-
1
-
-
84871502341
-
Hidden killers: human fungal infections
-
23253612,.,.,. (): p
-
Brown G.D., et al., Hidden killers: human fungal infections. Sci Transl Med, 2012. 4(165): p. 165rv13. doi: 10.1126/scitranslmed.300440423253612
-
(2012)
Sci Transl Med
, vol.4
, Issue.165
, pp. 165rv13
-
-
Brown, G.D.1
-
2
-
-
33846466508
-
Epidemiology of invasive candidiasis: a persistent public health problem
-
17223626,.,. (): p. –
-
Pfaller M.A., Diekema D.J., Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev, 2007. 20(1): p. 133–63. doi: 10.1128/CMR.00029-0617223626
-
(2007)
Clin Microbiol Rev
, vol.20
, Issue.1
, pp. 133-163
-
-
Pfaller, M.A.1
Diekema, D.J.2
-
3
-
-
79953181947
-
Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study
-
21169817,.,.,. (): p. –
-
Kett D.H., et al., Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med, 2011. 39(4): p. 665–70. doi: 10.1097/CCM.0b013e318206c1ca21169817
-
(2011)
Crit Care Med
, vol.39
, Issue.4
, pp. 665-670
-
-
Kett, D.H.1
-
4
-
-
84962675422
-
Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance
-
27020939,.,.,.: p
-
Healey K.R., et al., Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun, 2016. 7: p. 11128. doi: 10.1038/ncomms1112827020939
-
(2016)
Nat Commun
, vol.7
, pp. 11128
-
-
Healey, K.R.1
-
5
-
-
84863337736
-
Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata
-
22278842,.,.,. (): p. –
-
Pfaller M.A., et al., Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol, 2012. 50(4): p. 1199–203. doi: 10.1128/JCM.06112-1122278842
-
(2012)
J Clin Microbiol
, vol.50
, Issue.4
, pp. 1199-1203
-
-
Pfaller, M.A.1
-
6
-
-
84921938023
-
Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management.
-
25255923,,. (): p. –
-
Perlin D.S., Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management.Drugs, 2014. 74(14): p. 1573–85. doi: 10.1007/s40265-014-0286-525255923
-
(2014)
Drugs
, vol.74
, Issue.14
, pp. 1573-1585
-
-
Perlin, D.S.1
-
7
-
-
34249724445
-
Nosocomial fungal infections: epidemiology, diagnosis, and treatment
-
17510856,.,. (): p. –
-
Perlroth J., Choi B., Spellberg B., Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol, 2007. 45(4): p. 321–46. doi: 10.1080/1369378070121868917510856
-
(2007)
Med Mycol
, vol.45
, Issue.4
, pp. 321-346
-
-
Perlroth, J.1
Choi, B.2
Spellberg, B.3
-
8
-
-
84947017165
-
What's new in antifungals: an update on the in-vitro activity and in-vivo efficacy of new and investigational antifungal agents
-
26374950,.,. (): p. –
-
Wiederhold N.P., Patterson T.F., What's new in antifungals: an update on the in-vitro activity and in-vivo efficacy of new and investigational antifungal agents. Curr Opin Infect Dis, 2015. 28(6): p. 539–45. doi: 10.1097/QCO.000000000000020326374950
-
(2015)
Curr Opin Infect Dis
, vol.28
, Issue.6
, pp. 539-545
-
-
Wiederhold, N.P.1
Patterson, T.F.2
-
9
-
-
84948124048
-
Immunotherapy of Fungal Infections
-
26575463,.,. (): p. –
-
Datta K., Hamad M., Immunotherapy of Fungal Infections. Immunol Invest, 2015. 44(8): p. 738–76. doi: 10.3109/08820139.2015.109391326575463
-
(2015)
Immunol Invest
, vol.44
, Issue.8
, pp. 738-776
-
-
Datta, K.1
Hamad, M.2
-
10
-
-
84925541506
-
Exploiting fungal cell wall components in vaccines
-
25404118,.,.,. (): p. –
-
Levitz S.M., et al., Exploiting fungal cell wall components in vaccines. Semin Immunopathol, 2015. 37(2): p. 199–207. doi: 10.1007/s00281-014-0460-625404118
-
(2015)
Semin Immunopathol
, vol.37
, Issue.2
, pp. 199-207
-
-
Levitz, S.M.1
-
11
-
-
84896857974
-
Vaccine immunity against fungal infections
-
24583636,.,.: p. –
-
Nanjappa S.G., Klein B.S., Vaccine immunity against fungal infections. Curr Opin Immunol, 2014. 28: p. 27–33. doi: 10.1016/j.coi.2014.01.01424583636
-
(2014)
Curr Opin Immunol
, vol.28
, pp. 27-33
-
-
Nanjappa, S.G.1
Klein, B.S.2
-
12
-
-
84866148796
-
Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence
-
22916016,.,.,. (): p
-
Rai M.N., et al., Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. PLoS Pathog, 2012. 8(8): p. e1002863. doi: 10.1371/journal.ppat.100286322916016
-
(2012)
PLoS Pathog
, vol.8
, Issue.8
, pp. e1002863
-
-
Rai, M.N.1
-
13
-
-
79955159590
-
Targeting chromatin in fungal pathogens as a novel therapeutic strategy: histone modification gets infectious
-
22122275,.,. (): p. –
-
Hnisz D., Tscherner M., Kuchler K., Targeting chromatin in fungal pathogens as a novel therapeutic strategy: histone modification gets infectious. Epigenomics, 2011. 3(2): p. 129–32. doi: 10.2217/epi.11.722122275
-
(2011)
Epigenomics
, vol.3
, Issue.2
, pp. 129-132
-
-
Hnisz, D.1
Tscherner, M.2
Kuchler, K.3
-
14
-
-
84927553790
-
Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis
-
25762988,.,.: p
-
Lamoth F., Juvvadi P.R., Steinbach W.J., Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis. Front Microbiol, 2015. 6: p. 96. doi: 10.3389/fmicb.2015.0009625762988
-
(2015)
Front Microbiol
, vol.6
, pp. 96
-
-
Lamoth, F.1
Juvvadi, P.R.2
Steinbach, W.J.3
-
15
-
-
33847076849
-
Chromatin modifications and their function
-
17320507,.,. (): p. –
-
Kouzarides T., Chromatin modifications and their function. Cell, 2007. 128(4): p. 693–705. doi: 10.1016/j.cell.2007.02.00517320507
-
(2007)
Cell
, vol.128
, Issue.4
, pp. 693-705
-
-
Kouzarides, T.1
-
16
-
-
0035839136
-
Translating the histone code
-
11498575,.,. (): p. –
-
Jenuwein T., Allis C.D., Translating the histone code. Science, 2001. 293(5532): p. 1074–80. doi: 10.1126/science.106312711498575
-
(2001)
Science
, vol.293
, Issue.5532
, pp. 1074-1080
-
-
Jenuwein, T.1
Allis, C.D.2
-
17
-
-
78649922622
-
The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes
-
21145479,.,. (): p. –
-
Smith E., Shilatifard A., The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell, 2010. 40(5): p. 689–701. doi: 10.1016/j.molcel.2010.11.03121145479
-
(2010)
Mol Cell
, vol.40
, Issue.5
, pp. 689-701
-
-
Smith, E.1
Shilatifard, A.2
-
18
-
-
77149120797
-
Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
-
20167787,.,.,. (): p. –
-
Wang Q., et al., Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010. 327(5968): p. 1004–7. doi: 10.1126/science.117968720167787
-
(2010)
Science
, vol.327
, Issue.5968
, pp. 1004-1007
-
-
Wang, Q.1
-
19
-
-
79953702814
-
Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis
-
21311030,.,.,. (): p. –
-
Wu X., et al., Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. Plant Physiol, 2011. 155(4): p. 1769–78. doi: 10.1104/pp.110.16585221311030
-
(2011)
Plant Physiol
, vol.155
, Issue.4
, pp. 1769-1778
-
-
Wu, X.1
-
20
-
-
84981334749
-
Systematic Analysis of the Lysine Acetylome in Candida albicans
-
Zhou X., et al., Systematic Analysis of the Lysine Acetylome in Candida albicans. J Proteome Res, 2016.
