메뉴 건너뛰기




Volumn 5, Issue 3, 2015, Pages 521-535

Achieving metabolic flux analysis for S. cerevisiae at a genome-scale: Challenges, requirements, and considerations

Author keywords

Challenges; Considerations; Genome scale MFA; Requirements; S. cerevisiae

Indexed keywords

TRANSCRIPTOME;

EID: 85006201484     PISSN: None     EISSN: 22181989     Source Type: Journal    
DOI: 10.3390/metabo5030521     Document Type: Review
Times cited : (15)

References (105)
  • 1
    • 18244376808 scopus 로고    scopus 로고
    • Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures
    • Brauer, M.J.; Saldanha, A.J.; Dolinski, K.; Botstein, D. Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol. Biol. Cell 2005, 16, 2503–2517.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 2503-2517
    • Brauer, M.J.1    Saldanha, A.J.2    Dolinski, K.3    Botstein, D.4
  • 2
    • 84866076360 scopus 로고    scopus 로고
    • Nutritional control of growth and development in yeast
    • Broach, J.R. Nutritional control of growth and development in yeast. Genetics 2012, 192, 73–105.
    • (2012) Genetics , vol.192 , pp. 73-105
    • Broach, J.R.1
  • 3
    • 54049131214 scopus 로고    scopus 로고
    • The yeast Saccharomyces cerevisiae- the main character in beer brewing
    • Lodolo, E.J.; Kock, J.L.; Axcell, B.C.; Brooks, M. The yeast Saccharomyces cerevisiae- the main character in beer brewing. FEMS Yeast Res. 2008, 8, 1018–1036.
    • (2008) FEMS Yeast Res , vol.8 , pp. 1018-1036
    • Lodolo, E.J.1    Kock, J.L.2    Axcell, B.C.3    Brooks, M.4
  • 5
    • 25644460151 scopus 로고    scopus 로고
    • Mattanovich, D. Recombinant protein production in yeasts
    • Porro, D.; Sauer, M.; Branduardi, P.; Mattanovich, D. Recombinant protein production in yeasts. Mol. Biotechnol. 2005, 31, 245–259.
    • (2005) Mol. Biotechnol , vol.31 , pp. 245-259
    • Porro, D.1    Sauer, M.2    Branduardi, P.3
  • 6
    • 84878848636 scopus 로고    scopus 로고
    • Advanced biofuel production by the yeast Saccharomyces cerevisiae
    • Buijs, N.A.; Siewers, V.; Nielsen, J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 2013, 17, 480–488.
    • (2013) Curr. Opin. Chem. Biol , vol.17 , pp. 480-488
    • Buijs, N.A.1    Siewers, V.2    Nielsen, J.3
  • 7
    • 84889641544 scopus 로고    scopus 로고
    • From flavors and pharmaceuticals to advanced biofuels: Production of isoprenoids in Saccharomyces cerevisiae
    • Tippmann, S.; Chen, Y.; Siewers, V.; Nielsen, J. From flavors and pharmaceuticals to advanced biofuels: Production of isoprenoids in Saccharomyces cerevisiae. Biotechnol. J. 2013, 8, 1435–1444.
    • (2013) Biotechnol. J , vol.8 , pp. 1435-1444
    • Tippmann, S.1    Chen, Y.2    Siewers, V.3    Nielsen, J.4
  • 8
    • 67651119907 scopus 로고    scopus 로고
    • Removal of chromium (Vi) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica
    • Bankar, A.V.; Kumar, A.R.; Zinjarde, S.S. Removal of chromium (vi) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J. Hazard. Mater.2009, 170, 487–494.
    • (2009) J. Hazard. Mater , vol.170 , pp. 487-494
    • Bankar, A.V.1    Kumar, A.R.2    Zinjarde, S.S.3
  • 9
  • 10
    • 0036014881 scopus 로고    scopus 로고
    • Palm oil mill effluent treatment by a tropical marine yeast
    • Oswal, N.; Sarma, P.M.; Zinjarde, S.S.; Pant, A. Palm oil mill effluent treatment by a tropical marine yeast. Bioresour. Technol. 2002, 85, 35–37.
    • (2002) Bioresour. Technol , vol.85 , pp. 35-37
    • Oswal, N.1    Sarma, P.M.2    Zinjarde, S.S.3    Pant, A.4
  • 11
    • 84922448166 scopus 로고    scopus 로고
    • Methods and advances in metabolic flux analysis: A mini-review
    • Antoniewicz, M.R. Methods and advances in metabolic flux analysis: A mini-review. J. Ind. Microbiol. Biotechnol. 2015, 42, 317–325.
    • (2015) J. Ind. Microbiol. Biotechnol , vol.42 , pp. 317-325
    • Antoniewicz, M.R.1
  • 12
    • 0037899231 scopus 로고    scopus 로고
    • Multicriteria optimization of biochemical systems by linear programming: Application to production of ethanol by Saccharomyces cerevisiae
    • Vera, J.; de Atauri, P.; Cascante, M.; Torres, N.V. Multicriteria optimization of biochemical systems by linear programming: Application to production of ethanol by Saccharomyces cerevisiae. Biotechnol. Bioeng. 2003, 83, 335–343.
