메뉴 건너뛰기




Volumn 12, Issue 11, 2016, Pages

Fungal KATs/KDACs: A New Highway to Better Antifungal Drugs?

Author keywords

[No Author keywords available]

Indexed keywords

LYSINE ACETYLTRANSFERASE; LYSINE DEACETYLASE; LYSINE DERIVATIVE; UNCLASSIFIED DRUG; ANTIFUNGAL AGENT; FUNGAL PROTEIN; HISTONE DEMETHYLASE;

EID: 85002050685     PISSN: 15537366     EISSN: 15537374     Source Type: Journal    
DOI: 10.1371/journal.ppat.1005938     Document Type: Review
Times cited : (31)

References (165)
  • 1
    • 84871502341 scopus 로고    scopus 로고
    • Hidden killers: human fungal infections
    • 23253612,.,.,. (): p
    • Brown G.D., et al., Hidden killers: human fungal infections. Sci Transl Med, 2012. 4(165): p. 165rv13. doi: 10.1126/scitranslmed.300440423253612
    • (2012) Sci Transl Med , vol.4 , Issue.165 , pp. 165rv13
    • Brown, G.D.1
  • 2
    • 33846466508 scopus 로고    scopus 로고
    • Epidemiology of invasive candidiasis: a persistent public health problem
    • 17223626,.,. (): p. –
    • Pfaller M.A., Diekema D.J., Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev, 2007. 20(1): p. 133–63. doi: 10.1128/CMR.00029-0617223626
    • (2007) Clin Microbiol Rev , vol.20 , Issue.1 , pp. 133-163
    • Pfaller, M.A.1    Diekema, D.J.2
  • 3
    • 79953181947 scopus 로고    scopus 로고
    • Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study
    • 21169817,.,.,. (): p. –
    • Kett D.H., et al., Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med, 2011. 39(4): p. 665–70. doi: 10.1097/CCM.0b013e318206c1ca21169817
    • (2011) Crit Care Med , vol.39 , Issue.4 , pp. 665-670
    • Kett, D.H.1
  • 4
    • 84962675422 scopus 로고    scopus 로고
    • Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance
    • 27020939,.,.,.: p
    • Healey K.R., et al., Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun, 2016. 7: p. 11128. doi: 10.1038/ncomms1112827020939
    • (2016) Nat Commun , vol.7 , pp. 11128
    • Healey, K.R.1
  • 5
    • 84863337736 scopus 로고    scopus 로고
    • Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata
    • 22278842,.,.,. (): p. –
    • Pfaller M.A., et al., Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol, 2012. 50(4): p. 1199–203. doi: 10.1128/JCM.06112-1122278842
    • (2012) J Clin Microbiol , vol.50 , Issue.4 , pp. 1199-1203
    • Pfaller, M.A.1
  • 6
    • 84921938023 scopus 로고    scopus 로고
    • Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management.
    • 25255923,,. (): p. –
    • Perlin D.S., Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management.Drugs, 2014. 74(14): p. 1573–85. doi: 10.1007/s40265-014-0286-525255923
    • (2014) Drugs , vol.74 , Issue.14 , pp. 1573-1585
    • Perlin, D.S.1
  • 7
    • 34249724445 scopus 로고    scopus 로고
    • Nosocomial fungal infections: epidemiology, diagnosis, and treatment
    • 17510856,.,. (): p. –
    • Perlroth J., Choi B., Spellberg B., Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol, 2007. 45(4): p. 321–46. doi: 10.1080/1369378070121868917510856
    • (2007) Med Mycol , vol.45 , Issue.4 , pp. 321-346
    • Perlroth, J.1    Choi, B.2    Spellberg, B.3
  • 8
    • 84947017165 scopus 로고    scopus 로고
    • What's new in antifungals: an update on the in-vitro activity and in-vivo efficacy of new and investigational antifungal agents
    • 26374950,.,. (): p. –
    • Wiederhold N.P., Patterson T.F., What's new in antifungals: an update on the in-vitro activity and in-vivo efficacy of new and investigational antifungal agents. Curr Opin Infect Dis, 2015. 28(6): p. 539–45. doi: 10.1097/QCO.000000000000020326374950
    • (2015) Curr Opin Infect Dis , vol.28 , Issue.6 , pp. 539-545
    • Wiederhold, N.P.1    Patterson, T.F.2
  • 9
    • 84948124048 scopus 로고    scopus 로고
    • Immunotherapy of Fungal Infections
    • 26575463,.,. (): p. –
    • Datta K., Hamad M., Immunotherapy of Fungal Infections. Immunol Invest, 2015. 44(8): p. 738–76. doi: 10.3109/08820139.2015.109391326575463
    • (2015) Immunol Invest , vol.44 , Issue.8 , pp. 738-776
    • Datta, K.1    Hamad, M.2
  • 10
    • 84925541506 scopus 로고    scopus 로고
    • Exploiting fungal cell wall components in vaccines
    • 25404118,.,.,. (): p. –
    • Levitz S.M., et al., Exploiting fungal cell wall components in vaccines. Semin Immunopathol, 2015. 37(2): p. 199–207. doi: 10.1007/s00281-014-0460-625404118
    • (2015) Semin Immunopathol , vol.37 , Issue.2 , pp. 199-207
    • Levitz, S.M.1
  • 11
    • 84896857974 scopus 로고    scopus 로고
    • Vaccine immunity against fungal infections
    • 24583636,.,.: p. –
    • Nanjappa S.G., Klein B.S., Vaccine immunity against fungal infections. Curr Opin Immunol, 2014. 28: p. 27–33. doi: 10.1016/j.coi.2014.01.01424583636
    • (2014) Curr Opin Immunol , vol.28 , pp. 27-33
    • Nanjappa, S.G.1    Klein, B.S.2
  • 12
    • 84866148796 scopus 로고    scopus 로고
    • Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence
    • 22916016,.,.,. (): p
    • Rai M.N., et al., Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. PLoS Pathog, 2012. 8(8): p. e1002863. doi: 10.1371/journal.ppat.100286322916016
    • (2012) PLoS Pathog , vol.8 , Issue.8 , pp. e1002863
    • Rai, M.N.1
  • 13
    • 79955159590 scopus 로고    scopus 로고
    • Targeting chromatin in fungal pathogens as a novel therapeutic strategy: histone modification gets infectious
    • 22122275,.,. (): p. –
    • Hnisz D., Tscherner M., Kuchler K., Targeting chromatin in fungal pathogens as a novel therapeutic strategy: histone modification gets infectious. Epigenomics, 2011. 3(2): p. 129–32. doi: 10.2217/epi.11.722122275
    • (2011) Epigenomics , vol.3 , Issue.2 , pp. 129-132
    • Hnisz, D.1    Tscherner, M.2    Kuchler, K.3
  • 14
    • 84927553790 scopus 로고    scopus 로고
    • Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis
    • 25762988,.,.: p
    • Lamoth F., Juvvadi P.R., Steinbach W.J., Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis. Front Microbiol, 2015. 6: p. 96. doi: 10.3389/fmicb.2015.0009625762988
    • (2015) Front Microbiol , vol.6 , pp. 96
    • Lamoth, F.1    Juvvadi, P.R.2    Steinbach, W.J.3
  • 15
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • 17320507,.,. (): p. –
    • Kouzarides T., Chromatin modifications and their function. Cell, 2007. 128(4): p. 693–705. doi: 10.1016/j.cell.2007.02.00517320507
    • (2007) Cell , vol.128 , Issue.4 , pp. 693-705
    • Kouzarides, T.1
  • 16
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • 11498575,.,. (): p. –
    • Jenuwein T., Allis C.D., Translating the histone code. Science, 2001. 293(5532): p. 1074–80. doi: 10.1126/science.106312711498575
    • (2001) Science , vol.293 , Issue.5532 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 17
    • 78649922622 scopus 로고    scopus 로고
    • The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes
    • 21145479,.,. (): p. –
    • Smith E., Shilatifard A., The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell, 2010. 40(5): p. 689–701. doi: 10.1016/j.molcel.2010.11.03121145479
    • (2010) Mol Cell , vol.40 , Issue.5 , pp. 689-701
    • Smith, E.1    Shilatifard, A.2
  • 18
    • 77149120797 scopus 로고    scopus 로고
    • Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
    • 20167787,.,.,. (): p. –
    • Wang Q., et al., Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010. 327(5968): p. 1004–7. doi: 10.1126/science.117968720167787
    • (2010) Science , vol.327 , Issue.5968 , pp. 1004-1007
    • Wang, Q.1
  • 19
    • 79953702814 scopus 로고    scopus 로고
    • Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis
    • 21311030,.,.,. (): p. –
    • Wu X., et al., Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. Plant Physiol, 2011. 155(4): p. 1769–78. doi: 10.1104/pp.110.16585221311030
    • (2011) Plant Physiol , vol.155 , Issue.4 , pp. 1769-1778
    • Wu, X.1
  • 20
    • 84981334749 scopus 로고    scopus 로고
    • Systematic Analysis of the Lysine Acetylome in Candida albicans
    • Zhou X., et al., Systematic Analysis of the Lysine Acetylome in Candida albicans. J Proteome Res, 2016.