-
(2016)
J Proteome Res
-
-
Zhou, X.1
-
21
-
-
79960797509
-
Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation
-
21791702,.,.,. (): p
-
Weinert B.T., et al., Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal, 2011. 4(183): p. ra48. doi: 10.1126/scisignal.200190221791702
-
(2011)
Sci Signal
, vol.4
, Issue.183
, pp. ra48
-
-
Weinert, B.T.1
-
22
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
20167786,.,.,. (): p. –
-
Zhao S., et al., Regulation of cellular metabolism by protein lysine acetylation. Science, 2010. 327(5968): p. 1000–4. doi: 10.1126/science.117968920167786
-
(2010)
Science
, vol.327
, Issue.5968
, pp. 1000-1004
-
-
Zhao, S.1
-
23
-
-
49349107518
-
Lysine acetylation: codified crosstalk with other posttranslational modifications
-
18722172,.,. (): p. –
-
Yang X.J., Seto E., Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell, 2008. 31(4): p. 449–61. doi: 10.1016/j.molcel.2008.07.00218722172
-
(2008)
Mol Cell
, vol.31
, Issue.4
, pp. 449-461
-
-
Yang, X.J.1
Seto, E.2
-
24
-
-
0034654011
-
Acetylation: a regulatory modification to rival phosphorylation?
-
10716917,,. (): p. –
-
Kouzarides T., Acetylation: a regulatory modification to rival phosphorylation?EMBO J, 2000. 19(6): p. 1176–9. doi: 10.1093/emboj/19.6.117610716917
-
(2000)
EMBO J
, vol.19
, Issue.6
, pp. 1176-1179
-
-
Kouzarides, T.1
-
25
-
-
76549103447
-
Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis
-
20080646,.,.,. (): p. –
-
Lopes da Rosa J., et al., Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci U S A, 2010. 107(4): p. 1594–9. doi: 10.1073/pnas.091242710720080646
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.4
, pp. 1594-1599
-
-
Lopes da Rosa, J.1
-
26
-
-
77954541309
-
Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy
-
20601951,.,.,. (): p. –
-
Wurtele H., et al., Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med, 2010. 16(7): p. 774–80. doi: 10.1038/nm.217520601951
-
(2010)
Nat Med
, vol.16
, Issue.7
, pp. 774-780
-
-
Wurtele, H.1
-
27
-
-
70350036600
-
Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans
-
19555456,.,. (): p. –
-
Hnisz D., Schwarzmuller T., Kuchler K., Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans. Mol Microbiol, 2009. 74(1): p. 1–15. doi: 10.1111/j.1365-2958.2009.06772.x19555456
-
(2009)
Mol Microbiol
, vol.74
, Issue.1
, pp. 1-15
-
-
Hnisz, D.1
Schwarzmuller, T.2
Kuchler, K.3
-
28
-
-
77954076396
-
The Set3/Hos2 histone deacetylase complex attenuates cAMP/PKA signaling to regulate morphogenesis and virulence of Candida albicans
-
20485517,.,.,. (): p
-
Hnisz D., et al., The Set3/Hos2 histone deacetylase complex attenuates cAMP/PKA signaling to regulate morphogenesis and virulence of Candida albicans. PLoS Pathog, 2010. 6(5): p. e1000889. doi: 10.1371/journal.ppat.100088920485517
-
(2010)
PLoS Pathog
, vol.6
, Issue.5
, pp. e1000889
-
-
Hnisz, D.1
-
29
-
-
84872007065
-
A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis
-
23236295,.,.,. (): p
-
Hnisz D., et al., A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet, 2012. 8(12): p. e1003118. doi: 10.1371/journal.pgen.100311823236295
-
(2012)
PLoS Genet
, vol.8
, Issue.12
, pp. e1003118
-
-
Hnisz, D.1
-
30
-
-
84861205961
-
A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans
-
22536157,.,. (): p
-
Lu Y., Su C., Liu H., A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLoS Pathog, 2012. 8(4): p. e1002663. doi: 10.1371/journal.ppat.100266322536157
-
(2012)
PLoS Pathog
, vol.8
, Issue.4
, pp. e1002663
-
-
Lu, Y.1
Su, C.2
Liu, H.3
-
31
-
-
84868125083
-
Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance
-
23041319,.,. (): p. –
-
Robbins N., Leach M.D., Cowen L.E., Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance. Cell Rep, 2012. 2(4): p. 878–88. doi: 10.1016/j.celrep.2012.08.03523041319
-
(2012)
Cell Rep
, vol.2
, Issue.4
, pp. 878-888
-
-
Robbins, N.1
Leach, M.D.2
Cowen, L.E.3
-
32
-
-
80051571474
-
Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3
-
21749487,.,. (): p. –
-
Stevenson J.S., Liu H., Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3. Mol Microbiol, 2011. 81(4): p. 1078–91. doi: 10.1111/j.1365-2958.2011.07754.x21749487
-
(2011)
Mol Microbiol
, vol.81
, Issue.4
, pp. 1078-1091
-
-
Stevenson, J.S.1
Liu, H.2
-
33
-
-
0034932733
-
The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans
-
11443097,.,.,. (): p. –
-
Srikantha T., et al., The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol, 2001. 183(15): p. 4614–25. doi: 10.1128/JB.183.15.4614-4625.200111443097
-
(2001)
J Bacteriol
, vol.183
, Issue.15
, pp. 4614-4625
-
-
Srikantha, T.1
-
34
-
-
71549145287
-
White-opaque switching in Candida albicans
-
19853498,.,. (): p. –
-
Lohse M.B., Johnson A.D., White-opaque switching in Candida albicans. Curr Opin Microbiol, 2009. 12(6): p. 650–4. doi: 10.1016/j.mib.2009.09.01019853498
-
(2009)
Curr Opin Microbiol
, vol.12
, Issue.6
, pp. 650-654
-
-
Lohse, M.B.1
Johnson, A.D.2
-
35
-
-
77955554767
-
Regulation of white-opaque switching in Candida albicans
-
20390300,.,. (): p. –
-
Morschhauser J., Regulation of white-opaque switching in Candida albicans. Med Microbiol Immunol, 2010. 199(3): p. 165–72. doi: 10.1007/s00430-010-0147-020390300
-
(2010)
Med Microbiol Immunol
, vol.199
, Issue.3
, pp. 165-172
-
-
Morschhauser, J.1
-
36
-
-
84880048047
-
Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover
-
23653357,.,.,. (): p. –
-
Yang X., et al., Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover. J Biol Chem, 2013. 288(25): p. 18271–82. doi: 10.1074/jbc.M113.47319923653357
-
(2013)
J Biol Chem
, vol.288
, Issue.25
, pp. 18271-18282
-
-
Yang, X.1
-
37
-
-
84870248063
-
The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis in Candida albicans
-
23075292,.,.,. (): p. –
-
Tscherner M., et al., The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis in Candida albicans. Mol Microbiol, 2012. 86(5): p. 1197–214. doi: 10.1111/mmi.1205123075292
-
(2012)
Mol Microbiol
, vol.86
, Issue.5
, pp. 1197-1214
-
-
Tscherner, M.1
-
38
-
-
84946099005
-
The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways
-
26473952,.,.,. (): p
-
Tscherner M., et al., The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways. PLoS Pathog, 2015. 11(10): p. e1005218. doi: 10.1371/journal.ppat.100521826473952
-
(2015)
PLoS Pathog
, vol.11
, Issue.10
, pp. e1005218
-
-
Tscherner, M.1
-
39
-
-
84903954203
-
A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans
-
24917598,.,.,. (): p. –
-
Nobile C.J., et al., A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. MBio, 2014. 5(3): p. e01201–14. doi: 10.1128/mBio.01201-1424917598
-
(2014)
MBio
, vol.5
, Issue.3
, pp. e01201-e01214
-
-
Nobile, C.J.1
-
40
-
-
84936943259
-
The Rpd3/Hda1 family of histone deacetylases regulates azole resistance in Candida albicans
-
25825380,.,.,. (): p. –
-
Li X., et al., The Rpd3/Hda1 family of histone deacetylases regulates azole resistance in Candida albicans. J Antimicrob Chemother, 2015. 70(7): p. 1993–2003. doi: 10.1093/jac/dkv07025825380
-
(2015)
J Antimicrob Chemother
, vol.70
, Issue.7
, pp. 1993-2003
-
-
Li, X.1
-
41
-
-
84937875828
-
Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans
-
25656079,.,.: p. –
-
Chang P., Fan X., Chen J., Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Fungal Genet Biol, 2015. 81: p. 132–41. doi: 10.1016/j.fgb.2015.01.01125656079
-
(2015)
Fungal Genet Biol
, vol.81
, pp. 132-141
