메뉴 건너뛰기




Volumn 9, Issue 1, 2015, Pages

Optimization of lipid production with a genome-scale model of Yarrowia lipolytica

Author keywords

Citrate; Fed batch fermentation; Flux balance analysis; Oleaginous yeast; Oxygen limitation

Indexed keywords

CITRIC ACID; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; NITROGEN;

EID: 84945151760     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/s12918-015-0217-4     Document Type: Article
Times cited : (98)

References (45)
  • 2
    • 84856790732 scopus 로고    scopus 로고
    • Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway
    • Krainer FW, Dietzsch C, Hajek T, Herwig C, Spadiut O, Glieder A. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microb Cell Fact. 2012;11:22.
    • (2012) Microb Cell Fact. , vol.11 , pp. 22
    • Krainer, F.W.1    Dietzsch, C.2    Hajek, T.3    Herwig, C.4    Spadiut, O.5    Glieder, A.6
  • 3
    • 84892840633 scopus 로고    scopus 로고
    • Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production
    • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun. 2014;5:3131.
    • (2014) Nat Commun. , vol.5 , pp. 3131
    • Blazeck, J.1    Hill, A.2    Liu, L.3    Knight, R.4    Miller, J.5    Pan, A.6
  • 4
  • 5
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • Orth JD, Palsson BØ. What is flux balance analysis? Nat biotechnol. 2011;28:245-8.
    • (2011) Nat biotechnol. , vol.28 , pp. 245-248
    • Orth, J.D.1    Palsson, BØ.2
  • 7
    • 84885911432 scopus 로고    scopus 로고
    • Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
    • Heavner BD, Smallbone K, Price ND, Walker LP. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database (Oxford). 2013;2013:bat059.
    • (2013) Database (Oxford). , vol.2013
    • Heavner, B.D.1    Smallbone, K.2    Price, N.D.3    Walker, L.P.4
  • 8
    • 74849113944 scopus 로고    scopus 로고
    • Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: Effects of methanol feeding rate
    • Celik E, Calik P, Oliver SG. Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: Effects of methanol feeding rate. Biotechnol Bioeng. 2010;105:317-29.
    • (2010) Biotechnol Bioeng. , vol.105 , pp. 317-329
    • Celik, E.1    Calik, P.2    Oliver, S.G.3
  • 9
    • 84857257769 scopus 로고    scopus 로고
    • Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis
    • Balagurunathan B, Jonnalagadda S, Tan L, Srinivasan R. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microb Cell Fact. 2012;11:27.
    • (2012) Microb Cell Fact. , vol.11 , pp. 27
    • Balagurunathan, B.1    Jonnalagadda, S.2    Tan, L.3    Srinivasan, R.4
  • 10
    • 84870867053 scopus 로고    scopus 로고
    • Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica
    • Pan P, Hua Q. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS One. 2012;7:e51535.
    • (2012) PLoS One. , vol.7
    • Pan, P.1    Hua, Q.2
  • 11
    • 84860505042 scopus 로고    scopus 로고
    • A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica
    • Loira N, Dulermo T, Nicaud J-M, Sherman DJ. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst Biol. 2012;6:35.
    • (2012) BMC Syst Biol. , vol.6 , pp. 35
    • Loira, N.1    Dulermo, T.2    Nicaud, J.-M.3    Sherman, D.J.4
  • 12
    • 84881261815 scopus 로고    scopus 로고
    • The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation
    • Morgunov IG, Kamzolova SV, Lunina JN. The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation. Appl Microbiol Biotechnol. 2013;97:7387-97.
    • (2013) Appl Microbiol Biotechnol. , vol.97 , pp. 7387-7397
    • Morgunov, I.G.1    Kamzolova, S.V.2    Lunina, J.N.3
  • 13
    • 84864758717 scopus 로고    scopus 로고
    • Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism
    • Zhou J, Yin X, Madzak C, Du G, Chen J. Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism. J Biotechnol. 2012;161:257-64.
    • (2012) J Biotechnol. , vol.161 , pp. 257-264
    • Zhou, J.1    Yin, X.2    Madzak, C.3    Du, G.4    Chen, J.5
  • 17
    • 51849105034 scopus 로고    scopus 로고
    • Perspectives of microbial oils for biodiesel production
    • Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol. 2008;80:749-56.
    • (2008) Appl Microbiol Biotechnol. , vol.80 , pp. 749-756
    • Li, Q.1    Du, W.2    Liu, D.3
  • 18
    • 58149182731 scopus 로고    scopus 로고
    • Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes
    • Sherman DJ, Martin T, Nikolski M, Cayla C, Souciet J-L, Durrens P. Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Res. 2009;37(Database issue):D550-4.
    • (2009) Nucleic Acids Res. , vol.37 , Issue.DATABASE ISSUE , pp. D550-D554
    • Sherman, D.J.1    Martin, T.2    Nikolski, M.3    Cayla, C.4    Souciet, J.-L.5    Durrens, P.6
  • 20
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model
    • Duarte NC, Herrgård MJ, Palsson BØ. Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model. Genome Res. 2004;14:1298-309.
    • (2004) Genome Res. , vol.14 , pp. 1298-1309
    • Duarte, N.C.1    Herrgård, M.J.2    Palsson, BØ.3
  • 22
    • 54849422418 scopus 로고    scopus 로고
    • Quantitative modeling of triacylglycerol homeostasis in yeast-metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth
    • Zanghellini J, Natter K, Jungreuthmayer C, Thalhammer A, Kurat CF, Gogg-Fassolter G, et al. Quantitative modeling of triacylglycerol homeostasis in yeast-metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth. FEBS J. 2008;275:5552-63.
    • (2008) FEBS J. , vol.275 , pp. 5552-5563
    • Zanghellini, J.1    Natter, K.2    Jungreuthmayer, C.3    Thalhammer, A.4    Kurat, C.F.5    Gogg-Fassolter, G.6
  • 23
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster J, Famili I, Fu P, Palsson BØ, Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003;13:244-53.
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, BØ.4    Nielsen, J.5
  • 25
    • 79551662521 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0
    • Schellenberger J, Que R, Fleming R. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc. 2011;6(9):1290-307.
    • (2011) Nat Protoc. , vol.6 , Issue.9 , pp. 1290-1307
    • Schellenberger, J.1    Que, R.2    Fleming, R.3
  • 26
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501-17.
    • (1992) Yeast. , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 27
    • 84874284372 scopus 로고    scopus 로고
    • Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose
    • Hong K-K, Nielsen J. Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose. Metab Eng. 2013;16:78-86.
    • (2013) Metab Eng. , vol.16 , pp. 78-86
    • Hong, K.-K.1    Nielsen, J.2
  • 28
    • 75749121857 scopus 로고    scopus 로고
    • Metabolic impact of increased NADH availability in Saccharomyces cerevisiae
    • Hou J, Scalcinati G, Oldiges M, Vemuri GN. Metabolic impact of increased NADH availability in Saccharomyces cerevisiae. Appl Environ Microbiol. 2010;76:851-9.
    • (2010) Appl Environ Microbiol. , vol.76 , pp. 851-859
    • Hou, J.1    Scalcinati, G.2    Oldiges, M.3    Vemuri, G.N.4
  • 29
    • 70449158340 scopus 로고
    • A simple method fot the isolation and purification of total lipides from animal tissues
    • Folch J, Lees M, Stanely Sloane GH. A simple method fot the isolation and purification of total lipides from animal tissues. J Biol Chem. 1956;55:497-509.
    • (1956) J Biol Chem. , vol.55 , pp. 497-509
    • Folch, J.1    Lees, M.2    Stanely Sloane, G.H.3
  • 30
    • 84904706807 scopus 로고    scopus 로고
    • Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids
    • Hofbauer HF, Schopf FH, Schleifer H, Knittelfelder OL, Pieber B, Rechberger GN, et al. Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids. Dev Cell. 2014;29:729-39.
    • (2014) Dev Cell. , vol.29 , pp. 729-739
    • Hofbauer, H.F.1    Schopf, F.H.2    Schleifer, H.3    Knittelfelder, O.L.4    Pieber, B.5    Rechberger, G.N.6
  • 31
    • 84861744439 scopus 로고    scopus 로고
    • Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network
    • Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP. Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol. 2012;6:55.
    • (2012) BMC Syst Biol. , vol.6 , pp. 55
    • Heavner, B.D.1    Smallbone, K.2    Barker, B.3    Mendes, P.4    Walker, L.P.5
  • 33
    • 0342803577 scopus 로고    scopus 로고
    • Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica
    • Pignède G, Wang H, Fudalej F, Gaillardin C, Seman M, Nicaud JM. Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol. 2000;182:2802-10.
    • (2000) J Bacteriol. , vol.182 , pp. 2802-2810
    • Pignède, G.1    Wang, H.2    Fudalej, F.3    Gaillardin, C.4    Seman, M.5    Nicaud, J.M.6
  • 34
    • 0030925208 scopus 로고    scopus 로고