    • (2003) Biotechnol. Bioeng , vol.83 , pp. 335-343
    • Vera, J.1    De Atauri, P.2    Cascante, M.3    Torres, N.V.4
  • 13
    • 0344824417 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae
    • Famili, I.; Forster, J.; Nielsen, J.; Palsson, B.O. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. USA 2003, 100, 13134–13139.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 13134-13139
    • Famili, I.1    Forster, J.2    Nielsen, J.3    Palsson, B.O.4
  • 14
  • 15
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan, R.; Schilling, C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 2003, 5, 264–276.
    • (2003) Metab. Eng , vol.5 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.H.2
  • 16
    • 0028146781 scopus 로고
    • Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli w3110
    • Varma, A.; Palsson, B.O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli w3110. Appl. Environ. Microbiol. 1994, 60, 3724–3731.
    • (1994) Appl. Environ. Microbiol , vol.60 , pp. 3724-3731
    • Varma, A.1    Palsson, B.O.2
  • 17
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro, C.; Regenberg, B.; Forster, J.; Nielsen, J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 2006, 8, 102–111.
    • (2006) Metab. Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Forster, J.3    Nielsen, J.4
  • 18
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard, A.P.; Pharkya, P.; Maranas, C.D. Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 2003, 84, 647–657.
    • (2003) Biotechnol. Bioeng , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 19
    • 84879236195 scopus 로고    scopus 로고
    • Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production
    • Agren, R.; Otero, J.M.; Nielsen, J. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J. Ind. Microbiol. Biotechnol. 2013, 40, 735–747.
    • (2013) J. Ind. Microbiol. Biotechnol , vol.40 , pp. 735-747
    • Agren, R.1    Otero, J.M.2    Nielsen, J.3
  • 21
    • 70449592325 scopus 로고    scopus 로고
    • Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering
    • Asadollahi, M.A.; Maury, J.; Patil, K.R.; Schalk, M.; Clark, A.; Nielsen, J. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab. Eng. 2009, 11, 328–334.
    • (2009) Metab. Eng , vol.11 , pp. 328-334
    • Asadollahi, M.A.1    Maury, J.2    Patil, K.R.3    Schalk, M.4    Clark, A.5    Nielsen, J.6
  • 22
    • 85006224572 scopus 로고    scopus 로고
    • Using gene essentiality and synthetic lethality information to correct yeast and cho cell genome-scale models
    • press
    • Chowdhury, R.; Chowdhury, A.; Maranas, C.D. Using gene essentiality and synthetic lethality information to correct yeast and cho cell genome-scale models. Metabolites 2015, in press.
    • (2015) Metabolites
    • Chowdhury, R.1    Chowdhury, A.2    Maranas, C.D.3
  • 23
    • 78650595350 scopus 로고    scopus 로고
    • Improving the imm904 S. Cerevisiae metabolic model using essentiality and synthetic lethality data
    • Zomorrodi, A.R.; Maranas, C.D. Improving the imm904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst. Biol.2010, 4, 178, doi:10.1186/1752-0509-4-178.
    • (2010) BMC Syst. Biol , vol.4 , pp. 178
    • Zomorrodi, A.R.1    Maranas, C.D.2
  • 24
    • 33750705293 scopus 로고    scopus 로고
    • Integration of metabolome data with metabolic networks reveals reporter reactions
    • Cakir, T.; Patil, K.R.; Onsan, Z.; Ulgen, K.O.; Kirdar, B.; Nielsen, J. Integration of metabolome data with metabolic networks reveals reporter reactions. Mol. Syst. Biol.2006, 2, 50, doi:10.1038/msb4100085.
    • (2006) Mol. Syst. Biol , vol.2
    • Cakir, T.1    Patil, K.R.2    Onsan, Z.3    Ulgen, K.O.4    Kirdar, B.5    Nielsen, J.6
  • 25
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • Mo, M.L.; Palsson, B.O.; Herrgard, M.J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 2009, 3, 37, doi:10.1186/1752-0509-3-37.
    • (2009) BMC Syst. Biol , vol.3
    • Mo, M.L.1    Palsson, B.O.2    Herrgard, M.J.3
  • 26
    • 14544268137 scopus 로고    scopus 로고
    • Uncovering transcriptional regulation of metabolism by using metabolic network topology
    • Patil, K.R.; Nielsen, J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. USA 2005, 102, 2685–2689.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 2685-2689
    • Patil, K.R.1    Nielsen, J.2
  • 27
    • 84884526984 scopus 로고    scopus 로고
    • Publishing 13c metabolic flux analysis studies: A review and future perspectives
    • Crown, S.B.; Antoniewicz, M.R. Publishing 13c metabolic flux analysis studies: A review and future perspectives. Metab. Engineering 2013, 20, 42–48.