-
-
Chang, P.1
Fan, X.2
Chen, J.3
-
42
-
-
33746992118
-
Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
-
16916647,.,.,. (): p. –
-
Kim S.C., et al., Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell, 2006. 23(4): p. 607–18. doi: 10.1016/j.molcel.2006.06.02616916647
-
(2006)
Mol Cell
, vol.23
, Issue.4
, pp. 607-618
-
-
Kim, S.C.1
-
43
-
-
84927949588
-
Two-component phosphorelays in fungal mitochondria and beyond
-
25858273,.,.: p. –
-
Chauhan N., Two-component phosphorelays in fungal mitochondria and beyond. Mitochondrion, 2015. 22: p. 60–5. doi: 10.1016/j.mito.2015.03.00325858273
-
(2015)
Mitochondrion
, vol.22
, pp. 60-65
-
-
Chauhan, N.1
-
44
-
-
80055116385
-
Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy
-
21926328,.,. (): p. –
-
Shingu-Vazquez M., Traven A., Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell, 2011. 10(11): p. 1376–83. doi: 10.1128/EC.05184-1121926328
-
(2011)
Eukaryot Cell
, vol.10
, Issue.11
, pp. 1376-1383
-
-
Shingu-Vazquez, M.1
Traven, A.2
-
45
-
-
80053077071
-
The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation
-
21849684,.,.,. (): p. –
-
Seider K., et al., The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol, 2011. 187(6): p. 3072–86. doi: 10.4049/jimmunol.100373021849684
-
(2011)
J Immunol
, vol.187
, Issue.6
, pp. 3072-3086
-
-
Seider, K.1
-
46
-
-
84865175959
-
An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells
-
22416242,.,.,.: p
-
Tierney L., et al., An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells. Front Microbiol, 2012. 3: p. 85. doi: 10.3389/fmicb.2012.0008522416242
-
(2012)
Front Microbiol
, vol.3
, pp. 85
-
-
Tierney, L.1
-
47
-
-
78650153662
-
Pathogen-mediated posttranslational modifications: A re-emerging field
-
21111231,.,. (): p. –
-
Ribet D., Cossart P., Pathogen-mediated posttranslational modifications: A re-emerging field. Cell, 2010. 143(5): p. 694–702. doi: 10.1016/j.cell.2010.11.01921111231
-
(2010)
Cell
, vol.143
, Issue.5
, pp. 694-702
-
-
Ribet, D.1
Cossart, P.2
-
48
-
-
0028964234
-
Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells
-
7721941,.,.,. (): p. –
-
Adam T., et al., Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells. J Cell Biol, 1995. 129(2): p. 367–81. 7721941
-
(1995)
J Cell Biol
, vol.129
, Issue.2
, pp. 367-381
-
-
Adam, T.1
-
49
-
-
84890216511
-
Review of evidence for immune evasion and persistent infection in Lyme disease
-
23637552,.,.: p. –
-
Berndtson K., Review of evidence for immune evasion and persistent infection in Lyme disease. Int J Gen Med, 2013. 6: p. 291–306. doi: 10.2147/IJGM.S4411423637552
-
(2013)
Int J Gen Med
, vol.6
, pp. 291-306
-
-
Berndtson, K.1
-
50
-
-
67650314612
-
Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages
-
19547701,.,.,. (): p
-
Rupp J., et al., Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages. PLoS One, 2009. 4(6): p. e6020. doi: 10.1371/journal.pone.000602019547701
-
(2009)
PLoS One
, vol.4
, Issue.6
, pp. e6020
-
-
Rupp, J.1
-
51
-
-
84934783380
-
Mechanisms of Antifungal Drug Resistance
-
.,.,. (): p
-
Cowen L.E., et al., Mechanisms of Antifungal Drug Resistance. Cold Spring Harb Perspect Med, 2015. 5(7): p. a019752.
-
(2015)
Cold Spring Harb Perspect Med
, vol.5
, Issue.7
, pp. a019752
-
-
Cowen, L.E.1
-
52
-
-
84878342622
-
Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations
-
23487382,.,.,. (): p. –
-
Alexander B.D., et al., Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis, 2013. 56(12): p. 1724–32. doi: 10.1093/cid/cit13623487382
-
(2013)
Clin Infect Dis
, vol.56
, Issue.12
, pp. 1724-1732
-
-
Alexander, B.D.1
-
53
-
-
33748451151
-
Anticancer activities of histone deacetylase inhibitors
-
16955068,.,. (): p. –
-
Bolden J.E., Peart M.J., Johnstone R.W., Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov, 2006. 5(9): p. 769–84. doi: 10.1038/nrd213316955068
-
(2006)
Nat Rev Drug Discov
, vol.5
, Issue.9
, pp. 769-784
-
-
Bolden, J.E.1
Peart, M.J.2
Johnstone, R.W.3
-
54
-
-
53249130741
-
Therapeutic application of histone deacetylase inhibitors for central nervous system disorders
-
18827828,.,. (): p. –
-
Kazantsev A.G., Thompson L.M., Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov, 2008. 7(10): p. 854–68. doi: 10.1038/nrd268118827828
-
(2008)
Nat Rev Drug Discov
, vol.7
, Issue.10
, pp. 854-868
-
-
Kazantsev, A.G.1
Thompson, L.M.2
-
55
-
-
34547864236
-
Histone deacetylase inhibitors: molecular mechanisms of action
-
17694093,.,. (): p. –
-
Xu W.S., Parmigiani R.B., Marks P.A., Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene, 2007. 26(37): p. 5541–52. doi: 10.1038/sj.onc.121062017694093
-
(2007)
Oncogene
, vol.26
, Issue.37
, pp. 5541-5552
-
-
Xu, W.S.1
Parmigiani, R.B.2
Marks, P.A.3
-
56
-
-
71549146873
-
Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens
-
19794038,.,.,. (): p. –
-
Pfaller M.A., et al., Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol, 2009. 47(12): p. 3797–804. doi: 10.1128/JCM.00618-0919794038
-
(2009)
J Clin Microbiol
, vol.47
, Issue.12
, pp. 3797-3804
-
-
Pfaller, M.A.1
-
57
-
-
84925041893
-
In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species
-
25600842,.,.,. (): –
-
Pfaller M.A., et al., In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species. Diagn Microbiol Infect Dis, 2015. 81(4):259–263. doi: 10.1016/j.diagmicrobio.2014.11.00825600842
-
(2015)
Diagn Microbiol Infect Dis
, vol.81
, Issue.4
, pp. 259-263
-
-
Pfaller, M.A.1
-
58
-
-
84896907500
-
Identification of a key lysine residue in heat shock protein 90 required for azole and echinocandin resistance in Aspergillus fumigatus
-
24395240,.,.,. (): p. –
-
Lamoth F., et al., Identification of a key lysine residue in heat shock protein 90 required for azole and echinocandin resistance in Aspergillus fumigatus. Antimicrob Agents Chemother, 2014. 58(4): p. 1889–96. doi: 10.1128/AAC.02286-1324395240
-
(2014)
Antimicrob Agents Chemother
, vol.58
, Issue.4
, pp. 1889-1896
-
-
Lamoth, F.1
-
59
-
-
84942279828
-
Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans
-
26195510,.,.,. (): p. –
-
Li X., et al., Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans. Antimicrob Agents Chemother, 2015. 59(10): p. 5885–91. doi: 10.1128/AAC.00726-1526195510
-
(2015)
Antimicrob Agents Chemother
, vol.59
, Issue.10
, pp. 5885-5891
-
-
Li, X.1
-
60
-
-
84864608067
-
Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections
-
22911155,.,.,. (): p
-
Majer O., et al., Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog, 2012. 8(7): p. e1002811. doi: 10.1371/journal.ppat.100281122911155
-
(2012)
PLoS Pathog
, vol.8
, Issue.7
, pp. e1002811
-
-
Majer, O.1
-
61
-
-
84919625180
-
The non-receptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome
-
25474208,.,.,. (): p
-
Zwolanek F., et al., The non-receptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome. PLoS Pathog, 2014. 10(12): p. e1004525. doi: 10.1371/journal.ppat.100452525474208
-
(2014)
PLoS Pathog
, vol.10
, Issue.12
, pp. e1004525
-
-
Zwolanek, F.1
-
62
-
-
84978741609
-
Inhibition of CBLB protects from lethal Candida albicans sepsis
-
Wirnsberger G., et al., Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat Med, 2016.
-
(2016)
Nat Med
-
-
Wirnsberger, G.1
-
63
-
-
85002479532
-
Candida albicans Gene Deletion with a Transient CRISPR-Cas9 System
-
Min K., et al., Candida albicans Gene Deletion with a Transient CRISPR-Cas9 System. mSphere, 2016. 1(3).
