • Pascual F, Carman GM. Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim Biophys Acta. 2013;1831:514-22.
    • (2013) Biochim Biophys Acta , vol.1831 , pp. 514-522
    • Pascual, F.1    Carman, G.M.2
  • 65
    • 0018135125 scopus 로고
    • Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli
    • 1:CAS:528:DyaE1cXlvFems7c%3D
    • Raetz CR. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev. 1978;42:614-59.
    • (1978) Microbiol Rev , vol.42 , pp. 614-659
    • Raetz, C.R.1
  • 66
    • 59149106049 scopus 로고    scopus 로고
    • Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis
    • 1:CAS:528:DC%2BD1MXpsVyqtQ%3D%3D
    • Carman GM, Han G-S. Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J Biol Chem. 2009;284:2593-7.
    • (2009) J Biol Chem , vol.284 , pp. 2593-2597
    • Carman, G.M.1    Han, G.-S.2
  • 67
    • 84866914709 scopus 로고    scopus 로고
    • Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast
    • 1:CAS:528:DC%2BC38XhsVarsLrL
    • Su W-M, Han G-S, Casciano J, Carman GM. Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast. J Biol Chem. 2012;287:33364-76.
    • (2012) J Biol Chem , vol.287 , pp. 33364-33376
    • Su, W.-M.1    Han, G.-S.2    Casciano, J.3    Carman, G.M.4
  • 68
    • 84903830620 scopus 로고    scopus 로고
    • Cross-talk phosphorylations by protein kinase C and Pho85p-Pho80p protein kinase regulate Pah1p phosphatidate phosphatase abundance in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC2cXhtFWiur7P
    • Su W-M, Han G-S, Carman GM. Cross-talk phosphorylations by protein kinase C and Pho85p-Pho80p protein kinase regulate Pah1p phosphatidate phosphatase abundance in Saccharomyces cerevisiae. J Biol Chem. 2014;289:18818-30.
    • (2014) J Biol Chem , vol.289 , pp. 18818-18830
    • Su, W.-M.1    Han, G.-S.2    Carman, G.M.3
  • 69
    • 84859488188 scopus 로고    scopus 로고
    • Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism
    • 1:CAS:528:DC%2BC38XkvVWltrk%3D
    • Choi H-S, Su W-M, Han G-S, Plote D, Xu Z, Carman GM. Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism. J Biol Chem. 2012;287:11290-301.
    • (2012) J Biol Chem , vol.287 , pp. 11290-11301
    • Choi, H.-S.1    Su, W.-M.2    Han, G.-S.3    Plote, D.4    Xu, Z.5    Carman, G.M.6
  • 70
    • 79961114473 scopus 로고    scopus 로고
    • YALI0E32769 g (DGA1) and YALI0E16797 g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica
    • 1:CAS:528:DC%2BC3MXhtVaitL%2FJ
    • Athenstaedt K. YALI0E32769 g (DGA1) and YALI0E16797 g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica. Biochim Biophys Acta. 2011;1811:587-96.
    • (2011) Biochim Biophys Acta , vol.1811 , pp. 587-596
    • Athenstaedt, K.1
  • 71
    • 84857917010 scopus 로고    scopus 로고
    • Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts
    • 1:CAS:528:DC%2BC38XitVGgu7k%3D
    • Beopoulos A, Haddouche R, Kabran P, Dulermo T, Chardot T, Nicaud J-M. Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol. 2012;93:1523-37.
    • (2012) Appl Microbiol Biotechnol , vol.93 , pp. 1523-1537
    • Beopoulos, A.1    Haddouche, R.2    Kabran, P.3    Dulermo, T.4    Chardot, T.5    Nicaud, J.-M.6
  • 72
    • 0034717265 scopus 로고    scopus 로고
    • A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast
    • 1:CAS:528:DC%2BD3cXjvFajurs%3D
    • Oelkers P, Tinkelenberg A, Erdeniz N, Cromley D, Billheimer JT, Sturley SL. A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem. 2000;275:15609-12.
    • (2000) J Biol Chem , vol.275 , pp. 15609-15612
    • Oelkers, P.1    Tinkelenberg, A.2    Erdeniz, N.3    Cromley, D.4    Billheimer, J.T.5    Sturley, S.L.6
  • 73
    • 0033974053 scopus 로고    scopus 로고
    • Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD3cXhsFGjt7w%3D
    • Zweytick D, Leitner E, Kohlwein SD, Yu C, Rothblatt J, Daum G. Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. Eur J Biochem FEBS. 2000;267:1075-82.