    • (2016) J Proteome Res
    • Zhou, X.1
  • 21
    • 79960797509 scopus 로고    scopus 로고
    • Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation
    • 21791702,.,.,. (): p
    • Weinert B.T., et al., Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal, 2011. 4(183): p. ra48. doi: 10.1126/scisignal.200190221791702
    • (2011) Sci Signal , vol.4 , Issue.183 , pp. ra48
    • Weinert, B.T.1
  • 22
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • 20167786,.,.,. (): p. –
    • Zhao S., et al., Regulation of cellular metabolism by protein lysine acetylation. Science, 2010. 327(5968): p. 1000–4. doi: 10.1126/science.117968920167786
    • (2010) Science , vol.327 , Issue.5968 , pp. 1000-1004
    • Zhao, S.1
  • 23
    • 49349107518 scopus 로고    scopus 로고
    • Lysine acetylation: codified crosstalk with other posttranslational modifications
    • 18722172,.,. (): p. –
    • Yang X.J., Seto E., Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell, 2008. 31(4): p. 449–61. doi: 10.1016/j.molcel.2008.07.00218722172
    • (2008) Mol Cell , vol.31 , Issue.4 , pp. 449-461
    • Yang, X.J.1    Seto, E.2
  • 24
    • 0034654011 scopus 로고    scopus 로고
    • Acetylation: a regulatory modification to rival phosphorylation?
    • 10716917,,. (): p. –
    • Kouzarides T., Acetylation: a regulatory modification to rival phosphorylation?EMBO J, 2000. 19(6): p. 1176–9. doi: 10.1093/emboj/19.6.117610716917
    • (2000) EMBO J , vol.19 , Issue.6 , pp. 1176-1179
    • Kouzarides, T.1
  • 25
    • 76549103447 scopus 로고    scopus 로고
    • Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis
    • 20080646,.,.,. (): p. –
    • Lopes da Rosa J., et al., Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci U S A, 2010. 107(4): p. 1594–9. doi: 10.1073/pnas.091242710720080646
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.4 , pp. 1594-1599
    • Lopes da Rosa, J.1
  • 26
    • 77954541309 scopus 로고    scopus 로고
    • Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy
    • 20601951,.,.,. (): p. –
    • Wurtele H., et al., Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med, 2010. 16(7): p. 774–80. doi: 10.1038/nm.217520601951
    • (2010) Nat Med , vol.16 , Issue.7 , pp. 774-780
    • Wurtele, H.1
  • 27
    • 70350036600 scopus 로고    scopus 로고
    • Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans
    • 19555456,.,. (): p. –
    • Hnisz D., Schwarzmuller T., Kuchler K., Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans. Mol Microbiol, 2009. 74(1): p. 1–15. doi: 10.1111/j.1365-2958.2009.06772.x19555456
    • (2009) Mol Microbiol , vol.74 , Issue.1 , pp. 1-15
    • Hnisz, D.1    Schwarzmuller, T.2    Kuchler, K.3
  • 28
    • 77954076396 scopus 로고    scopus 로고
    • The Set3/Hos2 histone deacetylase complex attenuates cAMP/PKA signaling to regulate morphogenesis and virulence of Candida albicans
    • 20485517,.,.,. (): p
    • Hnisz D., et al., The Set3/Hos2 histone deacetylase complex attenuates cAMP/PKA signaling to regulate morphogenesis and virulence of Candida albicans. PLoS Pathog, 2010. 6(5): p. e1000889. doi: 10.1371/journal.ppat.100088920485517
    • (2010) PLoS Pathog , vol.6 , Issue.5 , pp. e1000889
    • Hnisz, D.1
  • 29
    • 84872007065 scopus 로고    scopus 로고
    • A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis
    • 23236295,.,.,. (): p
    • Hnisz D., et al., A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet, 2012. 8(12): p. e1003118. doi: 10.1371/journal.pgen.100311823236295
    • (2012) PLoS Genet , vol.8 , Issue.12 , pp. e1003118
    • Hnisz, D.1
  • 30
    • 84861205961 scopus 로고    scopus 로고
    • A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans
    • 22536157,.,. (): p
    • Lu Y., Su C., Liu H., A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLoS Pathog, 2012. 8(4): p. e1002663. doi: 10.1371/journal.ppat.100266322536157
    • (2012) PLoS Pathog , vol.8 , Issue.4 , pp. e1002663
    • Lu, Y.1    Su, C.2    Liu, H.3
  • 31
    • 84868125083 scopus 로고    scopus 로고
    • Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance
    • 23041319,.,. (): p. –
    • Robbins N., Leach M.D., Cowen L.E., Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance. Cell Rep, 2012. 2(4): p. 878–88. doi: 10.1016/j.celrep.2012.08.03523041319
    • (2012) Cell Rep , vol.2 , Issue.4 , pp. 878-888
    • Robbins, N.1    Leach, M.D.2    Cowen, L.E.3
  • 32
    • 80051571474 scopus 로고    scopus 로고
    • Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3
    • 21749487,.,. (): p. –
    • Stevenson J.S., Liu H., Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3. Mol Microbiol, 2011. 81(4): p. 1078–91. doi: 10.1111/j.1365-2958.2011.07754.x21749487
    • (2011) Mol Microbiol , vol.81 , Issue.4 , pp. 1078-1091
    • Stevenson, J.S.1    Liu, H.2
  • 33
    • 0034932733 scopus 로고    scopus 로고
    • The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans
    • 11443097,.,.,. (): p. –
    • Srikantha T., et al., The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol, 2001. 183(15): p. 4614–25. doi: 10.1128/JB.183.15.4614-4625.200111443097
    • (2001) J Bacteriol , vol.183 , Issue.15 , pp. 4614-4625
    • Srikantha, T.1
  • 34
    • 71549145287 scopus 로고    scopus 로고
    • White-opaque switching in Candida albicans
    • 19853498,.,. (): p. –
    • Lohse M.B., Johnson A.D., White-opaque switching in Candida albicans. Curr Opin Microbiol, 2009. 12(6): p. 650–4. doi: 10.1016/j.mib.2009.09.01019853498
    • (2009) Curr Opin Microbiol , vol.12 , Issue.6 , pp. 650-654
    • Lohse, M.B.1    Johnson, A.D.2
  • 35
    • 77955554767 scopus 로고    scopus 로고
    • Regulation of white-opaque switching in Candida albicans
    • 20390300,.,. (): p. –
    • Morschhauser J., Regulation of white-opaque switching in Candida albicans. Med Microbiol Immunol, 2010. 199(3): p. 165–72. doi: 10.1007/s00430-010-0147-020390300
    • (2010) Med Microbiol Immunol , vol.199 , Issue.3 , pp. 165-172
    • Morschhauser, J.1
  • 36
    • 84880048047 scopus 로고    scopus 로고
    • Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover
    • 23653357,.,.,. (): p. –
    • Yang X., et al., Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover. J Biol Chem, 2013. 288(25): p. 18271–82. doi: 10.1074/jbc.M113.47319923653357
    • (2013) J Biol Chem , vol.288 , Issue.25 , pp. 18271-18282
    • Yang, X.1
  • 37
    • 84870248063 scopus 로고    scopus 로고
    • The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis in Candida albicans
    • 23075292,.,.,. (): p. –
    • Tscherner M., et al., The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis in Candida albicans. Mol Microbiol, 2012. 86(5): p. 1197–214. doi: 10.1111/mmi.1205123075292
    • (2012) Mol Microbiol , vol.86 , Issue.5 , pp. 1197-1214
    • Tscherner, M.1
  • 38
    • 84946099005 scopus 로고    scopus 로고
    • The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways
    • 26473952,.,.,. (): p
    • Tscherner M., et al., The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways. PLoS Pathog, 2015. 11(10): p. e1005218. doi: 10.1371/journal.ppat.100521826473952
    • (2015) PLoS Pathog , vol.11 , Issue.10 , pp. e1005218
    • Tscherner, M.1
  • 39
    • 84903954203 scopus 로고    scopus 로고
    • A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans
    • 24917598,.,.,. (): p. –
    • Nobile C.J., et al., A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. MBio, 2014. 5(3): p. e01201–14. doi: 10.1128/mBio.01201-1424917598
    • (2014) MBio , vol.5 , Issue.3 , pp. e01201-e01214
    • Nobile, C.J.1
  • 40
    • 84936943259 scopus 로고    scopus 로고
    • The Rpd3/Hda1 family of histone deacetylases regulates azole resistance in Candida albicans
    • 25825380,.,.,. (): p. –
    • Li X., et al., The Rpd3/Hda1 family of histone deacetylases regulates azole resistance in Candida albicans. J Antimicrob Chemother, 2015. 70(7): p. 1993–2003. doi: 10.1093/jac/dkv07025825380
    • (2015) J Antimicrob Chemother , vol.70 , Issue.7 , pp. 1993-2003
    • Li, X.1
  • 41
    • 84937875828 scopus 로고    scopus 로고
    • Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans
    • 25656079,.,.: p. –
    • Chang P., Fan X., Chen J., Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Fungal Genet Biol, 2015. 81: p. 132–41. doi: 10.1016/j.fgb.2015.01.01125656079
    • (2015) Fungal Genet Biol , vol.81 , pp. 132-141