    • (2013) Metab. Engineering , vol.20 , pp. 42-48
    • Crown, S.B.1    Antoniewicz, M.R.2
  • 28
    • 15044347498 scopus 로고    scopus 로고
    • Metabolic-flux analysis of Saccharomyces cerevisiae cen.Pk113–7d based on mass isotopomer measurements of (13)c-labeled primary metabolites
    • Van Winden, W.A.; van Dam, J.C.; Ras, C.; Kleijn, R.J.; Vinke, J.L.; van Gulik, W.M.; Heijnen, J.J. Metabolic-flux analysis of Saccharomyces cerevisiae cen.Pk113–7d based on mass isotopomer measurements of (13)c-labeled primary metabolites. FEMS Yeast Res. 2005, 5, 559–568.
    • (2005) FEMS Yeast Res , vol.5 , pp. 559-568
    • Van Winden, W.A.1    Van Dam, J.C.2    Ras, C.3    Kleijn, R.J.4    Vinke, J.L.5    Van Gulik, W.M.6    Heijnen, J.J.7
  • 29
    • 27744491124 scopus 로고    scopus 로고
    • Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13c flux analysis
    • Frick, O.; Wittmann, C. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13c flux analysis. Microb. Cell Fact. 2005, 4, 30, doi:10.1186/1475-2859-4-30.
    • (2005) Microb. Cell Fact , vol.4
    • Frick, O.1    Wittmann, C.2
  • 30
    • 84942248861 scopus 로고    scopus 로고
    • 13C metabolic flux analysis at the genome-scale
    • press
    • Gopalakrishnan S.; Maranas, C.D. 13C metabolic flux analysis at the genome-scale. Metab. Eng. 2015, in press.
    • (2015) Metab. Eng
    • Gopalakrishnan, S.1    Maranas, C.D.3
  • 32
    • 34249007773 scopus 로고    scopus 로고
    • Heijnen, J.J. 13c-labeled metabolic flux analysis of a fed-batch culture of elutriated Saccharomyces cerevisiae
    • Costenoble, R.; Muller, D.; Barl, T.; van Gulik, W.M.; van Winden, W.A.; Reuss, M.; Heijnen, J.J. 13c-labeled metabolic flux analysis of a fed-batch culture of elutriated Saccharomyces cerevisiae. FEMS Yeast Res.2007, 7, 511–526.
    • (2007) FEMS Yeast Res , vol.7 , pp. 511-526
    • Costenoble, R.1    Muller, D.2    Barl, T.3    Van Gulik, W.M.4    Van Winden, W.A.5    Reuss, M.6
  • 34
    • 1942473105 scopus 로고    scopus 로고
    • Tca cycle activity in saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates
    • Blank, L.M.; Sauer, U. Tca cycle activity in saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 2004, 150, 1085–1093.
    • (2004) Microbiology , vol.150 , pp. 1085-1093
    • Blank, L.M.1    Sauer, U.2
  • 35
    • 35748944864 scopus 로고    scopus 로고
    • Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function
    • Velagapudi, V.R.; Wittmann, C.; Schneider, K.; Heinzle, E. Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function. J. Biotechnol.2007, 132, 395–404.
    • (2007) J. Biotechnol , vol.132 , pp. 395-404
    • Velagapudi, V.R.1    Wittmann, C.2    Schneider, K.3    Heinzle, E.4
  • 36
  • 37
    • 84887769375 scopus 로고    scopus 로고
    • Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13c metabolic flux analysis
    • Feng, X.; Zhao, H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13c metabolic flux analysis. Microb. Cell Fact. 2013, 12, doi:10.1186/1475-2859-12-114.
    • (2013) Microb. Cell Fact , vol.12
    • Feng, X.1    Zhao, H.2
  • 38
    • 84922782676 scopus 로고    scopus 로고
    • Metabolomic and (13)c-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase
    • Wasylenko, T.M.; Stephanopoulos, G. Metabolomic and (13)c-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol. Bioeng. 2015, 112, 470–483.
    • (2015) Biotechnol. Bioeng , vol.112 , pp. 470-483
    • Wasylenko, T.M.1    Stephanopoulos, G.2
  • 39
    • 84937251082 scopus 로고    scopus 로고
    • Shimizu, H. (13)c-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced crabtree effect
    • Kajihata, S.; Matsuda, F.; Yoshimi, M.; Hayakawa, K.; Furusawa, C.; Kanda, A.; Shimizu, H. (13)c-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced crabtree effect. J. Biosci. Bioeng. 2015, 120, 140–144.
    • (2015) J. Biosci. Bioeng , vol.120 , pp. 140-144
    • Kajihata, S.1    Matsuda, F.2    Yoshimi, M.3    Hayakawa, K.4    Furusawa, C.5    Kanda, A.6
  • 40
    • 0035140099 scopus 로고    scopus 로고
    • Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression
    • Gombert, A.K.; Moreira dos Santos, M.; Christensen, B.; Nielsen, J. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 2001, 183, 1441–1451.