    • (2000) Eur J Biochem FEBS. , vol.267 , pp. 1075-1082
    • Zweytick, D.1    Leitner, E.2    Kohlwein, S.D.3    Yu, C.4    Rothblatt, J.5    Daum, G.6
  • 74
    • 84884828047 scopus 로고    scopus 로고
    • Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: New insights into the role of intracellular lipases and lipid body organisation
    • 1:CAS:528:DC%2BC3sXht1emsrrJ
    • Dulermo T, Tréton B, Beopoulos A, Kabran Gnankon AP, Haddouche R, Nicaud J-M. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation. Biochim Biophys Acta. 2013;1831:1486-95.
    • (2013) Biochim Biophys Acta , vol.1831 , pp. 1486-1495
    • Dulermo, T.1    Tréton, B.2    Beopoulos, A.3    Kabran Gnankon, A.P.4    Haddouche, R.5    Nicaud, J.-M.6
  • 75
    • 77449113359 scopus 로고    scopus 로고
    • The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria
    • 1:CAS:528:DC%2BC3cXovVentg%3D%3D
    • Ham HJ, Rho HJ, Shin SK, Yoon H-J. The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria. J Biol Chem. 2010;285:3005-13.
    • (2010) J Biol Chem , vol.285 , pp. 3005-3013
    • Ham, H.J.1    Rho, H.J.2    Shin, S.K.3    Yoon, H.-J.4
  • 76
    • 84978628285 scopus 로고    scopus 로고
    • Cellular GFP toxicity and immunogenicity: Potential confounders in in vivo cell tracking experiments
    • 1:CAS:528:DC%2BC28Xht1ektb%2FL
    • Ansari AM, Ahmed AK, Matsangos AE, Lay F, Born LJ, Marti G, et al. Cellular GFP toxicity and immunogenicity: potential confounders in in vivo cell tracking experiments. Stem Cell Rev Rep. 2016;12:553-9.
    • (2016) Stem Cell Rev Rep. , vol.12 , pp. 553-559
    • Ansari, A.M.1    Ahmed, A.K.2    Matsangos, A.E.3    Lay, F.4    Born, L.J.5    Marti, G.6
  • 77
    • 84891762584 scopus 로고    scopus 로고
    • LoQAtE-localization and quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast
    • 1:CAS:528:DC%2BC2cXoslWm
    • Breker M, Gymrek M, Moldavski O, Schuldiner M. LoQAtE-localization and quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast. Nucleic Acids Res. 2014;42:D726-30.
    • (2014) Nucleic Acids Res , vol.42 , pp. D726-D730
    • Breker, M.1    Gymrek, M.2    Moldavski, O.3    Schuldiner, M.4
  • 79
    • 63449128473 scopus 로고    scopus 로고
    • Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum
    • 1:CAS:528:DC%2BD1MXjs1Knsro%3D
    • Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science. 2009;323:1693-7.
    • (2009) Science , vol.323 , pp. 1693-1697
    • Jonikas, M.C.1    Collins, S.R.2    Denic, V.3    Oh, E.4    Quan, E.M.5    Schmid, V.6
  • 80
    • 0031466580 scopus 로고    scopus 로고
    • The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae
    • 1:CAS:528:DyaK2sXotVSrs78%3D
    • Dean N, Zhang YB, Poster JB. The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae. J Biol Chem. 1997;272:31908-14.
    • (1997) J Biol Chem , vol.272 , pp. 31908-31914
    • Dean, N.1    Zhang, Y.B.2    Poster, J.B.3
  • 81
    • 33646582609 scopus 로고    scopus 로고
    • Nuclear recycling of the Pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD28XkslCltro%3D
    • Hung N-J, Johnson AW. Nuclear recycling of the Pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol Cell Biol. 2006;26:3718-27.