    • Chang, P.1    Fan, X.2    Chen, J.3
  • 42
    • 33746992118 scopus 로고    scopus 로고
    • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
    • 16916647,.,.,. (): p. –
    • Kim S.C., et al., Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell, 2006. 23(4): p. 607–18. doi: 10.1016/j.molcel.2006.06.02616916647
    • (2006) Mol Cell , vol.23 , Issue.4 , pp. 607-618
    • Kim, S.C.1
  • 43
    • 84927949588 scopus 로고    scopus 로고
    • Two-component phosphorelays in fungal mitochondria and beyond
    • 25858273,.,.: p. –
    • Chauhan N., Two-component phosphorelays in fungal mitochondria and beyond. Mitochondrion, 2015. 22: p. 60–5. doi: 10.1016/j.mito.2015.03.00325858273
    • (2015) Mitochondrion , vol.22 , pp. 60-65
    • Chauhan, N.1
  • 44
    • 80055116385 scopus 로고    scopus 로고
    • Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy
    • 21926328,.,. (): p. –
    • Shingu-Vazquez M., Traven A., Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell, 2011. 10(11): p. 1376–83. doi: 10.1128/EC.05184-1121926328
    • (2011) Eukaryot Cell , vol.10 , Issue.11 , pp. 1376-1383
    • Shingu-Vazquez, M.1    Traven, A.2
  • 45
    • 80053077071 scopus 로고    scopus 로고
    • The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation
    • 21849684,.,.,. (): p. –
    • Seider K., et al., The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol, 2011. 187(6): p. 3072–86. doi: 10.4049/jimmunol.100373021849684
    • (2011) J Immunol , vol.187 , Issue.6 , pp. 3072-3086
    • Seider, K.1
  • 46
    • 84865175959 scopus 로고    scopus 로고
    • An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells
    • 22416242,.,.,.: p
    • Tierney L., et al., An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells. Front Microbiol, 2012. 3: p. 85. doi: 10.3389/fmicb.2012.0008522416242
    • (2012) Front Microbiol , vol.3 , pp. 85
    • Tierney, L.1
  • 47
    • 78650153662 scopus 로고    scopus 로고
    • Pathogen-mediated posttranslational modifications: A re-emerging field
    • 21111231,.,. (): p. –
    • Ribet D., Cossart P., Pathogen-mediated posttranslational modifications: A re-emerging field. Cell, 2010. 143(5): p. 694–702. doi: 10.1016/j.cell.2010.11.01921111231
    • (2010) Cell , vol.143 , Issue.5 , pp. 694-702
    • Ribet, D.1    Cossart, P.2
  • 48
    • 0028964234 scopus 로고
    • Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells
    • 7721941,.,.,. (): p. –
    • Adam T., et al., Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells. J Cell Biol, 1995. 129(2): p. 367–81. 7721941
    • (1995) J Cell Biol , vol.129 , Issue.2 , pp. 367-381
    • Adam, T.1
  • 49
    • 84890216511 scopus 로고    scopus 로고
    • Review of evidence for immune evasion and persistent infection in Lyme disease
    • 23637552,.,.: p. –
    • Berndtson K., Review of evidence for immune evasion and persistent infection in Lyme disease. Int J Gen Med, 2013. 6: p. 291–306. doi: 10.2147/IJGM.S4411423637552
    • (2013) Int J Gen Med , vol.6 , pp. 291-306
    • Berndtson, K.1
  • 50
    • 67650314612 scopus 로고    scopus 로고
    • Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages
    • 19547701,.,.,. (): p
    • Rupp J., et al., Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages. PLoS One, 2009. 4(6): p. e6020. doi: 10.1371/journal.pone.000602019547701
    • (2009) PLoS One , vol.4 , Issue.6 , pp. e6020
    • Rupp, J.1
  • 51
    • 84934783380 scopus 로고    scopus 로고
    • Mechanisms of Antifungal Drug Resistance
    • .,.,. (): p
    • Cowen L.E., et al., Mechanisms of Antifungal Drug Resistance. Cold Spring Harb Perspect Med, 2015. 5(7): p. a019752.
    • (2015) Cold Spring Harb Perspect Med , vol.5 , Issue.7 , pp. a019752
    • Cowen, L.E.1
  • 52
    • 84878342622 scopus 로고    scopus 로고
    • Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations
    • 23487382,.,.,. (): p. –
    • Alexander B.D., et al., Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis, 2013. 56(12): p. 1724–32. doi: 10.1093/cid/cit13623487382
    • (2013) Clin Infect Dis , vol.56 , Issue.12 , pp. 1724-1732
    • Alexander, B.D.1
  • 53
    • 33748451151 scopus 로고    scopus 로고
    • Anticancer activities of histone deacetylase inhibitors
    • 16955068,.,. (): p. –
    • Bolden J.E., Peart M.J., Johnstone R.W., Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov, 2006. 5(9): p. 769–84. doi: 10.1038/nrd213316955068
    • (2006) Nat Rev Drug Discov , vol.5 , Issue.9 , pp. 769-784
    • Bolden, J.E.1    Peart, M.J.2    Johnstone, R.W.3
  • 54
    • 53249130741 scopus 로고    scopus 로고
    • Therapeutic application of histone deacetylase inhibitors for central nervous system disorders
    • 18827828,.,. (): p. –
    • Kazantsev A.G., Thompson L.M., Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov, 2008. 7(10): p. 854–68. doi: 10.1038/nrd268118827828
    • (2008) Nat Rev Drug Discov , vol.7 , Issue.10 , pp. 854-868
    • Kazantsev, A.G.1    Thompson, L.M.2
  • 55
    • 34547864236 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors: molecular mechanisms of action
    • 17694093,.,. (): p. –
    • Xu W.S., Parmigiani R.B., Marks P.A., Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene, 2007. 26(37): p. 5541–52. doi: 10.1038/sj.onc.121062017694093
    • (2007) Oncogene , vol.26 , Issue.37 , pp. 5541-5552
    • Xu, W.S.1    Parmigiani, R.B.2    Marks, P.A.3
  • 56
    • 71549146873 scopus 로고    scopus 로고
    • Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens
    • 19794038,.,.,. (): p. –
    • Pfaller M.A., et al., Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol, 2009. 47(12): p. 3797–804. doi: 10.1128/JCM.00618-0919794038
    • (2009) J Clin Microbiol , vol.47 , Issue.12 , pp. 3797-3804
    • Pfaller, M.A.1
  • 57
    • 84925041893 scopus 로고    scopus 로고
    • In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species
    • 25600842,.,.,. (): –
    • Pfaller M.A., et al., In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species. Diagn Microbiol Infect Dis, 2015. 81(4):259–263. doi: 10.1016/j.diagmicrobio.2014.11.00825600842
    • (2015) Diagn Microbiol Infect Dis , vol.81 , Issue.4 , pp. 259-263
    • Pfaller, M.A.1
  • 58
    • 84896907500 scopus 로고    scopus 로고
    • Identification of a key lysine residue in heat shock protein 90 required for azole and echinocandin resistance in Aspergillus fumigatus
    • 24395240,.,.,. (): p. –
    • Lamoth F., et al., Identification of a key lysine residue in heat shock protein 90 required for azole and echinocandin resistance in Aspergillus fumigatus. Antimicrob Agents Chemother, 2014. 58(4): p. 1889–96. doi: 10.1128/AAC.02286-1324395240
    • (2014) Antimicrob Agents Chemother , vol.58 , Issue.4 , pp. 1889-1896
    • Lamoth, F.1
  • 59
    • 84942279828 scopus 로고    scopus 로고
    • Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans
    • 26195510,.,.,. (): p. –
    • Li X., et al., Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans. Antimicrob Agents Chemother, 2015. 59(10): p. 5885–91. doi: 10.1128/AAC.00726-1526195510
    • (2015) Antimicrob Agents Chemother , vol.59 , Issue.10 , pp. 5885-5891
    • Li, X.1
  • 60
    • 84864608067 scopus 로고    scopus 로고
    • Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections
    • 22911155,.,.,. (): p
    • Majer O., et al., Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog, 2012. 8(7): p. e1002811. doi: 10.1371/journal.ppat.100281122911155
    • (2012) PLoS Pathog , vol.8 , Issue.7 , pp. e1002811
    • Majer, O.1
  • 61
    • 84919625180 scopus 로고    scopus 로고
    • The non-receptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome
    • 25474208,.,.,. (): p
    • Zwolanek F., et al., The non-receptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome. PLoS Pathog, 2014. 10(12): p. e1004525. doi: 10.1371/journal.ppat.100452525474208
    • (2014) PLoS Pathog , vol.10 , Issue.12 , pp. e1004525
    • Zwolanek, F.1
  • 62
    • 84978741609 scopus 로고    scopus 로고
    • Inhibition of CBLB protects from lethal Candida albicans sepsis
    • Wirnsberger G., et al., Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat Med, 2016.
    • (2016) Nat Med
    • Wirnsberger, G.1
  • 63
    • 85002479532 scopus 로고    scopus 로고
    • Candida albicans Gene Deletion with a Transient CRISPR-Cas9 System
    • Min K., et al., Candida albicans Gene Deletion with a Transient CRISPR-Cas9 System. mSphere, 2016. 1(3).