    • Physiology and genetics of the dimorphic fungus Yarrowia lipolytica
    • Barth G, Gaillardin C. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiology Reviews. 1997;19(4):219-37.
    • (1997) FEMS Microbiology Reviews. , vol.19 , Issue.4 , pp. 219-237
    • Barth, G.1    Gaillardin, C.2
  • 35
    • 84903728771 scopus 로고    scopus 로고
    • The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: A reappraisal and unsolved problems
    • Ratledge C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: A reappraisal and unsolved problems. Biotechnol Lett. 2014;36:1557-68.
    • (2014) Biotechnol Lett. , vol.36 , pp. 1557-1568
    • Ratledge, C.1
  • 36
    • 84929314719 scopus 로고    scopus 로고
    • The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica
    • Wasylenko TM, Ahn WS, Stephanopoulos G. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng. 2015;30:27-39.
    • (2015) Metab Eng. , vol.30 , pp. 27-39
    • Wasylenko, T.M.1    Ahn, W.S.2    Stephanopoulos, G.3
  • 37
    • 84930200537 scopus 로고
    • Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis
    • Dulermo T, Lazar Z, Dulermo R, Rakicka M, Haddouche R, Nicaud J-M. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. Biochim Biophys Acta. 1851;2015:1107-17.
    • (1851) Biochim Biophys Acta. , vol.2015 , pp. 1107-1117
    • Dulermo, T.1    Lazar, Z.2    Dulermo, R.3    Rakicka, M.4    Haddouche, R.5    Nicaud, J.-M.6
  • 38
    • 84925463541 scopus 로고    scopus 로고
    • Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109
    • Wang G-Y, Zhang Y, Chi Z, Liu G-L, Wang Z-P, Chi Z-M. Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Appl Microbiol Biotechnol. 2015;99:1637-45.
    • (2015) Appl Microbiol Biotechnol. , vol.99 , pp. 1637-1645
    • Wang, G.-Y.1    Zhang, Y.2    Chi, Z.3    Liu, G.-L.4    Wang, Z.-P.5    Chi, Z.-M.6
  • 39
    • 84909947572 scopus 로고    scopus 로고
    • Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP:citrate lyase from Mus musculus
    • Zhang H, Zhang L, Chen H, Chen YQ, Chen W, Song Y, et al. Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP:citrate lyase from Mus musculus. J Biotechnol. 2014;192PA:78-84.
    • (2014) J Biotechnol. , vol.192PA , pp. 78-84
    • Zhang, H.1    Zhang, L.2    Chen, H.3    Chen, Y.Q.4    Chen, W.5    Song, Y.6
  • 40
    • 80052038417 scopus 로고    scopus 로고
    • Involvement of the G3P shuttle and b-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica
    • Thierry D, Jean-MaThierry D, Jean-Marc N. Involvement of the G3P shuttle and b-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng. 2011;13(5):482-91.
    • (2011) Metab Eng. , vol.13 , Issue.5 , pp. 482-491
    • Thierry, D.1    Jean-MaThierry, D.2    Jean-Marc, N.3
  • 41
  • 42
    • 84884828047 scopus 로고    scopus 로고
    • Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation
    • Dulermo T, Tréton B, Beopoulos A, Kabran Gnankon AP, Haddouche R, Nicaud J-M. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation. Biochim Biophys Acta. 2013;1831:1486-95.
    • (2013) Biochim Biophys Acta. , vol.1831 , pp. 1486-1495
    • Dulermo, T.1    Tréton, B.2    Beopoulos, A.3    Kabran Gnankon, A.P.4    Haddouche, R.5    Nicaud, J.-M.6
  • 43
    • 84908274916 scopus 로고    scopus 로고
    • Hexokinase-A limiting factor in lipid production from fructose in Yarrowia lipolytica
    • Lazar Z, Dulermo T, Neuvéglise C, Crutz-Le Coq A-M, Nicaud J-M. Hexokinase-A limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab Eng. 2014;26C:89-99.
    • (2014) Metab Eng. , vol.26C , pp. 89-99
    • Lazar, Z.1    Dulermo, T.2    Neuvéglise, C.3    Crutz-Le Coq, A.-M.4    Nicaud, J.-M.5
  • 44
    • 0018701887 scopus 로고
    • A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms
    • Botham PA, Ratledge C. A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms. J Gen Microbiol. 1979;114:361-75.
    • (1979) J Gen Microbiol. , vol.114 , pp. 361-375
    • Botham, P.A.1    Ratledge, C.2
  • 45
    • 77955429093 scopus 로고    scopus 로고
    • High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain
    • Lee HC, Kim JS, Jang W, Kim SY. High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol. 2010;149:24-32.
    • (2010) J Biotechnol. , vol.149 , pp. 24-32
    • Lee, H.C.1    Kim, J.S.2    Jang, W.3    Kim, S.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.