    • (2006) Mol Cell Biol , vol.26 , pp. 3718-3727
    • Hung, N.-J.1    Johnson, A.W.2
  • 82
    • 39449092535 scopus 로고    scopus 로고
    • Arx1 is a nuclear export receptor for the 60S ribosomal subunit in yeast
    • 1:CAS:528:DC%2BD1cXlslenurk%3D
    • Hung N-J, Lo K-Y, Patel SS, Helmke K, Johnson AW. Arx1 is a nuclear export receptor for the 60S ribosomal subunit in yeast. Mol Biol Cell. 2008;19:735-44.
    • (2008) Mol Biol Cell , vol.19 , pp. 735-744
    • Hung, N.-J.1    Lo, K.-Y.2    Patel, S.S.3    Helmke, K.4    Johnson, A.W.5
  • 83
    • 73149086161 scopus 로고    scopus 로고
    • A protein microarray-based analysis of S-nitrosylation
    • 1:CAS:528:DC%2BD1MXhsFGlsb3L
    • Foster MW, Forrester MT, Stamler JS. A protein microarray-based analysis of S-nitrosylation. Proc Natl Acad Sci USA. 2009;106:18948-53.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 18948-18953
    • Foster, M.W.1    Forrester, M.T.2    Stamler, J.S.3
  • 84
    • 84861148379 scopus 로고    scopus 로고
    • Oxidative stress tolerance, adenylate cyclase, and autophagy are key players in the chronological life span of Saccharomyces cerevisiae during Winemaking
    • 1:CAS:528:DC%2BC38XlsVSlsbg%3D
    • Orozco H, Matallana E, Aranda A. Oxidative stress tolerance, adenylate cyclase, and autophagy are key players in the chronological life span of Saccharomyces cerevisiae during Winemaking. Appl Environ Microbiol. 2012;78:2748-57.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 2748-2757
    • Orozco, H.1    Matallana, E.2    Aranda, A.3
  • 85
    • 33745851905 scopus 로고    scopus 로고
    • Toward the complete yeast mitochondrial proteome: Multidimensional separation techniques for mitochondrial proteomics
    • 1:CAS:528:DC%2BD28Xlt1yqurc%3D
    • Reinders J, Zahedi RP, Pfanner N, Meisinger C, Sickmann A. Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res. 2006;5:1543-54.
    • (2006) J Proteome Res , vol.5 , pp. 1543-1554
    • Reinders, J.1    Zahedi, R.P.2    Pfanner, N.3    Meisinger, C.4    Sickmann, A.5
  • 86
    • 63449085311 scopus 로고    scopus 로고
    • Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis
    • Kim SK, editor
    • Hess DC, Myers CL, Huttenhower C, Hibbs MA, Hayes AP, Paw J, et al. Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis. PLoS Genet. 2009;5:e1000407 (Kim SK, editor).
    • (2009) PLoS Genet. , vol.5
    • Hess, D.C.1    Myers, C.L.2    Huttenhower, C.3    Hibbs, M.A.4    Hayes, A.P.5    Paw, J.6
  • 87
    • 0013592079 scopus 로고
    • Dimethylsulfoxide as a potential tool for analysis of compartmentation in living plant cells
    • 1:CAS:528:DyaE1MXmtVOlu74%3D
    • Delmer DP. Dimethylsulfoxide as a potential tool for analysis of compartmentation in living plant cells. Plant Physiol. 1979;64:623-9.
    • (1979) Plant Physiol , vol.64 , pp. 623-629
    • Delmer, D.P.1
  • 88
    • 0021229450 scopus 로고
    • Effect of nitrogen source on lipid accumulation in Oleaginous yeasts
    • 1:CAS:528:DyaL2cXltVOisbc%3D
    • Evans Christopher T, Ratledge Colin. Effect of nitrogen source on lipid accumulation in Oleaginous yeasts. J Gen Microbiol. 1984;130:1693-704.
    • (1984) J Gen Microbiol , vol.130 , pp. 1693-1704
    • Evans, C.T.1    Ratledge, C.2
  • 89
    • 0025310930 scopus 로고
    • Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios
    • 1:CAS:528:DyaK3cXltFaiu70%3D
    • Park WS, Murphy PA, Glatz BA. Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios. Can J Microbiol. 1990;36:318-26.
    • (1990) Can J Microbiol , vol.36 , pp. 318-326
    • Park, W.S.1    Murphy, P.A.2    Glatz, B.A.3
  • 91
    • 84946782577 scopus 로고    scopus 로고
    • Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi
    • 1:CAS:528:DC%2BC2MXhslyhu7fM
    • Calvey CH, Su Y-K, Willis LB, McGee M, Jeffries TW. Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresour Technol. 2016;200:780-8.