    • (2016) mSphere , vol.1 , Issue.3
    • Min, K.1
  • 64
    • 84865302428 scopus 로고    scopus 로고
    • Systems biology of host-fungus interactions: turning complexity into simplicity
    • 22717554,.,.,. (): p. –
    • Tierney L., et al., Systems biology of host-fungus interactions: turning complexity into simplicity. Curr Opin Microbiol, 2012. 15(4): p. 440–6. doi: 10.1016/j.mib.2012.05.00122717554
    • (2012) Curr Opin Microbiol , vol.15 , Issue.4 , pp. 440-446
    • Tierney, L.1
  • 65
    • 84957442426 scopus 로고    scopus 로고
    • Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man
    • 26792937,.,. (): p. –
    • Harr J.C., Gonzalez-Sandoval A., Gasser S.M., Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep, 2016. 17(2): p. 139–55. doi: 10.15252/embr.20154180926792937
    • (2016) EMBO Rep , vol.17 , Issue.2 , pp. 139-155
    • Harr, J.C.1    Gonzalez-Sandoval, A.2    Gasser, S.M.3
  • 66
    • 84962032647 scopus 로고    scopus 로고
    • Histone modification and chromatin remodeling during NER
    • .,.: p. –
    • Waters R., van Eijk P., Reed S., Histone modification and chromatin remodeling during NER. DNA Repair (Amst), 2015. 36: p. 105–13.
    • (2015) DNA Repair (Amst) , vol.36 , pp. 105-113
    • Waters, R.1    van Eijk, P.2    Reed, S.3
  • 67
    • 84924599442 scopus 로고    scopus 로고
    • Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases
    • 25365782,.,.,. (): p. –
    • Dahlin J.L., et al., Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol, 2015. 50(1): p. 31–53. doi: 10.3109/10409238.2014.97897525365782
    • (2015) Crit Rev Biochem Mol Biol , vol.50 , Issue.1 , pp. 31-53
    • Dahlin, J.L.1
  • 68
    • 77957240557 scopus 로고    scopus 로고
    • Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin
    • 20797861,.,. (): p. –
    • Xiong B., Lu S., Gerton J.L., Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin. Curr Biol, 2010. 20(18): p. 1660–5. doi: 10.1016/j.cub.2010.08.01920797861
    • (2010) Curr Biol , vol.20 , Issue.18 , pp. 1660-1665
    • Xiong, B.1    Lu, S.2    Gerton, J.L.3
  • 69
    • 0037123767 scopus 로고    scopus 로고
    • Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases
    • 12086601,.,.,. (): p. –
    • Robyr D., et al., Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell, 2002. 109(4): p. 437–46. 12086601
    • (2002) Cell , vol.109 , Issue.4 , pp. 437-446
    • Robyr, D.1
  • 70
    • 39749127166 scopus 로고    scopus 로고
    • The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men
    • 18292778,.,. (): p. –
    • Yang X.J., Seto E., The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol, 2008. 9(3): p. 206–18. doi: 10.1038/nrm234618292778
    • (2008) Nat Rev Mol Cell Biol , vol.9 , Issue.3 , pp. 206-218
    • Yang, X.J.1    Seto, E.2
  • 71
    • 0037111879 scopus 로고    scopus 로고
    • Requirement of Hos2 histone deacetylase for gene activity in yeast
    • 12434058,.,. (): p. –
    • Wang A., Kurdistani S.K., Grunstein M., Requirement of Hos2 histone deacetylase for gene activity in yeast. Science, 2002. 298(5597): p. 1412–4. doi: 10.1126/science.107779012434058
    • (2002) Science , vol.298 , Issue.5597 , pp. 1412-1414
    • Wang, A.1    Kurdistani, S.K.2    Grunstein, M.3
  • 72
    • 84867652835 scopus 로고    scopus 로고
    • Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages
    • 22802645,.,.,. (): p. –
    • Chen X., et al., Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A, 2012. 109(42): p. E2865–74. doi: 10.1073/pnas.112113110922802645
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.42 , pp. E2865-E2874
    • Chen, X.1
  • 73
    • 84914811793 scopus 로고    scopus 로고
    • Functional characterization of Candida albicans Hos2 histone deacetylase
    • 25110576,.,.,.: p
    • Karthikeyan G., et al., Functional characterization of Candida albicans Hos2 histone deacetylase. F1000Res, 2013. 2: p. 238. doi: 10.12688/f1000research.2-238.v325110576
    • (2013) F1000Res , vol.2 , pp. 238
    • Karthikeyan, G.1
  • 74
    • 33747609801 scopus 로고    scopus 로고
    • Genome-wide patterns of histone modifications in yeast
    • 16912715,.,. (): p. –
    • Millar C.B., Grunstein M., Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol, 2006. 7(9): p. 657–666. doi: 10.1038/nrm198616912715
    • (2006) Nat Rev Mol Cell Biol , vol.7 , Issue.9 , pp. 657-666
    • Millar, C.B.1    Grunstein, M.2
  • 75
    • 33749669082 scopus 로고    scopus 로고
    • Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10
    • 17052455,.,.,. (): p. –
    • Ahn S.H., et al., Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10. Mol Cell, 2006. 24(2): p. 211–20. doi: 10.1016/j.molcel.2006.09.00817052455
    • (2006) Mol Cell , vol.24 , Issue.2 , pp. 211-220
    • Ahn, S.H.1
  • 76
    • 0033607171 scopus 로고    scopus 로고
    • Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity
    • 10535926,.,.,. (): p. –
    • Carmen A.A., et al., Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity. Proc Natl Acad Sci U S A, 1999. 96(22): p. 12356–61. 10535926
    • (1999) Proc Natl Acad Sci U S A , vol.96 , Issue.22 , pp. 12356-12361
    • Carmen, A.A.1
  • 77
    • 0344874578 scopus 로고    scopus 로고
    • Histone deacetylases in fungi: novel members, new facts
    • 12853613,.,.,. (): p. –
    • Trojer P., et al., Histone deacetylases in fungi: novel members, new facts. Nucleic Acids Res, 2003. 31(14): p. 3971–81. 12853613
    • (2003) Nucleic Acids Res , vol.31 , Issue.14 , pp. 3971-3981
    • Trojer, P.1
  • 78
    • 70350150387 scopus 로고    scopus 로고
    • Collaboration between the essential Esa1 acetyltransferase and the Rpd3 deacetylase is mediated by H4K12 histone acetylation in Saccharomyces cerevisiae
    • 19596907,.,. (): p. –
    • Chang C.S., Pillus L., Collaboration between the essential Esa1 acetyltransferase and the Rpd3 deacetylase is mediated by H4K12 histone acetylation in Saccharomyces cerevisiae. Genetics, 2009. 183(1): p. 149–60. doi: 10.1534/genetics.109.10384619596907
    • (2009) Genetics , vol.183 , Issue.1 , pp. 149-160
    • Chang, C.S.1    Pillus, L.2
  • 79
    • 0029856225 scopus 로고    scopus 로고
    • HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription
    • 8962081,.,.,. (): p. –
    • Rundlett S.E., et al., HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A, 1996. 93(25): p. 14503–8. 8962081
    • (1996) Proc Natl Acad Sci U S A , vol.93 , Issue.25 , pp. 14503-14508
    • Rundlett, S.E.1
  • 80
    • 0034839973 scopus 로고    scopus 로고
    • Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin
    • 11545749,.,.,. (): p. –
    • Suka N., et al., Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell, 2001. 8(2): p. 473–9. 11545749
    • (2001) Mol Cell , vol.8 , Issue.2 , pp. 473-479
    • Suka, N.1
  • 81
    • 0034610367 scopus 로고    scopus 로고
    • Genomewide studies of histone deacetylase function in yeast
    • 11095743,.,. (): p. –
    • Bernstein B.E., Tong J.K., Schreiber S.L., Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci U S A, 2000. 97(25): p. 13708–13. doi: 10.1073/pnas.25047769711095743
    • (2000) Proc Natl Acad Sci U S A , vol.97 , Issue.25 , pp. 13708-13713
    • Bernstein, B.E.1    Tong, J.K.2    Schreiber, S.L.3
  • 82
    • 42149147377 scopus 로고    scopus 로고
    • Histone modifications and chromatin dynamics: a focus on filamentous fungi
    • 18221488,.,. (): p. –
    • Brosch G., Loidl P., Graessle S., Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev, 2008. 32(3): p. 409–39. doi: 10.1111/j.1574-6976.2007.00100.x18221488
    • (2008) FEMS Microbiol Rev , vol.32 , Issue.3 , pp. 409-439
    • Brosch, G.1    Loidl, P.2    Graessle, S.3
  • 83
    • 33846938126 scopus 로고    scopus 로고
    • Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans
    • 17196388,.,.,. (): p. –