-
(2016)
mSphere
, vol.1
, Issue.3
-
-
Min, K.1
-
64
-
-
84865302428
-
Systems biology of host-fungus interactions: turning complexity into simplicity
-
22717554,.,.,. (): p. –
-
Tierney L., et al., Systems biology of host-fungus interactions: turning complexity into simplicity. Curr Opin Microbiol, 2012. 15(4): p. 440–6. doi: 10.1016/j.mib.2012.05.00122717554
-
(2012)
Curr Opin Microbiol
, vol.15
, Issue.4
, pp. 440-446
-
-
Tierney, L.1
-
65
-
-
84957442426
-
Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man
-
26792937,.,. (): p. –
-
Harr J.C., Gonzalez-Sandoval A., Gasser S.M., Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep, 2016. 17(2): p. 139–55. doi: 10.15252/embr.20154180926792937
-
(2016)
EMBO Rep
, vol.17
, Issue.2
, pp. 139-155
-
-
Harr, J.C.1
Gonzalez-Sandoval, A.2
Gasser, S.M.3
-
66
-
-
84962032647
-
Histone modification and chromatin remodeling during NER
-
.,.: p. –
-
Waters R., van Eijk P., Reed S., Histone modification and chromatin remodeling during NER. DNA Repair (Amst), 2015. 36: p. 105–13.
-
(2015)
DNA Repair (Amst)
, vol.36
, pp. 105-113
-
-
Waters, R.1
van Eijk, P.2
Reed, S.3
-
67
-
-
84924599442
-
Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases
-
25365782,.,.,. (): p. –
-
Dahlin J.L., et al., Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol, 2015. 50(1): p. 31–53. doi: 10.3109/10409238.2014.97897525365782
-
(2015)
Crit Rev Biochem Mol Biol
, vol.50
, Issue.1
, pp. 31-53
-
-
Dahlin, J.L.1
-
68
-
-
77957240557
-
Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin
-
20797861,.,. (): p. –
-
Xiong B., Lu S., Gerton J.L., Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin. Curr Biol, 2010. 20(18): p. 1660–5. doi: 10.1016/j.cub.2010.08.01920797861
-
(2010)
Curr Biol
, vol.20
, Issue.18
, pp. 1660-1665
-
-
Xiong, B.1
Lu, S.2
Gerton, J.L.3
-
69
-
-
0037123767
-
Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases
-
12086601,.,.,. (): p. –
-
Robyr D., et al., Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell, 2002. 109(4): p. 437–46. 12086601
-
(2002)
Cell
, vol.109
, Issue.4
, pp. 437-446
-
-
Robyr, D.1
-
70
-
-
39749127166
-
The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men
-
18292778,.,. (): p. –
-
Yang X.J., Seto E., The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol, 2008. 9(3): p. 206–18. doi: 10.1038/nrm234618292778
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, Issue.3
, pp. 206-218
-
-
Yang, X.J.1
Seto, E.2
-
71
-
-
0037111879
-
Requirement of Hos2 histone deacetylase for gene activity in yeast
-
12434058,.,. (): p. –
-
Wang A., Kurdistani S.K., Grunstein M., Requirement of Hos2 histone deacetylase for gene activity in yeast. Science, 2002. 298(5597): p. 1412–4. doi: 10.1126/science.107779012434058
-
(2002)
Science
, vol.298
, Issue.5597
, pp. 1412-1414
-
-
Wang, A.1
Kurdistani, S.K.2
Grunstein, M.3
-
72
-
-
84867652835
-
Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages
-
22802645,.,.,. (): p. –
-
Chen X., et al., Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A, 2012. 109(42): p. E2865–74. doi: 10.1073/pnas.112113110922802645
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.42
, pp. E2865-E2874
-
-
Chen, X.1
-
73
-
-
84914811793
-
Functional characterization of Candida albicans Hos2 histone deacetylase
-
25110576,.,.,.: p
-
Karthikeyan G., et al., Functional characterization of Candida albicans Hos2 histone deacetylase. F1000Res, 2013. 2: p. 238. doi: 10.12688/f1000research.2-238.v325110576
-
(2013)
F1000Res
, vol.2
, pp. 238
-
-
Karthikeyan, G.1
-
74
-
-
33747609801
-
Genome-wide patterns of histone modifications in yeast
-
16912715,.,. (): p. –
-
Millar C.B., Grunstein M., Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol, 2006. 7(9): p. 657–666. doi: 10.1038/nrm198616912715
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, Issue.9
, pp. 657-666
-
-
Millar, C.B.1
Grunstein, M.2
-
75
-
-
33749669082
-
Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10
-
17052455,.,.,. (): p. –
-
Ahn S.H., et al., Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10. Mol Cell, 2006. 24(2): p. 211–20. doi: 10.1016/j.molcel.2006.09.00817052455
-
(2006)
Mol Cell
, vol.24
, Issue.2
, pp. 211-220
-
-
Ahn, S.H.1
-
76
-
-
0033607171
-
Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity
-
10535926,.,.,. (): p. –
-
Carmen A.A., et al., Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity. Proc Natl Acad Sci U S A, 1999. 96(22): p. 12356–61. 10535926
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, Issue.22
, pp. 12356-12361
-
-
Carmen, A.A.1
-
77
-
-
0344874578
-
Histone deacetylases in fungi: novel members, new facts
-
12853613,.,.,. (): p. –
-
Trojer P., et al., Histone deacetylases in fungi: novel members, new facts. Nucleic Acids Res, 2003. 31(14): p. 3971–81. 12853613
-
(2003)
Nucleic Acids Res
, vol.31
, Issue.14
, pp. 3971-3981
-
-
Trojer, P.1
-
78
-
-
70350150387
-
Collaboration between the essential Esa1 acetyltransferase and the Rpd3 deacetylase is mediated by H4K12 histone acetylation in Saccharomyces cerevisiae
-
19596907,.,. (): p. –
-
Chang C.S., Pillus L., Collaboration between the essential Esa1 acetyltransferase and the Rpd3 deacetylase is mediated by H4K12 histone acetylation in Saccharomyces cerevisiae. Genetics, 2009. 183(1): p. 149–60. doi: 10.1534/genetics.109.10384619596907
-
(2009)
Genetics
, vol.183
, Issue.1
, pp. 149-160
-
-
Chang, C.S.1
Pillus, L.2
-
79
-
-
0029856225
-
HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription
-
8962081,.,.,. (): p. –
-
Rundlett S.E., et al., HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A, 1996. 93(25): p. 14503–8. 8962081
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, Issue.25
, pp. 14503-14508
-
-
Rundlett, S.E.1
-
80
-
-
0034839973
-
Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin
-
11545749,.,.,. (): p. –
-
Suka N., et al., Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell, 2001. 8(2): p. 473–9. 11545749
-
(2001)
Mol Cell
, vol.8
, Issue.2
, pp. 473-479
-
-
Suka, N.1
-
81
-
-
0034610367
-
Genomewide studies of histone deacetylase function in yeast
-
11095743,.,. (): p. –
-
Bernstein B.E., Tong J.K., Schreiber S.L., Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci U S A, 2000. 97(25): p. 13708–13. doi: 10.1073/pnas.25047769711095743
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.25
, pp. 13708-13713
-
-
Bernstein, B.E.1
Tong, J.K.2
Schreiber, S.L.3
-
82
-
-
42149147377
-
Histone modifications and chromatin dynamics: a focus on filamentous fungi
-
18221488,.,. (): p. –
-
Brosch G., Loidl P., Graessle S., Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev, 2008. 32(3): p. 409–39. doi: 10.1111/j.1574-6976.2007.00100.x18221488
-
(2008)
FEMS Microbiol Rev
, vol.32
, Issue.3
, pp. 409-439
-
-
Brosch, G.1
Loidl, P.2
Graessle, S.3
-
83
-
-
33846938126
-
Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans
-
17196388,.,.,. (): p. –