    • (2016) Bioresour Technol , vol.200 , pp. 780-788
    • Calvey, C.H.1    Su, Y.-K.2    Willis, L.B.3    McGee, M.4    Jeffries, T.W.5
  • 92
    • 84951094804 scopus 로고    scopus 로고
    • The enhanced lipid accumulation in oleaginous microalga by the potential continuous nitrogen-limitation (CNL) strategy
    • 1:CAS:528:DC%2BC2MXitVKrsbzK
    • Liu T, Li Y, Liu F, Wang C. The enhanced lipid accumulation in oleaginous microalga by the potential continuous nitrogen-limitation (CNL) strategy. Bioresour Technol. 2016;203:150-9.
    • (2016) Bioresour Technol , vol.203 , pp. 150-159
    • Liu, T.1    Li, Y.2    Liu, F.3    Wang, C.4
  • 94
    • 3843131947 scopus 로고    scopus 로고
    • A yeast strain lacking lipid particles bears a defect in ergosterol formation
    • 1:CAS:528:DC%2BD2cXlslOku7s%3D
    • Sorger D, Athenstaedt K, Hrastnik C, Daum G. A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem. 2004;279:31190-6.
    • (2004) J Biol Chem , vol.279 , pp. 31190-31196
    • Sorger, D.1    Athenstaedt, K.2    Hrastnik, C.3    Daum, G.4
  • 95
    • 0033821775 scopus 로고    scopus 로고
    • Design and synthesis of potential inhibitors of the ergosterol biosynthesis as antifungal agents
    • 1:CAS:528:DC%2BD3cXmsFylu7s%3D
    • Chung S-K, Lee K-W, Kang HI, Yamashita C, Kudo M, Yoshida Y. Design and synthesis of potential inhibitors of the ergosterol biosynthesis as antifungal agents. Bioorg Med Chem. 2000;8:2475-86.
    • (2000) Bioorg Med Chem. , vol.8 , pp. 2475-2486
    • Chung, S.-K.1    Lee, K.-W.2    Kang, H.I.3    Yamashita, C.4    Kudo, M.5    Yoshida, Y.6
  • 97
    • 84898760087 scopus 로고    scopus 로고
    • Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress
    • Spencer J, Phister TG, Smart KA, Greetham D. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress. BMC Res. Notes. 2014;7:151.
    • (2014) BMC Res. Notes. , vol.7 , pp. 151
    • Spencer, J.1    Phister, T.G.2    Smart, K.A.3    Greetham, D.4
  • 98
    • 84876590928 scopus 로고    scopus 로고
    • Comparison of Yarrowia lipolytica and Pichia pastoris cellular response to different agents of oxidative stress
    • 1:CAS:528:DC%2BC3sXmsVWqsbk%3D
    • Lopes M, Mota M, Belo I. Comparison of Yarrowia lipolytica and Pichia pastoris cellular response to different agents of oxidative stress. Appl Biochem Biotechnol. 2013;170:448-58.
    • (2013) Appl Biochem Biotechnol , vol.170 , pp. 448-458
    • Lopes, M.1    Mota, M.2    Belo, I.3
  • 101
    • 0031007808 scopus 로고    scopus 로고
    • Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin
    • 1:CAS:528:DyaK2sXjvFymtrc%3D
    • Eitzen GA, Szilard RK, Rachubinski RA. Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin. J Cell Biol. 1997;137:1265-78.
    • (1997) J Cell Biol , vol.137 , pp. 1265-1278
    • Eitzen, G.A.1    Szilard, R.K.2    Rachubinski, R.A.3
  • 102
    • 0029591563 scopus 로고
    • Pay32p of the yeast Yarrowia lipolytica is an intraperoxisomal component of the matrix protein translocation machinery
    • 1:CAS:528:DyaK2MXpvV2msLc%3D
    • Szilard RK, Titorenko VI, Veenhuis M, Rachubinski RA. Pay32p of the yeast Yarrowia lipolytica is an intraperoxisomal component of the matrix protein translocation machinery. J Cell Biol. 1995;131:1453-69.