    • Mai A., et al., Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans. Bioorg Med Chem Lett, 2007. 17(5): p. 1221–5. doi: 10.1016/j.bmcl.2006.12.02817196388
    • (2007) Bioorg Med Chem Lett , vol.17 , Issue.5 , pp. 1221-1225
    • Mai, A.1
  • 84
    • 79952270884 scopus 로고    scopus 로고
    • HDACs link the DNA damage response, processing of double-strand breaks and autophagy
    • 21368826,.,.,. (): p. –
    • Robert T., et al., HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature, 2011. 471(7336): p. 74–9. doi: 10.1038/nature0980321368826
    • (2011) Nature , vol.471 , Issue.7336 , pp. 74-79
    • Robert, T.1
  • 85
    • 0037380209 scopus 로고    scopus 로고
    • Histone acetylation and deacetylation in yeast
    • 12671650,.,. (): p. –
    • Kurdistani S.K., Grunstein M., Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol, 2003. 4(4): p. 276–84. doi: 10.1038/nrm107512671650
    • (2003) Nat Rev Mol Cell Biol , vol.4 , Issue.4 , pp. 276-284
    • Kurdistani, S.K.1    Grunstein, M.2
  • 86
    • 0035105035 scopus 로고    scopus 로고
    • TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
    • 11172717,.,.,. (): p. –
    • Wu J., et al., TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell, 2001. 7(1): p. 117–26. 11172717
    • (2001) Mol Cell , vol.7 , Issue.1 , pp. 117-126
    • Wu, J.1
  • 87
    • 0034971016 scopus 로고    scopus 로고
    • A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans
    • 11404352,.,. (): p. –
    • Klar A.J., Srikantha T., Soll D.R., A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics, 2001. 158(2): p. 919–24. 11404352
    • (2001) Genetics , vol.158 , Issue.2 , pp. 919-924
    • Klar, A.J.1    Srikantha, T.2    Soll, D.R.3
  • 88
    • 0034707037 scopus 로고    scopus 로고
    • Global histone acetylation and deacetylation in yeast
    • 11100734,.,.,. (): p. –
    • Vogelauer M., et al., Global histone acetylation and deacetylation in yeast. Nature, 2000. 408(6811): p. 495–8. doi: 10.1038/3504412711100734
    • (2000) Nature , vol.408 , Issue.6811 , pp. 495-498
    • Vogelauer, M.1
  • 89
    • 35448985401 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans
    • 17627775,.,.,. (): p. –
    • Simonetti G., et al., Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans. FEMS Yeast Res, 2007. 7(8): p. 1371–80. doi: 10.1111/j.1567-1364.2007.00276.x17627775
    • (2007) FEMS Yeast Res , vol.7 , Issue.8 , pp. 1371-1380
    • Simonetti, G.1
  • 90
    • 0033609055 scopus 로고    scopus 로고
    • Three proteins define a class of human histone deacetylases related to yeast Hda1p
    • 10220385,.,. (): p. –
    • Grozinger C.M., Hassig C.A., Schreiber S.L., Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A, 1999. 96(9): p. 4868–73. 10220385
    • (1999) Proc Natl Acad Sci U S A , vol.96 , Issue.9 , pp. 4868-4873
    • Grozinger, C.M.1    Hassig, C.A.2    Schreiber, S.L.3
  • 91
    • 0036122494 scopus 로고    scopus 로고
    • Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity
    • 11884604,.,.,. (): p. –
    • Bjerling P., et al., Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol Cell Biol, 2002. 22(7): p. 2170–81. doi: 10.1128/MCB.22.7.2170-2181.200211884604
    • (2002) Mol Cell Biol , vol.22 , Issue.7 , pp. 2170-2181
    • Bjerling, P.1
  • 92
    • 26444514954 scopus 로고    scopus 로고
    • Genome-wide analysis of HDAC function
    • 16153738,.,. (): p. –
    • Ekwall K., Genome-wide analysis of HDAC function. Trends Genet, 2005. 21(11): p. 608–15. doi: 10.1016/j.tig.2005.08.00916153738
    • (2005) Trends Genet , vol.21 , Issue.11 , pp. 608-615
    • Ekwall, K.1
  • 93
    • 56749105947 scopus 로고    scopus 로고
    • Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase
    • 18990212,.,.: p
    • Weber J.M., Irlbacher H., Ehrenhofer-Murray A.E., Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase. BMC Mol Biol, 2008. 9: p. 100. doi: 10.1186/1471-2199-9-10018990212
    • (2008) BMC Mol Biol , vol.9 , pp. 100
    • Weber, J.M.1    Irlbacher, H.2    Ehrenhofer-Murray, A.E.3
  • 94
    • 84925808970 scopus 로고    scopus 로고
    • Sirtuins in epigenetic regulation
    • 25804908,.,. (): p. –
    • Jing H., Lin H., Sirtuins in epigenetic regulation. Chem Rev, 2015. 115(6): p. 2350–75. doi: 10.1021/cr500457h25804908
    • (2015) Chem Rev , vol.115 , Issue.6 , pp. 2350-2375
    • Jing, H.1    Lin, H.2
  • 95
    • 6344270167 scopus 로고    scopus 로고
    • Global position and recruitment of HATs and HDACs in the yeast genome
    • 15494307,.,.,. (): p. –
    • Robert F., et al., Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell, 2004. 16(2): p. 199–209. doi: 10.1016/j.molcel.2004.09.02115494307
    • (2004) Mol Cell , vol.16 , Issue.2 , pp. 199-209
    • Robert, F.1
  • 96
    • 15244355745 scopus 로고    scopus 로고
    • Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme
    • 15780941,.,. (): p. –
    • Avalos J.L., Bever K.M., Wolberger C., Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell, 2005. 17(6): p. 855–68. doi: 10.1016/j.molcel.2005.02.02215780941
    • (2005) Mol Cell , vol.17 , Issue.6 , pp. 855-868
    • Avalos, J.L.1    Bever, K.M.2    Wolberger, C.3
  • 97
    • 84936992221 scopus 로고    scopus 로고
    • Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p
    • 26158509,.,.,.: p
    • Madsen C.T., et al., Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p. Nat Commun, 2015. 6: p. 7726. doi: 10.1038/ncomms872626158509
    • (2015) Nat Commun , vol.6 , pp. 7726
    • Madsen, C.T.1
  • 98
    • 70349138701 scopus 로고    scopus 로고
    • The conserved role of sirtuins in chromatin regulation
    • 19378253,.,. (): p. –
    • Vaquero A., The conserved role of sirtuins in chromatin regulation. Int J Dev Biol, 2009. 53(2–3): p. 303–22. doi: 10.1387/ijdb.082675av19378253
    • (2009) Int J Dev Biol , vol.53 , Issue.2-3 , pp. 303-322
    • Vaquero, A.1
  • 99
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: insights into their biological function
    • 17447894,.,. (): p. –
    • Michan S., Sinclair D., Sirtuins in mammals: insights into their biological function. Biochem J, 2007. 404(1): p. 1–13. doi: 10.1042/BJ2007014017447894
    • (2007) Biochem J , vol.404 , Issue.1 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 100
    • 84892562351 scopus 로고    scopus 로고
    • Functional complementation of sir2Delta yeast mutation by the human orthologous gene SIRT1
    • 24349441,.,. (): p
    • Gaglio D., D'Alfonso A., Camilloni G., Functional complementation of sir2Delta yeast mutation by the human orthologous gene SIRT1. PLoS One, 2013. 8(12): p. e83114. doi: 10.1371/journal.pone.008311424349441
    • (2013) PLoS One , vol.8 , Issue.12 , pp. e83114
    • Gaglio, D.1    D'Alfonso, A.2    Camilloni, G.3
  • 101
    • 33745520486 scopus 로고    scopus 로고
    • The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation
    • 16815704,.,.,. (): p. –
    • Celic I., et al., The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol, 2006. 16(13): p. 1280–9. doi: 10.1016/j.cub.2006.06.02316815704
    • (2006) Curr Biol , vol.16 , Issue.13 , pp. 1280-1289
    • Celic, I.1
  • 102
    • 34547875773 scopus 로고    scopus 로고
    • Sirtuins: critical regulators at the crossroads between cancer and aging
    • 17694089,.,. (): p. –
    • Saunders L.R., Verdin E., Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene, 2007. 26(37): p. 5489–504. doi: 10.1038/sj.onc.121061617694089
    • (2007) Oncogene , vol.26 , Issue.37 , pp. 5489-5504
    • Saunders, L.R.1    Verdin, E.2
  • 103
    • 67149099680 scopus 로고    scopus 로고
    • Histone H4 lysine 16 acetylation regulates cellular lifespan
    • 19516333,.,.,. (): p. –
    • Dang W., et al., Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature, 2009. 459(7248): p. 802–7. doi: 10.1038/nature0808519516333