-
Mai A., et al., Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans. Bioorg Med Chem Lett, 2007. 17(5): p. 1221–5. doi: 10.1016/j.bmcl.2006.12.02817196388
-
(2007)
Bioorg Med Chem Lett
, vol.17
, Issue.5
, pp. 1221-1225
-
-
Mai, A.1
-
84
-
-
79952270884
-
HDACs link the DNA damage response, processing of double-strand breaks and autophagy
-
21368826,.,.,. (): p. –
-
Robert T., et al., HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature, 2011. 471(7336): p. 74–9. doi: 10.1038/nature0980321368826
-
(2011)
Nature
, vol.471
, Issue.7336
, pp. 74-79
-
-
Robert, T.1
-
85
-
-
0037380209
-
Histone acetylation and deacetylation in yeast
-
12671650,.,. (): p. –
-
Kurdistani S.K., Grunstein M., Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol, 2003. 4(4): p. 276–84. doi: 10.1038/nrm107512671650
-
(2003)
Nat Rev Mol Cell Biol
, vol.4
, Issue.4
, pp. 276-284
-
-
Kurdistani, S.K.1
Grunstein, M.2
-
86
-
-
0035105035
-
TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
-
11172717,.,.,. (): p. –
-
Wu J., et al., TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell, 2001. 7(1): p. 117–26. 11172717
-
(2001)
Mol Cell
, vol.7
, Issue.1
, pp. 117-126
-
-
Wu, J.1
-
87
-
-
0034971016
-
A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans
-
11404352,.,. (): p. –
-
Klar A.J., Srikantha T., Soll D.R., A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics, 2001. 158(2): p. 919–24. 11404352
-
(2001)
Genetics
, vol.158
, Issue.2
, pp. 919-924
-
-
Klar, A.J.1
Srikantha, T.2
Soll, D.R.3
-
88
-
-
0034707037
-
Global histone acetylation and deacetylation in yeast
-
11100734,.,.,. (): p. –
-
Vogelauer M., et al., Global histone acetylation and deacetylation in yeast. Nature, 2000. 408(6811): p. 495–8. doi: 10.1038/3504412711100734
-
(2000)
Nature
, vol.408
, Issue.6811
, pp. 495-498
-
-
Vogelauer, M.1
-
89
-
-
35448985401
-
Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans
-
17627775,.,.,. (): p. –
-
Simonetti G., et al., Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans. FEMS Yeast Res, 2007. 7(8): p. 1371–80. doi: 10.1111/j.1567-1364.2007.00276.x17627775
-
(2007)
FEMS Yeast Res
, vol.7
, Issue.8
, pp. 1371-1380
-
-
Simonetti, G.1
-
90
-
-
0033609055
-
Three proteins define a class of human histone deacetylases related to yeast Hda1p
-
10220385,.,. (): p. –
-
Grozinger C.M., Hassig C.A., Schreiber S.L., Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A, 1999. 96(9): p. 4868–73. 10220385
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, Issue.9
, pp. 4868-4873
-
-
Grozinger, C.M.1
Hassig, C.A.2
Schreiber, S.L.3
-
91
-
-
0036122494
-
Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity
-
11884604,.,.,. (): p. –
-
Bjerling P., et al., Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol Cell Biol, 2002. 22(7): p. 2170–81. doi: 10.1128/MCB.22.7.2170-2181.200211884604
-
(2002)
Mol Cell Biol
, vol.22
, Issue.7
, pp. 2170-2181
-
-
Bjerling, P.1
-
92
-
-
26444514954
-
Genome-wide analysis of HDAC function
-
16153738,.,. (): p. –
-
Ekwall K., Genome-wide analysis of HDAC function. Trends Genet, 2005. 21(11): p. 608–15. doi: 10.1016/j.tig.2005.08.00916153738
-
(2005)
Trends Genet
, vol.21
, Issue.11
, pp. 608-615
-
-
Ekwall, K.1
-
93
-
-
56749105947
-
Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase
-
18990212,.,.: p
-
Weber J.M., Irlbacher H., Ehrenhofer-Murray A.E., Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase. BMC Mol Biol, 2008. 9: p. 100. doi: 10.1186/1471-2199-9-10018990212
-
(2008)
BMC Mol Biol
, vol.9
, pp. 100
-
-
Weber, J.M.1
Irlbacher, H.2
Ehrenhofer-Murray, A.E.3
-
94
-
-
84925808970
-
Sirtuins in epigenetic regulation
-
25804908,.,. (): p. –
-
Jing H., Lin H., Sirtuins in epigenetic regulation. Chem Rev, 2015. 115(6): p. 2350–75. doi: 10.1021/cr500457h25804908
-
(2015)
Chem Rev
, vol.115
, Issue.6
, pp. 2350-2375
-
-
Jing, H.1
Lin, H.2
-
95
-
-
6344270167
-
Global position and recruitment of HATs and HDACs in the yeast genome
-
15494307,.,.,. (): p. –
-
Robert F., et al., Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell, 2004. 16(2): p. 199–209. doi: 10.1016/j.molcel.2004.09.02115494307
-
(2004)
Mol Cell
, vol.16
, Issue.2
, pp. 199-209
-
-
Robert, F.1
-
96
-
-
15244355745
-
Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme
-
15780941,.,. (): p. –
-
Avalos J.L., Bever K.M., Wolberger C., Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell, 2005. 17(6): p. 855–68. doi: 10.1016/j.molcel.2005.02.02215780941
-
(2005)
Mol Cell
, vol.17
, Issue.6
, pp. 855-868
-
-
Avalos, J.L.1
Bever, K.M.2
Wolberger, C.3
-
97
-
-
84936992221
-
Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p
-
26158509,.,.,.: p
-
Madsen C.T., et al., Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p. Nat Commun, 2015. 6: p. 7726. doi: 10.1038/ncomms872626158509
-
(2015)
Nat Commun
, vol.6
, pp. 7726
-
-
Madsen, C.T.1
-
98
-
-
70349138701
-
The conserved role of sirtuins in chromatin regulation
-
19378253,.,. (): p. –
-
Vaquero A., The conserved role of sirtuins in chromatin regulation. Int J Dev Biol, 2009. 53(2–3): p. 303–22. doi: 10.1387/ijdb.082675av19378253
-
(2009)
Int J Dev Biol
, vol.53
, Issue.2-3
, pp. 303-322
-
-
Vaquero, A.1
-
99
-
-
34249083199
-
Sirtuins in mammals: insights into their biological function
-
17447894,.,. (): p. –
-
Michan S., Sinclair D., Sirtuins in mammals: insights into their biological function. Biochem J, 2007. 404(1): p. 1–13. doi: 10.1042/BJ2007014017447894
-
(2007)
Biochem J
, vol.404
, Issue.1
, pp. 1-13
-
-
Michan, S.1
Sinclair, D.2
-
100
-
-
84892562351
-
Functional complementation of sir2Delta yeast mutation by the human orthologous gene SIRT1
-
24349441,.,. (): p
-
Gaglio D., D'Alfonso A., Camilloni G., Functional complementation of sir2Delta yeast mutation by the human orthologous gene SIRT1. PLoS One, 2013. 8(12): p. e83114. doi: 10.1371/journal.pone.008311424349441
-
(2013)
PLoS One
, vol.8
, Issue.12
, pp. e83114
-
-
Gaglio, D.1
D'Alfonso, A.2
Camilloni, G.3
-
101
-
-
33745520486
-
The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation
-
16815704,.,.,. (): p. –
-
Celic I., et al., The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol, 2006. 16(13): p. 1280–9. doi: 10.1016/j.cub.2006.06.02316815704
-
(2006)
Curr Biol
, vol.16
, Issue.13
, pp. 1280-1289
-
-
Celic, I.1
-
102
-
-
34547875773
-
Sirtuins: critical regulators at the crossroads between cancer and aging
-
17694089,.,. (): p. –
-
Saunders L.R., Verdin E., Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene, 2007. 26(37): p. 5489–504. doi: 10.1038/sj.onc.121061617694089
-
(2007)
Oncogene
, vol.26
, Issue.37
, pp. 5489-5504
-
-
Saunders, L.R.1
Verdin, E.2
-
103
-
-
67149099680
-
Histone H4 lysine 16 acetylation regulates cellular lifespan
-
19516333,.,.,. (): p. –
-
Dang W., et al., Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature, 2009. 459(7248): p. 802–7. doi: 10.1038/nature0808519516333