    • (1995) J Cell Biol , vol.131 , pp. 1453-1469
    • Szilard, R.K.1    Titorenko, V.I.2    Veenhuis, M.3    Rachubinski, R.A.4
  • 103
    • 0032572580 scopus 로고    scopus 로고
    • Pex20p of the Yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome
    • 1:CAS:528:DyaK1cXltFGqsrc%3D
    • Titorenko VI, Smith JJ, Szilard RK, Rachubinski RA. Pex20p of the Yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J Cell Biol. 1998;142:403-20.
    • (1998) J Cell Biol , vol.142 , pp. 403-420
    • Titorenko, V.I.1    Smith, J.J.2    Szilard, R.K.3    Rachubinski, R.A.4
  • 104
    • 34047145560 scopus 로고    scopus 로고
    • Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources
    • 1:CAS:528:DC%2BD2sXjvFensr8%3D
    • Wriessnegger T, Gübitz G, Leitner E, Ingolic E, Cregg J, de la Cruz BJ, et al. Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources. Biochim Biophys Acta. 2007;1771:455-61.
    • (2007) Biochim Biophys Acta , vol.1771 , pp. 455-461
    • Wriessnegger, T.1    Gübitz, G.2    Leitner, E.3    Ingolic, E.4    Cregg, J.5    De La Cruz, B.J.6
  • 105
    • 14844360712 scopus 로고    scopus 로고
    • Observation of the peroxisome-vacuole dynamics by fluorescence microscopy with a single filter set
    • 1:CAS:528:DC%2BD2MXitF2gsb4%3D
    • Nazarko T, Nicaud J, Sibirny A. Observation of the peroxisome-vacuole dynamics by fluorescence microscopy with a single filter set. Cell Biol Int. 2005;29:65-70.
    • (2005) Cell Biol Int , vol.29 , pp. 65-70
    • Nazarko, T.1    Nicaud, J.2    Sibirny, A.3
  • 106
    • 70449733045 scopus 로고    scopus 로고
    • Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors
    • 1:CAS:528:DC%2BD1MXhtlalsLbO
    • Chang J, Mast FD, Fagarasanu A, Rachubinski DA, Eitzen GA, Dacks JB, et al. Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors. J Cell Biol. 2009;187:233-46.
    • (2009) J Cell Biol , vol.187 , pp. 233-246
    • Chang, J.1    Mast, F.D.2    Fagarasanu, A.3    Rachubinski, D.A.4    Eitzen, G.A.5    Dacks, J.B.6
  • 107
    • 84861451465 scopus 로고    scopus 로고
    • Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica
    • 1:CAS:528:DC%2BC38Xos1ygu7o%3D
    • Kabran P, Rossignol T, Gaillardin C, Nicaud J-M, Neuveglise C. Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica. DNA Res. 2012;19:231-44.
    • (2012) DNA Res , vol.19 , pp. 231-244
    • Kabran, P.1    Rossignol, T.2    Gaillardin, C.3    Nicaud, J.-M.4    Neuveglise, C.5
  • 108
    • 80052038417 scopus 로고    scopus 로고
    • Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica
    • 1:CAS:528:DC%2BC3MXhtV2itb7E
    • Dulermo T, Nicaud J-M. Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng. 2011;13:482-91.
    • (2011) Metab Eng , vol.13 , pp. 482-491
    • Dulermo, T.1    Nicaud, J.-M.2
  • 109
    • 0029795686 scopus 로고    scopus 로고
    • Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTs1 receptor
    • 1:CAS:528:DyaK28XmtFWkt7o%3D
    • Gould SJ, Kalish JE, Morrell JC, Bjorkman J, Urquhart AJ, Crane DI. Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTs1 receptor. J Cell Biol. 1996;135:85-95.
    • (1996) J Cell Biol , vol.135 , pp. 85-95
    • Gould, S.J.1    Kalish, J.E.2    Morrell, J.C.3    Bjorkman, J.4    Urquhart, A.J.5    Crane, D.I.6
  • 110
    • 0029840399 scopus 로고    scopus 로고
    • The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import PTS1-containing proteins
    • 1:CAS:528:DyaK28XmtFWkt7g%3D
    • Elgersma Y, Kwast L, Klein A, Voorn-Brouwer T, van den Berg M, Metzig B, et al. The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import PTS1-containing proteins. J Cell Biol. 1996;135:97-109.
