메뉴 건너뛰기




Volumn 22, Issue 12, 2016, Pages 1060-1076

Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions

Author keywords

autophagy; bacterial pathogens; host directed therapies; Mycobacterium tuberculosis; xenophagy

Indexed keywords

AUTOPHAGOSOME; AUTOPHAGY; BACTERIAL INFECTION; BACTERIAL VIRULENCE; CELL CULTURE; CELL MATURATION; INNATE IMMUNITY; MOLECULAR PATHOLOGY; MYCOBACTERIUM TUBERCULOSIS; NONHUMAN; PROTEIN FUNCTION; REVIEW; STREPTOCOCCUS GROUP A; XENOPHAGY; ANIMAL; BACTERIAL INFECTIONS; BACTERIAL PHENOMENA AND FUNCTIONS; BACTERIUM; DRUG DEVELOPMENT; DRUG EFFECTS; HOST PATHOGEN INTERACTION; HUMAN; IMMUNOLOGY; PATHOLOGY; PHYSIOLOGY; TUBERCULOSIS;

EID: 84999863202     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2016.10.008     Document Type: Review
Times cited : (122)

References (141)
  • 1
    • 84962538329 scopus 로고    scopus 로고
    • Host-directed therapies for infectious diseases: current status, recent progress, and future prospects
    • 1 Zumla, A., et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect. Dis. 16 (2016), e47–e63.
    • (2016) Lancet Infect. Dis. , vol.16 , pp. e47-e63
    • Zumla, A.1
  • 2
    • 80054025654 scopus 로고    scopus 로고
    • The role of Atg proteins in autophagosome formation
    • 2 Mizushima, N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27 (2011), 107–132.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 107-132
    • Mizushima, N.1
  • 3
    • 0021322401 scopus 로고
    • Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae
    • 3 Rikihisa, Y., Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae. Anat. Rec. 208 (1984), 319–327.
    • (1984) Anat. Rec. , vol.208 , pp. 319-327
    • Rikihisa, Y.1
  • 4
    • 84860284485 scopus 로고    scopus 로고
    • IL-6 inhibits IFN-γ induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages
    • 4 Dutta, R.K., et al. IL-6 inhibits IFN-γ induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. Int. J. Biochem. Cell Biol. 44 (2012), 942–954.
    • (2012) Int. J. Biochem. Cell Biol. , vol.44 , pp. 942-954
    • Dutta, R.K.1
  • 5
    • 84860241844 scopus 로고    scopus 로고
    • NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans
    • 5 Juárez, E., et al. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans. Eur. J. Immunol. 42 (2012), 880–889.
    • (2012) Eur. J. Immunol. , vol.42 , pp. 880-889
    • Juárez, E.1
  • 6
    • 84865220380 scopus 로고    scopus 로고
    • Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway
    • 6 Watson, R.O., et al. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150 (2012), 803–815.
    • (2012) Cell , vol.150 , pp. 803-815
    • Watson, R.O.1
  • 7
    • 84893441002 scopus 로고    scopus 로고
    • Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells
    • 7 Seto, S., et al. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells. PLoS One, 8, 2013, e86017.
    • (2013) PLoS One , vol.8 , pp. e86017
    • Seto, S.1
  • 8
    • 84938812137 scopus 로고    scopus 로고
    • Ubiquilin 1 promotes IFN-γ-induced xenophagy of Mycobacterium tuberculosis
    • 8 Sakowski, E.T., et al. Ubiquilin 1 promotes IFN-γ-induced xenophagy of Mycobacterium tuberculosis. PLOS Pathog., 11, 2015, e1005076.
    • (2015) PLOS Pathog. , vol.11 , pp. e1005076
    • Sakowski, E.T.1
  • 9
    • 77954039582 scopus 로고    scopus 로고
    • Identification of host-dependent survival factors for intracellular Mycobacterium tuberculosis through an siRNA screen
    • 9 Jayaswal, S., et al. Identification of host-dependent survival factors for intracellular Mycobacterium tuberculosis through an siRNA screen. PLoS Pathog., 6, 2010, e1000839.
    • (2010) PLoS Pathog. , vol.6 , pp. e1000839
    • Jayaswal, S.1
  • 10
    • 84861180818 scopus 로고    scopus 로고
    • Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action
    • 10 Kim, J-J., et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11 (2012), 457–468.
    • (2012) Cell Host Microbe , vol.11 , pp. 457-468
    • Kim, J.-J.1