    • (2001) J. Bacteriol , vol.183 , pp. 1441-1451
    • Gombert, A.K.1    Dos Moreira Santos, M.2    Christensen, B.3    Nielsen, J.4
  • 41
    • 0030945741 scopus 로고    scopus 로고
    • Identification of Saccharomyces cerevisiae gly1 as a threonine aldolase: A key enzyme in glycine biosynthesis
    • Monschau, N.; Stahmann, K.P.; Sahm, H.; McNeil, J.B.; Bognar, A.L. Identification of Saccharomyces cerevisiae gly1 as a threonine aldolase: A key enzyme in glycine biosynthesis. FEMS Microbiol. Lett. 1997, 150, 55–60.
    • (1997) FEMS Microbiol. Lett , vol.150 , pp. 55-60
    • Monschau, N.1    Stahmann, K.P.2    Sahm, H.3    McNeil, J.B.4    Bognar, A.L.5
  • 42
    • 27944487902 scopus 로고    scopus 로고
    • Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes
    • Tu, B.P.; Kudlicki, A.; Rowicka, M.; McKnight, S.L. Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes. Science 2005, 310, 1152–1158.
    • (2005) Science , vol.310 , pp. 1152-1158
    • Tu, B.P.1    Kudlicki, A.2    Rowicka, M.3    McKnight, S.L.4
  • 43
    • 0032485839 scopus 로고    scopus 로고
    • Metabolite-balancing techniques vs. 13c tracer experiments to determine metabolic fluxes in hybridoma cells
    • Bonarius, H.P.; Timmerarends, B.; de Gooijer, C.D.; Tramper, J. Metabolite-balancing techniques vs. 13c tracer experiments to determine metabolic fluxes in hybridoma cells. Biotechnol. Bioeng. 1998, 58, 258–262.
    • (1998) Biotechnol. Bioeng , vol.58 , pp. 258-262
    • Bonarius, H.P.1    Timmerarends, B.2    De Gooijer, C.D.3    Tramper, J.4
  • 44
    • 80052032471 scopus 로고    scopus 로고
    • Metabolic flux analysis of cho cells at growth and non-growth phases using isotopic tracers and mass spectrometry
    • Ahn, W.S.; Antoniewicz, M.R. Metabolic flux analysis of cho cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab. Eng. 2011, 13, 598–609.
    • (2011) Metab. Eng , vol.13 , pp. 598-609
    • Ahn, W.S.1    Antoniewicz, M.R.2
  • 45
    • 84872376676 scopus 로고    scopus 로고
    • Isotopically nonstationary 13c flux analysis of myc-induced metabolic reprogramming in b-cells
    • Murphy, T.A.; Dang, C.V.; Young, J.D. Isotopically nonstationary 13c flux analysis of myc-induced metabolic reprogramming in b-cells. Metab. Eng. 2013, 15, 206–217.
    • (2013) Metab. Eng , vol.15 , pp. 206-217
    • Murphy, T.A.1    Dang, C.V.2    Young, J.D.3
  • 46
    • 65549106475 scopus 로고    scopus 로고
    • Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae
    • Miyagi, H.; Kawai, S.; Murata, K. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2009, 284, 7553–7560.
    • (2009) J. Biol. Chem , vol.284 , pp. 7553-7560
    • Miyagi, H.1    Kawai, S.2    Murata, K.3
  • 47
    • 0037881908 scopus 로고    scopus 로고
    • A novel nadh kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae
    • Outten, C.E.; Culotta, V.C. A novel nadh kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J. 2003, 22, 2015–2024.
    • (2003) EMBO J , vol.22 , pp. 2015-2024
    • Outten, C.E.1    Culotta, V.C.2
  • 48
    • 84939121904 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production
    • Jin, L.; Bhuiya, M.W.; Li, M.; Liu, X.; Han, J.; Deng, W.; Wang, M.; Yu, O.; Zhang, Z. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production. PLoS ONE 2014, 9, e105368.
    • (2014) Plos ONE , vol.9
    • Jin, L.1    Bhuiya, M.W.2    Li, M.3    Liu, X.4    Han, J.5    Deng, W.6    Wang, M.7    Yu, O.8    Zhang, Z.9
  • 49
    • 84881540727 scopus 로고    scopus 로고
    • Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism
    • Aung, H.W.; Henry, S.A.; Walker, L.P. Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind. Biotechnol.2013, 9, 215–228.
    • (2013) Ind. Biotechnol , vol.9 , pp. 215-228
    • Aung, H.W.1    Henry, S.A.2    Walker, L.P.3
  • 50
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and validation of Saccharomyces cerevisiae ind750, a fully compartmentalized genome-scale metabolic model
    • Duarte, N.C.; Herrgard, M.J.; Palsson, B.O. Reconstruction and validation of Saccharomyces cerevisiae ind750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004, 14, 1298–1309.
    • (2004) Genome Res , vol.14 , pp. 1298-1309
    • Duarte, N.C.1    Herrgard, M.J.2    Palsson, B.O.3
  • 51
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Forster, J.; Famili, I.; Fu, P.; Palsson, B.O.; Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13, 244–253.
    • (2003) Genome Res , vol.13 , pp. 244-253
    • Forster, J.1    Famili, I.2    Fu, P.3    Palsson, B.O.4    Nielsen, J.5
  • 52
    • 84861744439 scopus 로고    scopus 로고
    • Yeast 5—An expanded reconstruction of the Saccharomyces cerevisiae metabolic network
    • Heavner, B.D.; Smallbone, K.; Barker, B.; Mendes, P.; Walker, L.P. Yeast 5—An expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Systems Biology 2012, 6, 55, doi:10.1186/1752-0509-6-55.