    • (1996) J Cell Biol , vol.135 , pp. 97-109
    • Elgersma, Y.1    Kwast, L.2    Klein, A.3    Voorn-Brouwer, T.4    Van Den Berg, M.5    Metzig, B.6
  • 112
    • 77950470469 scopus 로고    scopus 로고
    • Molecular mechanism and physiological role of pexophagy
    • 1:CAS:528:DC%2BC3cXjs12msr4%3D
    • Manjithaya R, Nazarko TY, Farré J-C, Subramani S. Molecular mechanism and physiological role of pexophagy. FEBS Lett. 2010;584:1367-73.
    • (2010) FEBS Lett , vol.584 , pp. 1367-1373
    • Manjithaya, R.1    Nazarko, T.Y.2    Farré, J.-C.3    Subramani, S.4
  • 113
    • 0033490110 scopus 로고    scopus 로고
    • Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway
    • 1:CAS:528:DyaK1MXotV2ltLc%3D
    • Hutchins MU, Veenhuis M, Klionsky DJ. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci. 1999;112(Pt 22):4079-87.
    • (1999) J Cell Sci , vol.112 , pp. 4079-4087
    • Hutchins, M.U.1    Veenhuis, M.2    Klionsky, D.J.3
  • 114
    • 0029748301 scopus 로고    scopus 로고
    • Efficient selection of hygromycin-B-resistant Yarrowia lipolytica transformants
    • 1:STN:280:DyaK2s7ktFejsg%3D%3D
    • Cordero Otero R, Gaillardin C. Efficient selection of hygromycin-B-resistant Yarrowia lipolytica transformants. Appl Microbiol Biotechnol. 1996;46:143-8.
    • (1996) Appl Microbiol Biotechnol , vol.46 , pp. 143-148
    • Cordero Otero, R.1    Gaillardin, C.2
  • 115
    • 38949138436 scopus 로고    scopus 로고
    • Characterization of the Yarrowia lipolytica YlSRP72 gene, a component of the yeast signal recognition particle
    • Ruiz-Pavón L, Domínguez A. Characterization of the Yarrowia lipolytica YlSRP72 gene, a component of the yeast signal recognition particle. Int Microbiol Off J Span Soc Microbiol. 2007;10:283-9.
    • (2007) Int Microbiol off J Span Soc Microbiol. , vol.10 , pp. 283-289
    • Ruiz-Pavón, L.1    Domínguez, A.2
  • 116
    • 84959871455 scopus 로고    scopus 로고
    • An energy-independent pro-longevity function of triacylglycerol in yeast
    • Longo VD, editor
    • Handee W, Li X, Hall KW, Deng X, Li P, Benning C, et al. An energy-independent pro-longevity function of triacylglycerol in yeast. PLOS Genet. 2016;12:e1005878 (Longo VD, editor).
    • (2016) PLOS Genet. , vol.12
    • Handee, W.1    Li, X.2    Hall, K.W.3    Deng, X.4    Li, P.5    Benning, C.6
  • 117
    • 84959172287 scopus 로고    scopus 로고
    • Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica
    • [Internet]. Accessed 30 Mar 2016
    • Pomraning KR, Kim Y-M, Nicora CD, Chu RK, Bredeweg EL, Purvine SO, et al. Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica. BMC Genomics [Internet]. 2016; 17. http://www.biomedcentral.com/1471-2164/17/138. Accessed 30 Mar 2016.
    • (2016) BMC Genomics , pp. 17
    • Pomraning, K.R.1    Kim, Y.-M.2    Nicora, C.D.3    Chu, R.K.4    Bredeweg, E.L.5    Purvine, S.O.6
  • 118
    • 77953727819 scopus 로고    scopus 로고
    • Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts
    • Mekouar M, Blanc-Lenfle I, Ozanne C, Da Silva C, Cruaud C, Wincker P, et al. Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol. 2010;11:R65.
    • (2010) Genome Biol , vol.11 , pp. R65
    • Mekouar, M.1    Blanc-Lenfle, I.2    Ozanne, C.3    Da Silva, C.4    Cruaud, C.5    Wincker, P.6
  • 119
    • 81555207963 scopus 로고    scopus 로고
    • Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica
    • 1:CAS:528:DC%2BC3MXhs1WrsbnL
    • Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea J-L, et al. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS ONE. 2011;6:e27966.