-
(2009)
Nature
, vol.459
, Issue.7248
, pp. 802-807
-
-
Dang, W.1
-
104
-
-
0035910031
-
Identification of a small molecule inhibitor of Sir2p
-
11752457,.,.,. (): p. –
-
Bedalov A., et al., Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A, 2001. 98(26): p. 15113–8. doi: 10.1073/pnas.26157439811752457
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, Issue.26
, pp. 15113-15118
-
-
Bedalov, A.1
-
105
-
-
33645835480
-
Candida albicans SET1 encodes a histone 3 lysine 4 methyltransferase that contributes to the pathogenesis of invasive candidiasis
-
16629671,.,.,. (): p. –
-
Raman S.B., et al., Candida albicans SET1 encodes a histone 3 lysine 4 methyltransferase that contributes to the pathogenesis of invasive candidiasis. Mol Microbiol, 2006. 60(3): p. 697–709. doi: 10.1111/j.1365-2958.2006.05121.x16629671
-
(2006)
Mol Microbiol
, vol.60
, Issue.3
, pp. 697-709
-
-
Raman, S.B.1
-
106
-
-
0038601738
-
Saccharomyces cerevisiae Set1p is a methyltransferase specific for lysine 4 of histone H3 and is required for efficient gene expression
-
12845608,.,. (): p. –
-
Boa S., Coert C., Patterton H.G., Saccharomyces cerevisiae Set1p is a methyltransferase specific for lysine 4 of histone H3 and is required for efficient gene expression. Yeast, 2003. 20(9): p. 827–35. doi: 10.1002/yea.99512845608
-
(2003)
Yeast
, vol.20
, Issue.9
, pp. 827-835
-
-
Boa, S.1
Coert, C.2
Patterton, H.G.3
-
107
-
-
84859893371
-
Histone methylation: a dynamic mark in health, disease and inheritance
-
22473383,.,. (): p. –
-
Greer E.L., Shi Y., Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet, 2012. 13(5): p. 343–57. doi: 10.1038/nrg317322473383
-
(2012)
Nat Rev Genet
, vol.13
, Issue.5
, pp. 343-357
-
-
Greer, E.L.1
Shi, Y.2
-
108
-
-
23944462969
-
Genome-wide map of nucleosome acetylation and methylation in yeast
-
16122420,.,.,. (): p. –
-
Pokholok D.K., et al., Genome-wide map of nucleosome acetylation and methylation in yeast. Cell, 2005. 122(4): p. 517–27. doi: 10.1016/j.cell.2005.06.02616122420
-
(2005)
Cell
, vol.122
, Issue.4
, pp. 517-527
-
-
Pokholok, D.K.1
-
109
-
-
11844276610
-
Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae
-
15652479,.,.,. (): p. –
-
Ahn S.H., et al., Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell, 2005. 120(1): p. 25–36. doi: 10.1016/j.cell.2004.11.01615652479
-
(2005)
Cell
, vol.120
, Issue.1
, pp. 25-36
-
-
Ahn, S.H.1
-
110
-
-
0038293152
-
Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase
-
12757711,.,.,. (): p. –
-
Cheung W.L., et al., Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell, 2003. 113(4): p. 507–17. 12757711
-
(2003)
Cell
, vol.113
, Issue.4
, pp. 507-517
-
-
Cheung, W.L.1
-
111
-
-
10544224146
-
Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans
-
8917571,.,.,. (): p. –
-
Leberer E., et al., Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A, 1996. 93(23): p. 13217–22. 8917571
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, Issue.23
, pp. 13217-13222
-
-
Leberer, E.1
-
112
-
-
84964317893
-
Structure-Based Screen Identification of a Mammalian Ste20-like Kinase 4 (MST4) Inhibitor with Therapeutic Potential for Pituitary Tumors
-
26721946,.,.,. (): p. –
-
Xiong W., et al., Structure-Based Screen Identification of a Mammalian Ste20-like Kinase 4 (MST4) Inhibitor with Therapeutic Potential for Pituitary Tumors. Mol Cancer Ther, 2016. 15(3): p. 412–20. doi: 10.1158/1535-7163.MCT-15-070326721946
-
(2016)
Mol Cancer Ther
, vol.15
, Issue.3
, pp. 412-420
-
-
Xiong, W.1
-
113
-
-
84867183192
-
Histone phosphorylation: a chromatin modification involved in diverse nuclear events
-
22948226,.,. (): p. –
-
Rossetto D., Avvakumov N., Cote J., Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics, 2012. 7(10): p. 1098–108. doi: 10.4161/epi.2197522948226
-
(2012)
Epigenetics
, vol.7
, Issue.10
, pp. 1098-1108
-
-
Rossetto, D.1
Avvakumov, N.2
Cote, J.3
-
114
-
-
84857427738
-
Chromatin and transcription in yeast
-
22345607,.,. (): p. –
-
Rando O.J., Winston F., Chromatin and transcription in yeast. Genetics, 2012. 190(2): p. 351–87. doi: 10.1534/genetics.111.13226622345607
-
(2012)
Genetics
, vol.190
, Issue.2
, pp. 351-387
-
-
Rando, O.J.1
Winston, F.2
-
115
-
-
0035930537
-
Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress
-
11673449,.,. (): p. –
-
Ward I.M., Chen J., Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem, 2001. 276(51): p. 47759–62. doi: 10.1074/jbc.C10056920011673449
-
(2001)
J Biol Chem
, vol.276
, Issue.51
, pp. 47759-47762
-
-
Ward, I.M.1
Chen, J.2
-
116
-
-
0032054379
-
A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity
-
9561742,.,. (): p. –
-
Tuleva B., Vasileva-Tonkova E., Galabova D., A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity. FEMS Microbiol Lett, 1998. 161(1): p. 139–44. 9561742
-
(1998)
FEMS Microbiol Lett
, vol.161
, Issue.1
, pp. 139-144
-
-
Tuleva, B.1
Vasileva-Tonkova, E.2
Galabova, D.3
-
117
-
-
77954095162
-
Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity
-
20543849,.,.,. (): p. –
-
Noble S.M., et al., Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet, 2010. 42(7): p. 590–8. doi: 10.1038/ng.60520543849
-
(2010)
Nat Genet
, vol.42
, Issue.7
, pp. 590-598
-
-
Noble, S.M.1
-
118
-
-
84910650721
-
The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3
-
25106422,.,.,. (): p. –
-
Cieniewicz A.M., et al., The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3. Mol Cell Proteomics, 2014. 13(11): p. 2896–2910. doi: 10.1074/mcp.M114.03817425106422
-
(2014)
Mol Cell Proteomics
, vol.13
, Issue.11
, pp. 2896-2910
-
-
Cieniewicz, A.M.1
-
119
-
-
0036850346
-
Deciphering the Transcriptional Histone Acetylation Code for a Human Gene
-
12419248,.,. (): p. –
-
Agalioti T., Chen G., Thanos D., Deciphering the Transcriptional Histone Acetylation Code for a Human Gene. Cell, 2002. 111(3): p. 381–392. 12419248
-
(2002)
Cell
, vol.111
, Issue.3
, pp. 381-392
-
-
Agalioti, T.1
Chen, G.2
Thanos, D.3
-
120
-
-
0030797349
-
Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex
-
9224714,.,.,. (): p. –
-
Grant P.A., et al., Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev, 1997. 11(13): p. 1640–509224714
-
(1997)
Genes Dev
, vol.11
, Issue.13
, pp. 1640-1650
-
-
Grant, P.A.1
-
121
-
-
4043146501
-
Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression
-
15155757,.,. (): –
-
Balasubramanyam K., Altaf M., Varier R.A., Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem, 2004. 279(32):33716–26doi: 10.1074/jbc.M40283920015155757
-
(2004)
J Biol Chem
, vol.279
, Issue.32
, pp. 33716-33726
-
-
Balasubramanyam, K.1
Altaf, M.2
Varier, R.A.3
-
122
-
-
77956791063
-
Cryptococcus neoformans Histone Acetyltransferase Gcn5 Regulates Fungal Adaptation to the Host
-
.,.,. (): p
-
O'Meara T.R., et al., Cryptococcus neoformans Histone Acetyltransferase Gcn5 Regulates Fungal Adaptation to the Host. Eukaryot Cell, 2010. 9(8): p. 11931202.