    • (2012) BMC Systems Biology , vol.6
    • Heavner, B.D.1    Smallbone, K.2    Barker, B.3    Mendes, P.4    Walker, L.P.5
  • 53
    • 84885911432 scopus 로고    scopus 로고
    • Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
    • Heavner, B.D.; Smallbone, K.; Price, N.D.; Walker, L.P. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database (Oxford) 2013, 2013, doi:10.1093/database/bat059.
    • (2013) Database (Oxford) , vol.2013
    • Heavner, B.D.1    Smallbone, K.2    Price, N.D.3    Walker, L.P.4
  • 54
    • 84885707351 scopus 로고    scopus 로고
    • Yeast biomass production: A new approach in glucose-limited feeding strategy
    • Vieira, E.D.; Andrietta Mda, G.; Andrietta, S.R. Yeast biomass production: A new approach in glucose-limited feeding strategy. Braz. J. Microbiol. 2013, 44, 551–558.
    • (2013) Braz. J. Microbiol , vol.44 , pp. 551-558
    • Vieira, E.D.1    Andrietta Mda, G.2    Andrietta, S.R.3
  • 56
    • 84865597532 scopus 로고    scopus 로고
    • Parallel labeling experiments with [u-13c]glucose validate E. Coli metabolic network model for 13c metabolic flux analysis
    • Leighty, R.W.; Antoniewicz, M.R. Parallel labeling experiments with [u-13c]glucose validate E. coli metabolic network model for 13c metabolic flux analysis. Metab. Eng. 2012, 14, 533–541.
    • (2012) Metab. Eng , vol.14 , pp. 533-541
    • Leighty, R.W.1    Antoniewicz, M.R.2
  • 57
    • 2342648924 scopus 로고    scopus 로고
    • Integrating high-throughput and computational data elucidates bacterial networks
    • Covert, M.W.; Knight, E.M.; Reed, J.L.; Herrgard, M.J.; Palsson, B.O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 2004, 429, 92–96.
    • (2004) Nature , vol.429 , pp. 92-96
    • Covert, M.W.1    Knight, E.M.2    Reed, J.L.3    Herrgard, M.J.4    Palsson, B.O.5
  • 59
    • 79851515763 scopus 로고    scopus 로고
    • Metabolic reconstruction of the archaeon methanogen Methanosarcina acetivorans
    • Satish Kumar, V.; Ferry, J.G.; Maranas, C.D. Metabolic reconstruction of the archaeon methanogen Methanosarcina acetivorans. BMC Syst. Biol. 2011, 5, doi:10.1186/1752-0509-5-28.
    • (2011) BMC Syst. Biol , vol.5
    • Satish Kumar, V.1    Ferry, J.G.2    Maranas, C.D.3
  • 61
    • 79961218716 scopus 로고    scopus 로고
    • Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism
    • Rintala, E.; Jouhten, P.; Toivari, M.; Wiebe, M.G.; Maaheimo, H.; Penttila, M.; Ruohonen, L. Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. OMICS 2011, 15, 461–476.
    • (2011) OMICS , vol.15 , pp. 461-476
    • Rintala, E.1    Jouhten, P.2    Toivari, M.3    Wiebe, M.G.4    Maaheimo, H.5    Penttila, M.6    Ruohonen, L.7
  • 62
    • 84929992971 scopus 로고    scopus 로고
    • Transcriptome analysis reveals the oxidative stress response in Saccharomyces cerevisiae
    • Zhao, H.; Chen, J.; Liu, J.; Han, B. Transcriptome analysis reveals the oxidative stress response in Saccharomyces cerevisiae. RSC Adv. 2015, 5, 22923–22934.
    • (2015) RSC Adv , vol.5 , pp. 22923-22934
    • Zhao, H.1    Chen, J.2    Liu, J.3    Han, B.4
  • 65
    • 84855499408 scopus 로고    scopus 로고
    • Metrxn: A knowledgebase of metabolites and reactions spanning metabolic models and databases
    • Kumar, A.; Suthers, P.F.; Maranas, C.D. Metrxn: A knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinform.2012, 13, doi:10.1186/1471-2105-13-6.
    • (2012) BMC Bioinform , vol.13
    • Kumar, A.1    Suthers, P.F.2    Maranas, C.D.3
  • 66
    • 33748290014 scopus 로고    scopus 로고
    • The alpha-aminoadipate pathway for lysine biosynthesis in fungi
    • Xu, H.; Andi, B.; Qian, J.; West, A.H.; Cook, P.F. The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem. Biophys. 2006, 46, 43–64.
    • (2006) Cell Biochem. Biophys , vol.46 , pp. 43-64
    • Xu, H.1    Andi, B.2    Qian, J.3    West, A.H.4    Cook, P.F.5
  • 69
    • 84919681581 scopus 로고    scopus 로고
    • Clca: Maximum common molecular substructure queries within the metrxn database
    • Kumar, A.; Maranas, C.D. Clca: Maximum common molecular substructure queries within the metrxn database. J. Chem. Inf. Model. 2014, 54, 3417–3438.