    • (2011) PLoS ONE , vol.6 , pp. e27966
    • Morin, N.1    Cescut, J.2    Beopoulos, A.3    Lelandais, G.4    Le Berre, V.5    Uribelarrea, J.-L.6
  • 120
    • 33745924142 scopus 로고    scopus 로고
    • A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors
    • 1:CAS:528:DC%2BD28XntlOhtbY%3D
    • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci. 2006;103:10352-7.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 10352-10357
    • Colot, H.V.1    Park, G.2    Turner, G.E.3    Ringelberg, C.4    Crew, C.M.5    Litvinkova, L.6
  • 121
    • 0342444416 scopus 로고
    • GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants
    • 1:CAS:528:DyaL1cXovV2itQ%3D%3D
    • Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6:3901-7.
    • (1987) EMBO J , vol.6 , pp. 3901-3907
    • Jefferson, R.A.1    Kavanagh, T.A.2    Bevan, M.W.3
  • 124
    • 0019321718 scopus 로고
    • Rapid isolation of high molecular weight plant DNA
    • 1:CAS:528:DyaL3cXmtVSmtL8%3D
    • Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8:4321-6.
    • (1980) Nucleic Acids Res , vol.8 , pp. 4321-4326
    • Murray, M.G.1    Thompson, W.F.2
  • 125
    • 77956967295 scopus 로고    scopus 로고
    • Using the Velvet de novo assembler for short-read sequencing technologies
    • Ed. Board Andreas Baxevanis Al. Chapter 11: Unit 11.5
    • Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinforma. Ed. Board Andreas Baxevanis Al. 2010; Chapter 11: Unit 11.5.
    • (2010) Curr Protoc Bioinforma
    • Zerbino, D.R.1
  • 126
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: Discovering splice junctions with RNA-Seq
    • 1:CAS:528:DC%2BD1MXltFWisrk%3D
    • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinforma Oxf Engl. 2009;25:1105-11.
    • (2009) Bioinforma Oxf Engl. , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 128
    • 0036226603 scopus 로고    scopus 로고
    • BLAT-the BLAST-like alignment tool
    • 1:CAS:528:DC%2BD38XivVemtLw%3D
    • Kent WJ. BLAT-the BLAST-like alignment tool. Genome Res. 2002;12:656-64.
    • (2002) Genome Res , vol.12 , pp. 656-664
    • Kent, W.J.1
  • 129
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
    • (2009) Genome Biol , vol.10 , pp. R25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 130
    • 0021078994 scopus 로고
    • Plasmid-encoded hygromycin B resistance: The sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae
    • 1:CAS:528:DyaL2cXpslChtA%3D%3D
    • Gritz L, Davies J. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene. 1983;25:179-88.
    • (1983) Gene , vol.25 , pp. 179-188
    • Gritz, L.1    Davies, J.2
  • 131
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • 1:CAS:528:DC%2BD38XlsVaqs7g%3D
    • Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87-96.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 133
    • 84921886524 scopus 로고    scopus 로고
    • Yeast transformation by the LiAc/SS carrier DNA/PEG method
    • 1:CAS:528:DC%2BC2MXnvFGmtbw%3D
    • Gietz RD. Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol Clifton NJ. 2014;1163:33-44.
    • (2014) Methods Mol Biol Clifton NJ. , vol.1163 , pp. 33-44
    • Gietz, R.D.1
  • 134
    • 84863205849 scopus 로고    scopus 로고
    • NIH Image to ImageJ: 25 Years of image analysis
    • 1:CAS:528:DC%2BC38XhtVKntb7P
    • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671-5.
    • (2012) Nat Methods , vol.9 , pp. 671-675
    • Schneider, C.A.1    Rasband, W.S.2    Eliceiri, K.W.3
  • 137
    • 0015797826 scopus 로고
    • A study of copulation, sporulation and meiotic segregation in Candida lipolytica
    • 1:STN:280:DyaE3s3ktVahuw%3D%3D
    • Gaillardin CM, Charoy V, Heslot H. A study of copulation, sporulation and meiotic segregation in Candida lipolytica. Arch Mikrobiol. 1973;92(1):69-83.
    • (1973) Arch. Mikrobiol. , vol.92 , Issue.1 , pp. 69-83
    • Gaillardin, C.M.1    Charoy, V.2    Heslot, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.