-
(2010)
Eukaryot Cell
, vol.9
, Issue.8
, pp. 11931202
-
-
O'Meara, T.R.1
-
123
-
-
58549087523
-
Inhibition of the PCAF histone acetyl transferase and cell proliferation by isothiazolones
-
19111471,.,. (): p. –
-
Dekker F.J., Ghizzoni M., van der Meer N., Inhibition of the PCAF histone acetyl transferase and cell proliferation by isothiazolones. Bioorg Med Chem, 2009. 17(2): p. 460–6. doi: 10.1016/j.bmc.2008.12.00819111471
-
(2009)
Bioorg Med Chem
, vol.17
, Issue.2
, pp. 460-466
-
-
Dekker, F.J.1
Ghizzoni, M.2
van der Meer, N.3
-
124
-
-
70349311616
-
Histone acetyl transferases as emerging drug targets
-
19577000,.,. (): p. –
-
Dekker F.J., Haisma H.J., Histone acetyl transferases as emerging drug targets. Drug Discov Today, 2009. 14(19–20): p. 942–948. doi: 10.1016/j.drudis.2009.06.00819577000
-
(2009)
Drug Discov Today
, vol.14
, Issue.19-20
, pp. 942-948
-
-
Dekker, F.J.1
Haisma, H.J.2
-
125
-
-
78649448009
-
Chemogenomic profiling of the cellular effects associated with histone H3 acetylation impairment by a quinoline-derived compound
-
20732410,.,.,. (): p. –
-
Ruotolo R., et al., Chemogenomic profiling of the cellular effects associated with histone H3 acetylation impairment by a quinoline-derived compound. Genomics, 2010. 96(5): p. 272–280. doi: 10.1016/j.ygeno.2010.08.00520732410
-
(2010)
Genomics
, vol.96
, Issue.5
, pp. 272-280
-
-
Ruotolo, R.1
-
126
-
-
60549085424
-
A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone
-
19099397,.,.,. (): p. –
-
Chimenti F., et al., A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-ylhydrazone. J Med Chem, 2009. 52(2): p. 530–536. doi: 10.1021/jm800885d19099397
-
(2009)
J Med Chem
, vol.52
, Issue.2
, pp. 530-536
-
-
Chimenti, F.1
-
127
-
-
84899131474
-
Histone acetylation in fungal pathogens of plants
-
25288980,.,. (): p. –
-
Jeon J., Kwon S., Lee Y.H., Histone acetylation in fungal pathogens of plants. Plant Pathol J, 2014. 30(1): p. 1–9doi: 10.5423/PPJ.RW.01.2014.000325288980
-
(2014)
Plant Pathol J
, vol.30
, Issue.1
, pp. 1-9
-
-
Jeon, J.1
Kwon, S.2
Lee, Y.H.3
-
128
-
-
0028885077
-
Identification of a gene encoding a yeast histone H4 acetyltransferase
-
7559580,.,.,. (): p. –
-
Kleff S., et al., Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem, 1995. 270(42): p. 24674–24677. 7559580
-
(1995)
J Biol Chem
, vol.270
, Issue.42
, pp. 24674-24677
-
-
Kleff, S.1
-
129
-
-
0028847955
-
Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4
-
7862667,.,.,. (): p. –
-
Sobel R.E., et al., Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci U S A, 1995. 92(4): p. 1237–1241. 7862667
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, Issue.4
, pp. 1237-1241
-
-
Sobel, R.E.1
-
130
-
-
84862228827
-
The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources
-
22080559,.,.,.: p. –
-
Shah P., et al., The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res, 2012. 40: p. D653–9doi: 10.1093/nar/gkr87522080559
-
(2012)
Nucleic Acids Res
, vol.40
, pp. D653-D659
-
-
Shah, P.1
-
131
-
-
84905174928
-
Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone H2A in vivo
-
24682716,.,. (): p. –
-
Tafrova J.I., Tafrov S.T., Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone H2A in vivo. Mol Cell Biochem, 2014. 392(1–2): p. 259–272. doi: 10.1007/s11010-014-2036-024682716
-
(2014)
Mol Cell Biochem
, vol.392
, Issue.1-2
, pp. 259-272
-
-
Tafrova, J.I.1
Tafrov, S.T.2
-
132
-
-
0035941198
-
Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase
-
11585814,.,. (): p. –
-
Makowski A.M., Dutnall R.N., Annunziato A.T., Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J Biol Chem, 2001. 276(47): p. 43499–43502. doi: 10.1074/jbc.C10054920011585814
-
(2001)
J Biol Chem
, vol.276
, Issue.47
, pp. 43499-43502
-
-
Makowski, A.M.1
Dutnall, R.N.2
Annunziato, A.T.3
-
133
-
-
0037133562
-
Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo
-
11904415,.,.,. (): p. –
-
Winkler S.G., et al., Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl Acad Sci U S A, 2002. 99(6): p. 3517–3522. doi: 10.1073/pnas.02204289911904415
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, Issue.6
, pp. 3517-3522
-
-
Winkler, S.G.1
-
134
-
-
20044367838
-
The Elp3 subunit of human Elongator complex is functionally similar to its counterpart in yeast
-
15902492,.,.,. (): p. –
-
Li F., et al., The Elp3 subunit of human Elongator complex is functionally similar to its counterpart in yeast. Mol Genet Genomics, 2005. 273(3): p. 264–272. doi: 10.1007/s00438-005-1120-215902492
-
(2005)
Mol Genet Genomics
, vol.273
, Issue.3
, pp. 264-272
-
-
Li, F.1
-
135
-
-
84881254916
-
Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae
-
23775086,.,.,. (): p. –
-
Sampath V., et al., Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae. J Biol Chem, 2013. 288(30): p. 21506–21513. doi: 10.1074/jbc.M113.48627423775086
-
(2013)
J Biol Chem
, vol.288
, Issue.30
, pp. 21506-21513
-
-
Sampath, V.1
-
136
-
-
0033579559
-
Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily
-
10600387,.,.,. (): p. –
-
Angus-Hill M.L., et al., Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily. J Mol Biol, 1999. 294(5): p. 1311–1325. doi: 10.1006/jmbi.1999.333810600387
-
(1999)
J Mol Biol
, vol.294
, Issue.5
, pp. 1311-1325
-
-
Angus-Hill, M.L.1
-
137
-
-
0033635271
-
Mediator-nucleosome interaction
-
10949041,.,.,. (): p. –
-
Lorch Y., et al., Mediator-nucleosome interaction. Molecular cell, 2000. 6(1): p. 197–201. 10949041
-
(2000)
Molecular cell
, vol.6
, Issue.1
, pp. 197-201
-
-
Lorch, Y.1
-
138
-
-
79958032044
-
Mediator influences telomeric silencing and cellular life span
-
21482672,.,.,. (): p. –
-
Zhu X., et al., Mediator influences telomeric silencing and cellular life span. Mol Cell Biol, 2011. 31(12): p. 2413–2421. doi: 10.1128/MCB.05242-1121482672
-
(2011)
Mol Cell Biol
, vol.31
, Issue.12
, pp. 2413-2421
-
-
Zhu, X.1
-
139
-
-
84874531464
-
Distinct and redundant roles of the two MYST histone acetyltransferases Esa1 and Sas2 in cell growth and morphogenesis of Candida albicans
-
23355007,.,.,. (): p. –
-
Wang X., et al., Distinct and redundant roles of the two MYST histone acetyltransferases Esa1 and Sas2 in cell growth and morphogenesis of Candida albicans. Eukaryot Cell, 2013. 12(3): p. 438–449. doi: 10.1128/EC.00275-1223355007
-
(2013)
Eukaryot Cell
, vol.12
, Issue.3
, pp. 438-449
-
-
Wang, X.1
-
140
-
-
0033567954
-
NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p
-
10487762,.,.,. (): p. –
-
Allard S., et al., NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J, 1999. 18(18): p. 5108–5119. doi: 10.1093/emboj/18.18.510810487762
-
(1999)
EMBO J
, vol.18
, Issue.18
, pp. 5108-5119
-
-
Allard, S.1
-
141
-
-
84867325687
-
Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer
-
Coffey K., et al., Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PloS One, 2012. 7(10).
-
(2012)
PloS One
, vol.7
, Issue.10
-
-
Coffey, K.1
-
142
-
-
0036843170
-
Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing
-
12410229,.,. (): p. –
-
Kimura A., Umehara T., Horikoshi M., Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet, 2002. 32(3): p. 370–377. doi: 10.1038/ng99312410229
-
(2002)
Nat Genet
, vol.32
, Issue.3
, pp. 370-377
-
-
Kimura, A.1
Umehara, T.2
Horikoshi, M.3
-
143
-
-
0036842129
-
Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin
-
12379856,.,. (): p. –
-
Suka N., Luo K., Grunstein M., Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet, 2002. 32(3): p. 378–383. doi: 10.1038/ng101712379856
-
(2002)
Nat Genet
, vol.32
, Issue.3
, pp. 378-383
-
-
Suka, N.1
Luo, K.2
Grunstein, M.3
-
144
-
-
84954350302
-
The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis
-
.,.,. (): p
-
Su J., et al., The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis. Int J Mol Sci, 2016. 17(1): p. 99.
-
(2016)
Int J Mol Sci
, vol.17
, Issue.1
, pp. 99
-
-
Su, J.1
-
145
-
-
39549110425
-
The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes
-
.,.,. () p
-
Rosaleny L.E., et al., The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes. Genome Biol, 2007. 8(6) p. 119.