    • (2009) Nature , vol.459 , Issue.7248 , pp. 802-807
    • Dang, W.1
  • 104
    • 0035910031 scopus 로고    scopus 로고
    • Identification of a small molecule inhibitor of Sir2p
    • 11752457,.,.,. (): p. –
    • Bedalov A., et al., Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A, 2001. 98(26): p. 15113–8. doi: 10.1073/pnas.26157439811752457
    • (2001) Proc Natl Acad Sci U S A , vol.98 , Issue.26 , pp. 15113-15118
    • Bedalov, A.1
  • 105
    • 33645835480 scopus 로고    scopus 로고
    • Candida albicans SET1 encodes a histone 3 lysine 4 methyltransferase that contributes to the pathogenesis of invasive candidiasis
    • 16629671,.,.,. (): p. –
    • Raman S.B., et al., Candida albicans SET1 encodes a histone 3 lysine 4 methyltransferase that contributes to the pathogenesis of invasive candidiasis. Mol Microbiol, 2006. 60(3): p. 697–709. doi: 10.1111/j.1365-2958.2006.05121.x16629671
    • (2006) Mol Microbiol , vol.60 , Issue.3 , pp. 697-709
    • Raman, S.B.1
  • 106
    • 0038601738 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Set1p is a methyltransferase specific for lysine 4 of histone H3 and is required for efficient gene expression
    • 12845608,.,. (): p. –
    • Boa S., Coert C., Patterton H.G., Saccharomyces cerevisiae Set1p is a methyltransferase specific for lysine 4 of histone H3 and is required for efficient gene expression. Yeast, 2003. 20(9): p. 827–35. doi: 10.1002/yea.99512845608
    • (2003) Yeast , vol.20 , Issue.9 , pp. 827-835
    • Boa, S.1    Coert, C.2    Patterton, H.G.3
  • 107
    • 84859893371 scopus 로고    scopus 로고
    • Histone methylation: a dynamic mark in health, disease and inheritance
    • 22473383,.,. (): p. –
    • Greer E.L., Shi Y., Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet, 2012. 13(5): p. 343–57. doi: 10.1038/nrg317322473383
    • (2012) Nat Rev Genet , vol.13 , Issue.5 , pp. 343-357
    • Greer, E.L.1    Shi, Y.2
  • 108
    • 23944462969 scopus 로고    scopus 로고
    • Genome-wide map of nucleosome acetylation and methylation in yeast
    • 16122420,.,.,. (): p. –
    • Pokholok D.K., et al., Genome-wide map of nucleosome acetylation and methylation in yeast. Cell, 2005. 122(4): p. 517–27. doi: 10.1016/j.cell.2005.06.02616122420
    • (2005) Cell , vol.122 , Issue.4 , pp. 517-527
    • Pokholok, D.K.1
  • 109
    • 11844276610 scopus 로고    scopus 로고
    • Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae
    • 15652479,.,.,. (): p. –
    • Ahn S.H., et al., Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell, 2005. 120(1): p. 25–36. doi: 10.1016/j.cell.2004.11.01615652479
    • (2005) Cell , vol.120 , Issue.1 , pp. 25-36
    • Ahn, S.H.1
  • 110
    • 0038293152 scopus 로고    scopus 로고
    • Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase
    • 12757711,.,.,. (): p. –
    • Cheung W.L., et al., Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell, 2003. 113(4): p. 507–17. 12757711
    • (2003) Cell , vol.113 , Issue.4 , pp. 507-517
    • Cheung, W.L.1
  • 111
    • 10544224146 scopus 로고    scopus 로고
    • Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans
    • 8917571,.,.,. (): p. –
    • Leberer E., et al., Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A, 1996. 93(23): p. 13217–22. 8917571
    • (1996) Proc Natl Acad Sci U S A , vol.93 , Issue.23 , pp. 13217-13222
    • Leberer, E.1
  • 112
    • 84964317893 scopus 로고    scopus 로고
    • Structure-Based Screen Identification of a Mammalian Ste20-like Kinase 4 (MST4) Inhibitor with Therapeutic Potential for Pituitary Tumors
    • 26721946,.,.,. (): p. –
    • Xiong W., et al., Structure-Based Screen Identification of a Mammalian Ste20-like Kinase 4 (MST4) Inhibitor with Therapeutic Potential for Pituitary Tumors. Mol Cancer Ther, 2016. 15(3): p. 412–20. doi: 10.1158/1535-7163.MCT-15-070326721946
    • (2016) Mol Cancer Ther , vol.15 , Issue.3 , pp. 412-420
    • Xiong, W.1
  • 113
    • 84867183192 scopus 로고    scopus 로고
    • Histone phosphorylation: a chromatin modification involved in diverse nuclear events
    • 22948226,.,. (): p. –
    • Rossetto D., Avvakumov N., Cote J., Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics, 2012. 7(10): p. 1098–108. doi: 10.4161/epi.2197522948226
    • (2012) Epigenetics , vol.7 , Issue.10 , pp. 1098-1108
    • Rossetto, D.1    Avvakumov, N.2    Cote, J.3
  • 114
    • 84857427738 scopus 로고    scopus 로고
    • Chromatin and transcription in yeast
    • 22345607,.,. (): p. –
    • Rando O.J., Winston F., Chromatin and transcription in yeast. Genetics, 2012. 190(2): p. 351–87. doi: 10.1534/genetics.111.13226622345607
    • (2012) Genetics , vol.190 , Issue.2 , pp. 351-387
    • Rando, O.J.1    Winston, F.2
  • 115
    • 0035930537 scopus 로고    scopus 로고
    • Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress
    • 11673449,.,. (): p. –
    • Ward I.M., Chen J., Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem, 2001. 276(51): p. 47759–62. doi: 10.1074/jbc.C10056920011673449
    • (2001) J Biol Chem , vol.276 , Issue.51 , pp. 47759-47762
    • Ward, I.M.1    Chen, J.2
  • 116
    • 0032054379 scopus 로고    scopus 로고
    • A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity
    • 9561742,.,. (): p. –
    • Tuleva B., Vasileva-Tonkova E., Galabova D., A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity. FEMS Microbiol Lett, 1998. 161(1): p. 139–44. 9561742
    • (1998) FEMS Microbiol Lett , vol.161 , Issue.1 , pp. 139-144
    • Tuleva, B.1    Vasileva-Tonkova, E.2    Galabova, D.3
  • 117
    • 77954095162 scopus 로고    scopus 로고
    • Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity
    • 20543849,.,.,. (): p. –
    • Noble S.M., et al., Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet, 2010. 42(7): p. 590–8. doi: 10.1038/ng.60520543849
    • (2010) Nat Genet , vol.42 , Issue.7 , pp. 590-598
    • Noble, S.M.1
  • 118
    • 84910650721 scopus 로고    scopus 로고
    • The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3
    • 25106422,.,.,. (): p. –
    • Cieniewicz A.M., et al., The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3. Mol Cell Proteomics, 2014. 13(11): p. 2896–2910. doi: 10.1074/mcp.M114.03817425106422
    • (2014) Mol Cell Proteomics , vol.13 , Issue.11 , pp. 2896-2910
    • Cieniewicz, A.M.1
  • 119
    • 0036850346 scopus 로고    scopus 로고
    • Deciphering the Transcriptional Histone Acetylation Code for a Human Gene
    • 12419248,.,. (): p. –
    • Agalioti T., Chen G., Thanos D., Deciphering the Transcriptional Histone Acetylation Code for a Human Gene. Cell, 2002. 111(3): p. 381–392. 12419248
    • (2002) Cell , vol.111 , Issue.3 , pp. 381-392
    • Agalioti, T.1    Chen, G.2    Thanos, D.3
  • 120
    • 0030797349 scopus 로고    scopus 로고
    • Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex
    • 9224714,.,.,. (): p. –
    • Grant P.A., et al., Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev, 1997. 11(13): p. 1640–509224714
    • (1997) Genes Dev , vol.11 , Issue.13 , pp. 1640-1650
    • Grant, P.A.1
  • 121
    • 4043146501 scopus 로고    scopus 로고
    • Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression
    • 15155757,.,. (): –
    • Balasubramanyam K., Altaf M., Varier R.A., Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem, 2004. 279(32):33716–26doi: 10.1074/jbc.M40283920015155757
    • (2004) J Biol Chem , vol.279 , Issue.32 , pp. 33716-33726
    • Balasubramanyam, K.1    Altaf, M.2    Varier, R.A.3
  • 122
    • 77956791063 scopus 로고    scopus 로고
    • Cryptococcus neoformans Histone Acetyltransferase Gcn5 Regulates Fungal Adaptation to the Host
    • .,.,. (): p
    • O'Meara T.R., et al., Cryptococcus neoformans Histone Acetyltransferase Gcn5 Regulates Fungal Adaptation to the Host. Eukaryot Cell, 2010. 9(8): p. 11931202.