    • (2014) J. Chem. Inf. Model , vol.54 , pp. 3417-3438
    • Kumar, A.1    Maranas, C.D.2
  • 72
    • 35348941242 scopus 로고    scopus 로고
    • Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis
    • Antoniewicz, M.R.; Kelleher, J.K.; Stephanopoulos, G. Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal. Chem. 2007, 79, 7554–7559.
    • (2007) Anal. Chem , vol.79 , pp. 7554-7559
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 73
    • 0029146299 scopus 로고
    • Biosynthetically directed fractional 13c-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism
    • Szyperski, T. Biosynthetically directed fractional 13c-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 1995, 232, 433–448.
    • (1995) Eur. J. Biochem , vol.232 , pp. 433-448
    • Szyperski, T.1
  • 74
    • 59149092918 scopus 로고    scopus 로고
    • Dynamic 13c-tracer study of storage carbohydrate pools in aerobic glucose-limited Saccharomyces cerevisiae confirms a rapid steady-state turnover and fast mobilization during a modest stepup in the glucose uptake rate
    • Aboka, F.O.; Heijnen, J.J.; van Winden, W.A. Dynamic 13c-tracer study of storage carbohydrate pools in aerobic glucose-limited Saccharomyces cerevisiae confirms a rapid steady-state turnover and fast mobilization during a modest stepup in the glucose uptake rate. FEMS Yeast Res. 2009, 9, 191–201.
    • (2009) FEMS Yeast Res , vol.9 , pp. 191-201
    • Aboka, F.O.1    Heijnen, J.J.2    Van Winden, W.A.3
  • 75
    • 80052624920 scopus 로고    scopus 로고
    • Eukaryotic metabolism: Measuring compartment fluxes
    • Wahrheit, J.; Nicolae, A.; Heinzle, E. Eukaryotic metabolism: Measuring compartment fluxes. Biotechnol. J. 2011, 6, 1071–1085.
    • (2011) Biotechnol. J , vol.6 , pp. 1071-1085
    • Wahrheit, J.1    Nicolae, A.2    Heinzle, E.3
  • 76
    • 77955431727 scopus 로고    scopus 로고
    • Microtechnology meets systems biology: The small molecules of metabolome as next big targets
    • Wurm, M.; Schopke, B.; Lutz, D.; Muller, J.; Zeng, A.P. Microtechnology meets systems biology: The small molecules of metabolome as next big targets. J. Biotechnol. 2010, 149, 33–51.
    • (2010) J. Biotechnol , vol.149 , pp. 33-51
    • Wurm, M.1    Schopke, B.2    Lutz, D.3    Muller, J.4    Zeng, A.P.5
  • 78
    • 84898750241 scopus 로고    scopus 로고
    • Analysis of isotopic labeling in peptide fragments by tandem mass spectrometry
    • Allen, D.K.; Evans, B.S.; Libourel, I.G. Analysis of isotopic labeling in peptide fragments by tandem mass spectrometry. PLoS ONE 2014, 9, e91537.
    • (2014) Plos ONE , vol.9
    • Allen, D.K.1    Evans, B.S.2    Libourel, I.G.3
  • 79
    • 84893554275 scopus 로고    scopus 로고
    • Quantification of peptide m/z distributions from 13c-labeled cultures with high-resolution mass spectrometry
    • Allen, D.K.; Goldford, J.; Gierse, J.K.; Mandy, D.; Diepenbrock, C.; Libourel, I.G. Quantification of peptide m/z distributions from 13c-labeled cultures with high-resolution mass spectrometry. Anal. Chem. 2014, 86, 1894–1901.
    • (2014) Anal. Chem , vol.86 , pp. 1894-1901
    • Allen, D.K.1    Goldford, J.2    Gierse, J.K.3    Mandy, D.4    Diepenbrock, C.5    Libourel, I.G.6
  • 80
    • 84893545071 scopus 로고    scopus 로고
    • Metabolic flux analysis using (1)(3)c peptide label measurements
    • Mandy, D.E.; Goldford, J.E.; Yang, H.; Allen, D.K.; Libourel, I.G. Metabolic flux analysis using (1)(3)c peptide label measurements. Plant J. 2014, 77, 476–486.
    • (2014) Plant J , vol.77 , pp. 476-486
    • Mandy, D.E.1    Goldford, J.E.2    Yang, H.3    Allen, D.K.4    Libourel, I.G.5
  • 82
    • 0036002317 scopus 로고    scopus 로고
    • Mass spectrometry of fatty acid derivatives
    • Dobson, G.; Christie, W.W. Mass spectrometry of fatty acid derivatives. Eur. J. Lipid Sci. Technol. 2002, 104, 36–43.
    • (2002) Eur. J. Lipid Sci. Technol , vol.104 , pp. 36-43
    • Dobson, G.1    Christie, W.W.2
  • 83
    • 84902360951 scopus 로고    scopus 로고
    • Mass spectrometry analysis of nucleosides and nucleotides
    • Dudley, E.; Bond, L. Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrom. Rev. 2014, 33, 302–331.