-
(2007)
Genome Biol
, vol.8
, Issue.6
, pp. 119
-
-
Rosaleny, L.E.1
-
146
-
-
0035577668
-
Histone H3 specific acetyltransferases are essential for cell cycle progression
-
11731478,.,.,.:
-
Howe L., et al., Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev, 2001. 15:3144doi: 10.1101/gad.93140111731478
-
(2001)
Genes Dev
, vol.15
, pp. 3144
-
-
Howe, L.1
-
147
-
-
0141755383
-
An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A
-
12915400,.,.,. (): p. –
-
Song O.-K.K., et al., An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J Biol Chem, 2003. 278(40): p. 38109–38112. doi: 10.1074/jbc.C30035520012915400
-
(2003)
J Biol Chem
, vol.278
, Issue.40
, pp. 38109-38112
-
-
Song, O.-K.K.1
-
148
-
-
80052829164
-
The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4
-
21935442,.,.,. () p
-
Hole K., et al., The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PloS One, 2011. 6(9) p. e24713. doi: 10.1371/journal.pone.002471321935442
-
(2011)
PloS One
, vol.6
, Issue.9
, pp. e24713
-
-
Hole, K.1
-
149
-
-
0030447943
-
The TAF(II)250 subunit of TFIID has histone acetyltransferase activity
-
8980232,.,.,. (): p. –
-
Mizzen C.A., et al., The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell, 1996. 87(7): p. 1261–1270. 8980232
-
(1996)
Cell
, vol.87
, Issue.7
, pp. 1261-1270
-
-
Mizzen, C.A.1
-
150
-
-
32944469082
-
A decade of histone acetylation: marking eukaryotic chromosomes with specific codes
-
16428293,.,. (): p. –
-
Kimura A., Matsubara K., Horikoshi M., A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem, 2005. 138(6): p. 647–662. doi: 10.1093/jb/mvi18416428293
-
(2005)
J Biochem
, vol.138
, Issue.6
, pp. 647-662
-
-
Kimura, A.1
Matsubara, K.2
Horikoshi, M.3
-
151
-
-
33846818840
-
Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56
-
17272722,.,. (): p. –
-
Driscoll R., Hudson A., Jackson S.P., Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science, 2007. 315(5812): p. 649–652. doi: 10.1126/science.113586217272722
-
(2007)
Science
, vol.315
, Issue.5812
, pp. 649-652
-
-
Driscoll, R.1
Hudson, A.2
Jackson, S.P.3
-
152
-
-
33846796258
-
Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication
-
17272723,.,.,. (): p. –
-
Han J., et al., Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science, 2007.315(5812): p. 653–655. doi: 10.1126/science.113323417272723
-
(2007)
Science
, vol.315
, Issue.5812
, pp. 653-655
-
-
Han, J.1
-
153
-
-
33846023720
-
Rtt109 Is Required for Proper H3K56 Acetylation A chromatin mark associated with the elongating RNA polymerase II
-
17046836,.,.,. (): –
-
Schneider J., et al., Rtt109 Is Required for Proper H3K56 Acetylation A chromatin mark associated with the elongating RNA polymerase II. J Biol Chem, 2006. 281(49):37270–4. doi: 10.1074/jbc.C60026520017046836
-
(2006)
J Biol Chem
, vol.281
, Issue.49
, pp. 37270-37274
-
-
Schneider, J.1
-
154
-
-
65549113750
-
CBP/p300-mediated acetylation of histone H3 on lysine 56
-
19270680,.,.,. (): p. –
-
Das C., et al., CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 2009. 459(7243): p. 113–117. doi: 10.1038/nature0786119270680
-
(2009)
Nature
, vol.459
, Issue.7243
, pp. 113-117
-
-
Das, C.1
-
155
-
-
0037805679
-
Small molecule modulators of histone acetyltransferase p300
-
12624111,.,.,. (): p. –
-
Balasubramanyam K., et al., Small molecule modulators of histone acetyltransferase p300. J Biol Chem, 2003. 278(21): p. 19134–19140. doi: 10.1074/jbc.M30158020012624111
-
(2003)
J Biol Chem
, vol.278
, Issue.21
, pp. 19134-19140
-
-
Balasubramanyam, K.1
-
156
-
-
84900559630
-
Evaluation of a large library of (thiazol-2-yl)hydrazones and analogues as histone acetyltransferase inhibitors: enzyme and cellular studies
-
24835815,.,.,.: p. –
-
Carradori S., et al., Evaluation of a large library of (thiazol-2-yl)hydrazones and analogues as histone acetyltransferase inhibitors: enzyme and cellular studies. Eur J Med Chem, 2014. 80: p. 569–578. doi: 10.1016/j.ejmech.2014.04.04224835815
-
(2014)
Eur J Med Chem
, vol.80
, pp. 569-578
-
-
Carradori, S.1
-
157
-
-
84879301398
-
A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice
-
23804093,.,.,. (): p. –
-
Chatterjee S., et al., A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice. J Neurosci, 2013. 33(26): p. 10698–10712. doi: 10.1523/JNEUROSCI.5772-12.201323804093
-
(2013)
J Neurosci
, vol.33
, Issue.26
, pp. 10698-10712
-
-
Chatterjee, S.1
-
158
-
-
77954204335
-
Virtual Ligand Screening of the p300/CBP Histone Acetyltransferase: Identification of a Selective Small Molecule Inhibitor
-
20534345,.,.,. (): p. –
-
Bowers E.M., et al., Virtual Ligand Screening of the p300/CBP Histone Acetyltransferase: Identification of a Selective Small Molecule Inhibitor. Chem Biol, 2010. 17(5): p. 471–482. doi: 10.1016/j.chembiol.2010.03.00620534345
-
(2010)
Chem Biol
, vol.17
, Issue.5
, pp. 471-482
-
-
Bowers, E.M.1
-
159
-
-
84880730339
-
A dual role for SAGA-associated factor 29 (SGF29) in ER stress survival by coordination of both histone H3 acetylation and histone H3 lysine-4 trimethylation
-
23894581,.,.,. (): p
-
Schram A.W., et al., A dual role for SAGA-associated factor 29 (SGF29) in ER stress survival by coordination of both histone H3 acetylation and histone H3 lysine-4 trimethylation. PloS One, 2013. 8(7): p. e70035. doi: 10.1371/journal.pone.007003523894581
-
(2013)
PloS One
, vol.8
, Issue.7
, pp. e70035
-
-
Schram, A.W.1
-
160
-
-
18844413266
-
Acetylation in histone H3 globular domain regulates gene expression in yeast
-
15882620,.,. (): p. –
-
Xu F., Zhang K., Grunstein M., Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell, 2005. 121(3): p. 375–385. doi: 10.1016/j.cell.2005.03.01115882620
-
(2005)
Cell
, vol.121
, Issue.3
, pp. 375-385
-
-
Xu, F.1
Zhang, K.2
Grunstein, M.3
-
161
-
-
84964300533
-
Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31
-
25601565,.,.: –
-
Lee J-EE, Oh J-HH, Ku M, Kim J, Lee J-SS, et al. Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31. FEBS Lett, 2015. 589: 513–20. doi: 10.1016/j.febslet.2015.01.01125601565
-
(2015)
FEBS Lett
, vol.589
, pp. 513-520
-
-
Lee, J.-E.E.1
Oh, J.-H.H.2
Ku, M.3
Kim, J.4
Lee, J.-S.S.5
-
162
-
-
0038676409
-
Inhibition of histone deacetylase activity by butyrate
-
12840228,.,.: –
-
Davie J.R., Inhibition of histone deacetylase activity by butyrate. J Nutr, 2003. 133: 2485S–2493S. 12840228
-
(2003)
J Nutr
, vol.133
, pp. 2485S-2493S
-
-
Davie, J.R.1
-
163
-
-
84926614325
-
Acetylation site specificities of lysine deacetylase inhibitors in human cells
-
Scholz C., Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat Biotech, 2015. 33: 415–423.
-
(2015)
Nat Biotech
, vol.33
, pp. 415-423
-
-
Scholz, C.1
-
164
-
-
0035914304
-
Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
-
11483616,.,.: –
-
Grozinger C.M., Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem, 2001. 276: 38837–38843. doi: 10.1074/jbc.M10677920011483616
-
(2001)
J Biol Chem
, vol.276
, pp. 38837-38843
-
-
Grozinger, C.M.1
-
165
-
-
84901493375
-
Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases
-
24269836,.,.: –
-
Dekker F.J., van den Bosch T., Martin N.I., Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today, 2014. 19: 654–660. doi: 10.1016/j.drudis.2013.11.01224269836
-
(2014)
Drug Discov Today
, vol.19
, pp. 654-660
-
-
Dekker, F.J.1
van den Bosch, T.2
Martin, N.I.3
|