    • (2010) Eukaryot Cell , vol.9 , Issue.8 , pp. 11931202
    • O'Meara, T.R.1
  • 123
    • 58549087523 scopus 로고    scopus 로고
    • Inhibition of the PCAF histone acetyl transferase and cell proliferation by isothiazolones
    • 19111471,.,. (): p. –
    • Dekker F.J., Ghizzoni M., van der Meer N., Inhibition of the PCAF histone acetyl transferase and cell proliferation by isothiazolones. Bioorg Med Chem, 2009. 17(2): p. 460–6. doi: 10.1016/j.bmc.2008.12.00819111471
    • (2009) Bioorg Med Chem , vol.17 , Issue.2 , pp. 460-466
    • Dekker, F.J.1    Ghizzoni, M.2    van der Meer, N.3
  • 124
    • 70349311616 scopus 로고    scopus 로고
    • Histone acetyl transferases as emerging drug targets
    • 19577000,.,. (): p. –
    • Dekker F.J., Haisma H.J., Histone acetyl transferases as emerging drug targets. Drug Discov Today, 2009. 14(19–20): p. 942–948. doi: 10.1016/j.drudis.2009.06.00819577000
    • (2009) Drug Discov Today , vol.14 , Issue.19-20 , pp. 942-948
    • Dekker, F.J.1    Haisma, H.J.2
  • 125
    • 78649448009 scopus 로고    scopus 로고
    • Chemogenomic profiling of the cellular effects associated with histone H3 acetylation impairment by a quinoline-derived compound
    • 20732410,.,.,. (): p. –
    • Ruotolo R., et al., Chemogenomic profiling of the cellular effects associated with histone H3 acetylation impairment by a quinoline-derived compound. Genomics, 2010. 96(5): p. 272–280. doi: 10.1016/j.ygeno.2010.08.00520732410
    • (2010) Genomics , vol.96 , Issue.5 , pp. 272-280
    • Ruotolo, R.1
  • 126
    • 60549085424 scopus 로고    scopus 로고
    • A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone
    • 19099397,.,.,. (): p. –
    • Chimenti F., et al., A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-ylhydrazone. J Med Chem, 2009. 52(2): p. 530–536. doi: 10.1021/jm800885d19099397
    • (2009) J Med Chem , vol.52 , Issue.2 , pp. 530-536
    • Chimenti, F.1
  • 127
    • 84899131474 scopus 로고    scopus 로고
    • Histone acetylation in fungal pathogens of plants
    • 25288980,.,. (): p. –
    • Jeon J., Kwon S., Lee Y.H., Histone acetylation in fungal pathogens of plants. Plant Pathol J, 2014. 30(1): p. 1–9doi: 10.5423/PPJ.RW.01.2014.000325288980
    • (2014) Plant Pathol J , vol.30 , Issue.1 , pp. 1-9
    • Jeon, J.1    Kwon, S.2    Lee, Y.H.3
  • 128
    • 0028885077 scopus 로고
    • Identification of a gene encoding a yeast histone H4 acetyltransferase
    • 7559580,.,.,. (): p. –
    • Kleff S., et al., Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem, 1995. 270(42): p. 24674–24677. 7559580
    • (1995) J Biol Chem , vol.270 , Issue.42 , pp. 24674-24677
    • Kleff, S.1
  • 129
    • 0028847955 scopus 로고
    • Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4
    • 7862667,.,.,. (): p. –
    • Sobel R.E., et al., Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci U S A, 1995. 92(4): p. 1237–1241. 7862667
    • (1995) Proc Natl Acad Sci U S A , vol.92 , Issue.4 , pp. 1237-1241
    • Sobel, R.E.1
  • 130
    • 84862228827 scopus 로고    scopus 로고
    • The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources
    • 22080559,.,.,.: p. –
    • Shah P., et al., The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res, 2012. 40: p. D653–9doi: 10.1093/nar/gkr87522080559
    • (2012) Nucleic Acids Res , vol.40 , pp. D653-D659
    • Shah, P.1
  • 131
    • 84905174928 scopus 로고    scopus 로고
    • Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone H2A in vivo
    • 24682716,.,. (): p. –
    • Tafrova J.I., Tafrov S.T., Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone H2A in vivo. Mol Cell Biochem, 2014. 392(1–2): p. 259–272. doi: 10.1007/s11010-014-2036-024682716
    • (2014) Mol Cell Biochem , vol.392 , Issue.1-2 , pp. 259-272
    • Tafrova, J.I.1    Tafrov, S.T.2
  • 132
    • 0035941198 scopus 로고    scopus 로고
    • Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase
    • 11585814,.,. (): p. –
    • Makowski A.M., Dutnall R.N., Annunziato A.T., Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J Biol Chem, 2001. 276(47): p. 43499–43502. doi: 10.1074/jbc.C10054920011585814
    • (2001) J Biol Chem , vol.276 , Issue.47 , pp. 43499-43502
    • Makowski, A.M.1    Dutnall, R.N.2    Annunziato, A.T.3
  • 133
    • 0037133562 scopus 로고    scopus 로고
    • Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo
    • 11904415,.,.,. (): p. –
    • Winkler S.G., et al., Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl Acad Sci U S A, 2002. 99(6): p. 3517–3522. doi: 10.1073/pnas.02204289911904415
    • (2002) Proc Natl Acad Sci U S A , vol.99 , Issue.6 , pp. 3517-3522
    • Winkler, S.G.1
  • 134
    • 20044367838 scopus 로고    scopus 로고
    • The Elp3 subunit of human Elongator complex is functionally similar to its counterpart in yeast
    • 15902492,.,.,. (): p. –
    • Li F., et al., The Elp3 subunit of human Elongator complex is functionally similar to its counterpart in yeast. Mol Genet Genomics, 2005. 273(3): p. 264–272. doi: 10.1007/s00438-005-1120-215902492
    • (2005) Mol Genet Genomics , vol.273 , Issue.3 , pp. 264-272
    • Li, F.1
  • 135
    • 84881254916 scopus 로고    scopus 로고
    • Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae
    • 23775086,.,.,. (): p. –
    • Sampath V., et al., Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae. J Biol Chem, 2013. 288(30): p. 21506–21513. doi: 10.1074/jbc.M113.48627423775086
    • (2013) J Biol Chem , vol.288 , Issue.30 , pp. 21506-21513
    • Sampath, V.1
  • 136
    • 0033579559 scopus 로고    scopus 로고
    • Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily
    • 10600387,.,.,. (): p. –
    • Angus-Hill M.L., et al., Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily. J Mol Biol, 1999. 294(5): p. 1311–1325. doi: 10.1006/jmbi.1999.333810600387
    • (1999) J Mol Biol , vol.294 , Issue.5 , pp. 1311-1325
    • Angus-Hill, M.L.1
  • 137
    • 0033635271 scopus 로고    scopus 로고
    • Mediator-nucleosome interaction
    • 10949041,.,.,. (): p. –
    • Lorch Y., et al., Mediator-nucleosome interaction. Molecular cell, 2000. 6(1): p. 197–201. 10949041
    • (2000) Molecular cell , vol.6 , Issue.1 , pp. 197-201
    • Lorch, Y.1
  • 138
    • 79958032044 scopus 로고    scopus 로고
    • Mediator influences telomeric silencing and cellular life span
    • 21482672,.,.,. (): p. –
    • Zhu X., et al., Mediator influences telomeric silencing and cellular life span. Mol Cell Biol, 2011. 31(12): p. 2413–2421. doi: 10.1128/MCB.05242-1121482672
    • (2011) Mol Cell Biol , vol.31 , Issue.12 , pp. 2413-2421
    • Zhu, X.1
  • 139
    • 84874531464 scopus 로고    scopus 로고
    • Distinct and redundant roles of the two MYST histone acetyltransferases Esa1 and Sas2 in cell growth and morphogenesis of Candida albicans
    • 23355007,.,.,. (): p. –
    • Wang X., et al., Distinct and redundant roles of the two MYST histone acetyltransferases Esa1 and Sas2 in cell growth and morphogenesis of Candida albicans. Eukaryot Cell, 2013. 12(3): p. 438–449. doi: 10.1128/EC.00275-1223355007
    • (2013) Eukaryot Cell , vol.12 , Issue.3 , pp. 438-449
    • Wang, X.1
  • 140
    • 0033567954 scopus 로고    scopus 로고
    • NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p
    • 10487762,.,.,. (): p. –
    • Allard S., et al., NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J, 1999. 18(18): p. 5108–5119. doi: 10.1093/emboj/18.18.510810487762
    • (1999) EMBO J , vol.18 , Issue.18 , pp. 5108-5119
    • Allard, S.1
  • 141
    • 84867325687 scopus 로고    scopus 로고
    • Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer
    • Coffey K., et al., Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PloS One, 2012. 7(10).
    • (2012) PloS One , vol.7 , Issue.10
    • Coffey, K.1
  • 142
    • 0036843170 scopus 로고    scopus 로고
    • Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing
    • 12410229,.,. (): p. –
    • Kimura A., Umehara T., Horikoshi M., Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet, 2002. 32(3): p. 370–377. doi: 10.1038/ng99312410229
    • (2002) Nat Genet , vol.32 , Issue.3 , pp. 370-377
    • Kimura, A.1    Umehara, T.2    Horikoshi, M.3
  • 143
    • 0036842129 scopus 로고    scopus 로고
    • Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin
    • 12379856,.,. (): p. –
    • Suka N., Luo K., Grunstein M., Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet, 2002. 32(3): p. 378–383. doi: 10.1038/ng101712379856
    • (2002) Nat Genet , vol.32 , Issue.3 , pp. 378-383
    • Suka, N.1    Luo, K.2    Grunstein, M.3
  • 144
    • 84954350302 scopus 로고    scopus 로고
    • The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis
    • .,.,. (): p
    • Su J., et al., The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis. Int J Mol Sci, 2016. 17(1): p. 99.
    • (2016) Int J Mol Sci , vol.17 , Issue.1 , pp. 99
    • Su, J.1
  • 145
    • 39549110425 scopus 로고    scopus 로고
    • The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes
    • .,.,. () p
    • Rosaleny L.E., et al., The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes. Genome Biol, 2007. 8(6) p. 119.