    • (2014) Mass Spectrom. Rev , vol.33 , pp. 302-331
    • Dudley, E.1    Bond, L.2
  • 84
    • 84922245805 scopus 로고    scopus 로고
    • Integrated 13c-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli
    • Crown, S.B.; Long, C.P.; Antoniewicz, M.R. Integrated 13c-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metab. Eng. 2015, 28, 151–158.
    • (2015) Metab. Eng , vol.28 , pp. 151-158
    • Crown, S.B.1    Long, C.P.2    Antoniewicz, M.R.3
  • 85
    • 48649096375 scopus 로고    scopus 로고
    • Identification of optimal measurement sets for complete flux elucidation in metabolic flux analysis experiments
    • Chang, Y.; Suthers, P.F.; Maranas, C.D. Identification of optimal measurement sets for complete flux elucidation in metabolic flux analysis experiments. Biotechnol. Bioeng. 2008, 100, 1039–1049.
    • (2008) Biotechnol. Bioeng , vol.100 , pp. 1039-1049
    • Chang, Y.1    Suthers, P.F.2    Maranas, C.D.3
  • 86
    • 33745155105 scopus 로고    scopus 로고
    • Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements
    • Antoniewicz, M.R.; Kelleher, J.K.; Stephanopoulos, G. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab. Eng. 2006, 8, 324–337.
    • (2006) Metab. Eng , vol.8 , pp. 324-337
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 87
    • 41649119244 scopus 로고    scopus 로고
    • The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast
    • Easlon, E.; Tsang, F.; Skinner, C.; Wang, C.; Lin, S.J. The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev. 2008, 22, 931–944.
    • (2008) Genes Dev , vol.22 , pp. 931-944
    • Easlon, E.1    Tsang, F.2    Skinner, C.3    Wang, C.4    Lin, S.J.5
  • 88
    • 84884386184 scopus 로고    scopus 로고
    • Complete-mfa: Complementary parallel labeling experiments technique for metabolic flux analysis
    • Leighty, R.W.; Antoniewicz, M.R. Complete-mfa: Complementary parallel labeling experiments technique for metabolic flux analysis. Metab. Eng. 2013, 20, 49–55.
    • (2013) Metab. Eng , vol.20 , pp. 49-55
    • Leighty, R.W.1    Antoniewicz, M.R.2
  • 89
    • 77950630496 scopus 로고    scopus 로고
    • From fluxes and isotope labeling patterns towards in silico cells
    • Dauner, M. From fluxes and isotope labeling patterns towards in silico cells. Curr. Opin. Biotechnol. 2010, 21, 55–62.
    • (2010) Curr. Opin. Biotechnol , vol.21 , pp. 55-62
    • Dauner, M.1
  • 90
    • 0032767911 scopus 로고    scopus 로고
    • Cell cycle synchronization
    • Futcher, B. Cell cycle synchronization. Methods Cell Sci.1999, 21, 79–86.
    • (1999) Methods Cell Sci , vol.21 , pp. 79-86
    • Futcher, B.1
  • 91
    • 33845679072 scopus 로고    scopus 로고
    • Elementary metabolite units (Emu): A novel framework for modeling isotopic distributions
    • Antoniewicz, M.R.; Kelleher, J.K.; Stephanopoulos, G. Elementary metabolite units (emu): A novel framework for modeling isotopic distributions. Metab. Eng. 2007, 9, 68–86.
    • (2007) Metab. Eng , vol.9 , pp. 68-86
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3
  • 92
    • 0031554628 scopus 로고    scopus 로고
    • Bidirectional reaction steps in metabolic networks: Ii. Flux estimation and statistical analysis
    • Wiechert, W.; Siefke, C.; de Graaf, A.A.; Marx, A. Bidirectional reaction steps in metabolic networks: Ii. Flux estimation and statistical analysis. Biotechnol. Bioeng. 1997, 55, 118–135.
    • (1997) Biotechnol. Bioeng , vol.55 , pp. 118-135
    • Wiechert, W.1    Siefke, C.2    De Graaf, A.A.3    Marx, A.4
  • 93
    • 38249043588 scopus 로고
    • Rank and null space calculations using matrix decomposition without column interchanges
    • Foster, L.V. Rank and null space calculations using matrix decomposition without column interchanges. Linear Algebra Appl. 1986, 74, 47–71.
    • (1986) Linear Algebra Appl , vol.74 , pp. 47-71
    • Foster, L.V.1
  • 94
    • 0032485569 scopus 로고    scopus 로고
    • 13c tracer experiments and metabolite balancing for metabolic flux analysis: Comparing two approaches
    • Schmidt, K.; Marx, A.; de Graaf, A.A.; Wiechert, W.; Sahm, H.; Nielsen, J.; Villadsen, J. 13c tracer experiments and metabolite balancing for metabolic flux analysis: Comparing two approaches. Biotechnol. Bioeng. 1998, 58, 254–257.