    • (2007) Genome Biol , vol.8 , Issue.6 , pp. 119
    • Rosaleny, L.E.1
  • 146
    • 0035577668 scopus 로고    scopus 로고
    • Histone H3 specific acetyltransferases are essential for cell cycle progression
    • 11731478,.,.,.:
    • Howe L., et al., Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev, 2001. 15:3144doi: 10.1101/gad.93140111731478
    • (2001) Genes Dev , vol.15 , pp. 3144
    • Howe, L.1
  • 147
    • 0141755383 scopus 로고    scopus 로고
    • An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A
    • 12915400,.,.,. (): p. –
    • Song O.-K.K., et al., An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J Biol Chem, 2003. 278(40): p. 38109–38112. doi: 10.1074/jbc.C30035520012915400
    • (2003) J Biol Chem , vol.278 , Issue.40 , pp. 38109-38112
    • Song, O.-K.K.1
  • 148
    • 80052829164 scopus 로고    scopus 로고
    • The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4
    • 21935442,.,.,. () p
    • Hole K., et al., The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PloS One, 2011. 6(9) p. e24713. doi: 10.1371/journal.pone.002471321935442
    • (2011) PloS One , vol.6 , Issue.9 , pp. e24713
    • Hole, K.1
  • 149
    • 0030447943 scopus 로고    scopus 로고
    • The TAF(II)250 subunit of TFIID has histone acetyltransferase activity
    • 8980232,.,.,. (): p. –
    • Mizzen C.A., et al., The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell, 1996. 87(7): p. 1261–1270. 8980232
    • (1996) Cell , vol.87 , Issue.7 , pp. 1261-1270
    • Mizzen, C.A.1
  • 150
    • 32944469082 scopus 로고    scopus 로고
    • A decade of histone acetylation: marking eukaryotic chromosomes with specific codes
    • 16428293,.,. (): p. –
    • Kimura A., Matsubara K., Horikoshi M., A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem, 2005. 138(6): p. 647–662. doi: 10.1093/jb/mvi18416428293
    • (2005) J Biochem , vol.138 , Issue.6 , pp. 647-662
    • Kimura, A.1    Matsubara, K.2    Horikoshi, M.3
  • 151
    • 33846818840 scopus 로고    scopus 로고
    • Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56
    • 17272722,.,. (): p. –
    • Driscoll R., Hudson A., Jackson S.P., Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science, 2007. 315(5812): p. 649–652. doi: 10.1126/science.113586217272722
    • (2007) Science , vol.315 , Issue.5812 , pp. 649-652
    • Driscoll, R.1    Hudson, A.2    Jackson, S.P.3
  • 152
    • 33846796258 scopus 로고    scopus 로고
    • Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication
    • 17272723,.,.,. (): p. –
    • Han J., et al., Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science, 2007.315(5812): p. 653–655. doi: 10.1126/science.113323417272723
    • (2007) Science , vol.315 , Issue.5812 , pp. 653-655
    • Han, J.1
  • 153
    • 33846023720 scopus 로고    scopus 로고
    • Rtt109 Is Required for Proper H3K56 Acetylation A chromatin mark associated with the elongating RNA polymerase II
    • 17046836,.,.,. (): –
    • Schneider J., et al., Rtt109 Is Required for Proper H3K56 Acetylation A chromatin mark associated with the elongating RNA polymerase II. J Biol Chem, 2006. 281(49):37270–4. doi: 10.1074/jbc.C60026520017046836
    • (2006) J Biol Chem , vol.281 , Issue.49 , pp. 37270-37274
    • Schneider, J.1
  • 154
    • 65549113750 scopus 로고    scopus 로고
    • CBP/p300-mediated acetylation of histone H3 on lysine 56
    • 19270680,.,.,. (): p. –
    • Das C., et al., CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 2009. 459(7243): p. 113–117. doi: 10.1038/nature0786119270680
    • (2009) Nature , vol.459 , Issue.7243 , pp. 113-117
    • Das, C.1
  • 155
    • 0037805679 scopus 로고    scopus 로고
    • Small molecule modulators of histone acetyltransferase p300
    • 12624111,.,.,. (): p. –
    • Balasubramanyam K., et al., Small molecule modulators of histone acetyltransferase p300. J Biol Chem, 2003. 278(21): p. 19134–19140. doi: 10.1074/jbc.M30158020012624111
    • (2003) J Biol Chem , vol.278 , Issue.21 , pp. 19134-19140
    • Balasubramanyam, K.1
  • 156
    • 84900559630 scopus 로고    scopus 로고
    • Evaluation of a large library of (thiazol-2-yl)hydrazones and analogues as histone acetyltransferase inhibitors: enzyme and cellular studies
    • 24835815,.,.,.: p. –
    • Carradori S., et al., Evaluation of a large library of (thiazol-2-yl)hydrazones and analogues as histone acetyltransferase inhibitors: enzyme and cellular studies. Eur J Med Chem, 2014. 80: p. 569–578. doi: 10.1016/j.ejmech.2014.04.04224835815
    • (2014) Eur J Med Chem , vol.80 , pp. 569-578
    • Carradori, S.1
  • 157
    • 84879301398 scopus 로고    scopus 로고
    • A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice
    • 23804093,.,.,. (): p. –
    • Chatterjee S., et al., A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice. J Neurosci, 2013. 33(26): p. 10698–10712. doi: 10.1523/JNEUROSCI.5772-12.201323804093
    • (2013) J Neurosci , vol.33 , Issue.26 , pp. 10698-10712
    • Chatterjee, S.1
  • 158
    • 77954204335 scopus 로고    scopus 로고
    • Virtual Ligand Screening of the p300/CBP Histone Acetyltransferase: Identification of a Selective Small Molecule Inhibitor
    • 20534345,.,.,. (): p. –
    • Bowers E.M., et al., Virtual Ligand Screening of the p300/CBP Histone Acetyltransferase: Identification of a Selective Small Molecule Inhibitor. Chem Biol, 2010. 17(5): p. 471–482. doi: 10.1016/j.chembiol.2010.03.00620534345
    • (2010) Chem Biol , vol.17 , Issue.5 , pp. 471-482
    • Bowers, E.M.1
  • 159
    • 84880730339 scopus 로고    scopus 로고
    • A dual role for SAGA-associated factor 29 (SGF29) in ER stress survival by coordination of both histone H3 acetylation and histone H3 lysine-4 trimethylation
    • 23894581,.,.,. (): p
    • Schram A.W., et al., A dual role for SAGA-associated factor 29 (SGF29) in ER stress survival by coordination of both histone H3 acetylation and histone H3 lysine-4 trimethylation. PloS One, 2013. 8(7): p. e70035. doi: 10.1371/journal.pone.007003523894581
    • (2013) PloS One , vol.8 , Issue.7 , pp. e70035
    • Schram, A.W.1
  • 160
    • 18844413266 scopus 로고    scopus 로고
    • Acetylation in histone H3 globular domain regulates gene expression in yeast
    • 15882620,.,. (): p. –
    • Xu F., Zhang K., Grunstein M., Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell, 2005. 121(3): p. 375–385. doi: 10.1016/j.cell.2005.03.01115882620
    • (2005) Cell , vol.121 , Issue.3 , pp. 375-385
    • Xu, F.1    Zhang, K.2    Grunstein, M.3
  • 161
    • 84964300533 scopus 로고    scopus 로고
    • Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31
    • 25601565,.,.: –
    • Lee J-EE, Oh J-HH, Ku M, Kim J, Lee J-SS, et al. Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31. FEBS Lett, 2015. 589: 513–20. doi: 10.1016/j.febslet.2015.01.01125601565
    • (2015) FEBS Lett , vol.589 , pp. 513-520
    • Lee, J.-E.E.1    Oh, J.-H.H.2    Ku, M.3    Kim, J.4    Lee, J.-S.S.5
  • 162
    • 0038676409 scopus 로고    scopus 로고
    • Inhibition of histone deacetylase activity by butyrate
    • 12840228,.,.: –
    • Davie J.R., Inhibition of histone deacetylase activity by butyrate. J Nutr, 2003. 133: 2485S–2493S. 12840228
    • (2003) J Nutr , vol.133 , pp. 2485S-2493S
    • Davie, J.R.1
  • 163
    • 84926614325 scopus 로고    scopus 로고
    • Acetylation site specificities of lysine deacetylase inhibitors in human cells
    • Scholz C., Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat Biotech, 2015. 33: 415–423.
    • (2015) Nat Biotech , vol.33 , pp. 415-423
    • Scholz, C.1
  • 164
    • 0035914304 scopus 로고    scopus 로고
    • Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
    • 11483616,.,.: –
    • Grozinger C.M., Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem, 2001. 276: 38837–38843. doi: 10.1074/jbc.M10677920011483616
    • (2001) J Biol Chem , vol.276 , pp. 38837-38843
    • Grozinger, C.M.1
  • 165
    • 84901493375 scopus 로고    scopus 로고
    • Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases
    • 24269836,.,.: –
    • Dekker F.J., van den Bosch T., Martin N.I., Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today, 2014. 19: 654–660. doi: 10.1016/j.drudis.2013.11.01224269836
    • (2014) Drug Discov Today , vol.19 , pp. 654-660
    • Dekker, F.J.1    van den Bosch, T.2    Martin, N.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.