    • (1998) Biotechnol. Bioeng , vol.58 , pp. 254-257
    • Schmidt, K.1    Marx, A.2    De Graaf, A.A.3    Wiechert, W.4    Sahm, H.5    Nielsen, J.6    Villadsen, J.7
  • 95
    • 0037908691 scopus 로고    scopus 로고
    • Metabolic isotopomer labeling systems. Part ii: Structural flux identifiability analysis
    • Isermann, N.; Wiechert, W. Metabolic isotopomer labeling systems. Part ii: Structural flux identifiability analysis. Math. Biosci. 2003, 183, 175–214.
    • (2003) Math. Biosci , vol.183 , pp. 175-214
    • Isermann, N.1    Wiechert, W.2
  • 97
    • 84939420225 scopus 로고    scopus 로고
    • 13c-metabolic flux analysis of co-cultures: A novel approach
    • Gebreselassie, N.A.; Antoniewicz, M.R. 13c-metabolic flux analysis of co-cultures: A novel approach. Metab. Eng. 2015, 31, 132–139.
    • (2015) Metab. Eng , vol.31 , pp. 132-139
    • Gebreselassie, N.A.1    Antoniewicz, M.R.2
  • 98
    • 80555122963 scopus 로고    scopus 로고
    • Mapping photoautotrophic metabolism with isotopically nonstationary (13)c flux analysis
    • Young, J.D.; Shastri, A.A.; Stephanopoulos, G.; Morgan, J.A. Mapping photoautotrophic metabolism with isotopically nonstationary (13)c flux analysis. Metab. Eng. 2011, 13, 656–665.
    • (2011) Metab. Eng , vol.13 , pp. 656-665
    • Young, J.D.1    Shastri, A.A.2    Stephanopoulos, G.3    Morgan, J.A.4
  • 99
    • 15844371174 scopus 로고    scopus 로고
    • Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state
    • Kayser, A.; Weber, J.; Hecht, V.; Rinas, U. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 2005, 151, 693–706.
    • (2005) Microbiology , vol.151 , pp. 693-706
    • Kayser, A.1    Weber, J.2    Hecht, V.3    Rinas, U.4
  • 100
    • 34547738108 scopus 로고    scopus 로고
    • Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae
    • Albers, E.; Larsson, C.; Andlid, T.; Walsh, M.C.; Gustafsson, L. Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2007, 73, 4839–4848.
    • (2007) Appl. Environ. Microbiol , vol.73 , pp. 4839-4848
    • Albers, E.1    Larsson, C.2    Andlid, T.3    Walsh, M.C.4    Gustafsson, L.5
  • 101
    • 0027250347 scopus 로고
    • Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions
    • Larsson, C.; von Stockar, U.; Marison, I.; Gustafsson, L. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions. J. Bacteriol. 1993, 175, 4809–4816.
    • (1993) J. Bacteriol , vol.175 , pp. 4809-4816
    • Larsson, C.1    Von Stockar, U.2    Marison, I.3    Gustafsson, L.4
  • 102
    • 0029830836 scopus 로고    scopus 로고
    • Physiological effects of nitrogen starvation in an anaerobic batch culture of Saccharomyces cerevisiae
    • Schulze, U.; Liden, G.; Nielsen, J.; Villadsen, J. Physiological effects of nitrogen starvation in an anaerobic batch culture of Saccharomyces cerevisiae. Microbiology 1996, 142, 2299–2310.
    • (1996) Microbiology , vol.142 , pp. 2299-2310
    • Schulze, U.1    Liden, G.2    Nielsen, J.3    Villadsen, J.4
  • 103
    • 84907889105 scopus 로고    scopus 로고
    • Quantifying biomass composition by gas chromatography/mass spectrometry
    • Long, C.P.; Antoniewicz, M.R. Quantifying biomass composition by gas chromatography/mass spectrometry. Anal. Chem. 2014, 86, 9423–9427.
    • (2014) Anal. Chem , vol.86 , pp. 9423-9427
    • Long, C.P.1    Antoniewicz, M.R.2
  • 104
    • 0035014718 scopus 로고    scopus 로고
    • Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)c labeling of common amino acids
    • Maaheimo, H.; Fiaux, J.; Cakar, Z.P.; Bailey, J.E.; Sauer, U.; Szyperski, T. Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)c labeling of common amino acids. Eur. J. Biochem.2001, 268, 2464–2479.
    • (2001) Eur. J. Biochem , vol.268 , pp. 2464-2479
    • Maaheimo, H.1    Fiaux, J.2    Cakar, Z.P.3    Bailey, J.E.4    Sauer, U.5    Szyperski, T.6
  • 105
    • 77956276702 scopus 로고    scopus 로고
    • Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes
    • Lanza, I.R.; Zhang, S.; Ward, L.E.; Karakelides, H.; Raftery, D.; Nair, K.S. Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS ONE 2010, 5, doi:10.1371/journal.pone.0010538.
    • (2010) Plos ONE , vol.5
    • Lanza, I.R.1    Zhang, S.2    Ward, L.E.3    Karakelides, H.4    Raftery, D.5    Nair, K.S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.