  • 11
    • 84887296519 scopus 로고    scopus 로고
    • MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb
    • 11 Wang, J., et al. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog., 9, 2013, e1003697.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003697
    • Wang, J.1
  • 12
    • 84869217908 scopus 로고    scopus 로고
    • Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation
    • 12 Castillo, E.F., et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), E3168–E3176.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. E3168-E3176
    • Castillo, E.F.1
  • 13
    • 80055109822 scopus 로고    scopus 로고
    • Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection
    • 13 Nandi, B., Behar, S.M., Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J. Exp. Med. 208 (2011), 2251–2262.
    • (2011) J. Exp. Med. , vol.208 , pp. 2251-2262
    • Nandi, B.1    Behar, S.M.2
  • 14
    • 84951336143 scopus 로고    scopus 로고
    • Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection
    • 14 Kimmey, J.M., et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528 (2015), 565–569.
    • (2015) Nature , vol.528 , pp. 565-569
    • Kimmey, J.M.1
  • 15
    • 84885576570 scopus 로고    scopus 로고
    • The ubiquitin ligase parkin mediates resistance to intracellular pathogens
    • 15 Manzanillo, P.S., et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501 (2013), 512–516.
    • (2013) Nature , vol.501 , pp. 512-516
    • Manzanillo, P.S.1
  • 16
    • 10744220764 scopus 로고    scopus 로고
    • Susceptibility to leprosy is associated with PARK2 and PACRG
    • 16 Mira, M.T., et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427 (2004), 636–640.
    • (2004) Nature , vol.427 , pp. 636-640
    • Mira, M.T.1
  • 17
    • 33744471365 scopus 로고    scopus 로고
    • PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever
    • 17 Ali, S., et al. PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever. Clin. Exp. Immunol. 144 (2006), 425–431.
    • (2006) Clin. Exp. Immunol. , vol.144 , pp. 425-431
    • Ali, S.1
  • 18
    • 84946782287 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages
    • 18 Chandra, P., et al. Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages. Sci. Rep., 5, 2015, 16320.
    • (2015) Sci. Rep. , vol.5 , pp. 16320
    • Chandra, P.1
  • 19
    • 0041920891 scopus 로고    scopus 로고
    • 2+/calmodulin–PI3K hVPS34 cascade
    • 2+/calmodulin–PI3K hVPS34 cascade. J. Exp. Med. 198 (2003), 653–659.
    • (2003) J. Exp. Med. , vol.198 , pp. 653-659
    • Vergne, I.1
  • 20
    • 79951539400 scopus 로고    scopus 로고
    • Organelle membrane proteomics reveals differential influence of mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation
    • 20 Shui, W., et al. Organelle membrane proteomics reveals differential influence of mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation. J. Proteome Res. 10 (2011), 339–348.
    • (2011) J. Proteome Res. , vol.10 , pp. 339-348
    • Shui, W.1
  • 21
    • 84859884162 scopus 로고    scopus 로고
    • Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages
    • 21 Seto, S., et al. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell. Microbiol. 14 (2012), 710–727.
    • (2012) Cell. Microbiol. , vol.14 , pp. 710-727
    • Seto, S.1
  • 22
    • 78651226124 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling
    • 22 Shin, D.M., et al. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog., 6, 2010, e1001230.
    • (2010) PLoS Pathog. , vol.6 , pp. e1001230
    • Shin, D.M.1
  • 23
    • 84861210566 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7
    • 23 Kim, K.H., et al. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 7729–7734.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 7729-7734
    • Kim, K.H.1
  • 24
    • 84898731112 scopus 로고    scopus 로고
    • The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance
    • 24 Case, E.D.R., et al. The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance. Cell. Microbiol. 16 (2014), 862–877.
    • (2014) Cell. Microbiol. , vol.16 , pp. 862-877
    • Case, E.D.R.1
  • 25
    • 84964689454 scopus 로고    scopus 로고
    • Antioxidant defenses of Francisella tularensis modulate macrophage function and production of proinflammatory cytokines
    • 25 Rabadi, S.M., et al. Antioxidant defenses of Francisella tularensis modulate macrophage function and production of proinflammatory cytokines. J. Biol. Chem. 291 (2016), 5009–5021.
    • (2016) J. Biol. Chem. , vol.291 , pp. 5009-5021
    • Rabadi, S.M.1
  • 26
    • 84883401064 scopus 로고    scopus 로고
    • Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth
    • 26 Steele, S., et al. Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth. PLoS Pathog., 9, 2013, e1003562.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003562
    • Steele, S.1
  • 27
    • 33749264796 scopus 로고    scopus 로고
    • Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication
    • 27 Checroun, C., et al. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 14578–14583.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 14578-14583
    • Checroun, C.1
  • 28
    • 70349652310 scopus 로고    scopus 로고
    • Listeria monocytogenes ActA-mediated escape from autophagic recognition
    • 28 Yoshikawa, Y., et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 11 (2009), 1233–1240.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1233-1240
    • Yoshikawa, Y.1
  • 29
    • 80052337539 scopus 로고    scopus 로고
    • Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy
    • 29 Dortet, L., et al. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog., 7, 2011, e1002168.
    • (2011) PLoS Pathog. , vol.7 , pp. e1002168
    • Dortet, L.1
  • 30
    • 84888881200 scopus 로고    scopus 로고
    • Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures
    • 30 Tattoli, I., et al. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures. EMBO J. 32 (2013), 3066–3078.
    • (2013) EMBO J. , vol.32 , pp. 3066-3078
    • Tattoli, I.1
  • 31
    • 84928183057 scopus 로고    scopus 로고
    • Avoidance of autophagy mediated by PlcA or ActA is required for Listeria monocytogenes growth in macrophages
    • 31 Mitchell, G., et al. Avoidance of autophagy mediated by PlcA or ActA is required for Listeria monocytogenes growth in macrophages. Infect. Immun. 83 (2015), 2175–2184.
    • (2015) Infect. Immun. , vol.83 , pp. 2175-2184
    • Mitchell, G.1
  • 32
    • 13244256806 scopus 로고    scopus 로고
    • Escape of intracellular Shigella from autophagy
    • 32 Ogawa, M., et al. Escape of intracellular Shigella from autophagy. Science 307 (2005), 727–731.
    • (2005) Science , vol.307 , pp. 727-731
    • Ogawa, M.1
  • 33
    • 84899553358 scopus 로고    scopus 로고
    • Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection
    • 33 Baxt, L.A., Goldberg, M.B., Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection. PLoS One, 9, 2014, e94653.
    • (2014) PLoS One , vol.9 , pp. e94653
    • Baxt, L.A.1    Goldberg, M.B.2
  • 34
    • 77958107375 scopus 로고    scopus 로고
    • Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB
    • 34 Kayath, C.A., et al. Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB. Microbes Infect. 12 (2010), 956–966.
    • (2010) Microbes Infect. , vol.12 , pp. 956-966
    • Kayath, C.A.1
  • 35
    • 84936929461 scopus 로고    scopus 로고
    • Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA
    • 35 Campbell-Valois, F-X., et al. Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. MBio 6 (2015), e02567–e2614.
    • (2015) MBio , vol.6 , pp. e02567-e2614
    • Campbell-Valois, F.-X.1
  • 36
    • 84873035876 scopus 로고    scopus 로고
    • Active escape of Orientia tsutsugamushii from cellular autophagy
    • 36 Ko, Y., et al. Active escape of Orientia tsutsugamushii from cellular autophagy. Infect. Immun. 81 (2013), 552–559.
    • (2013) Infect. Immun. , vol.81 , pp. 552-559
    • Ko, Y.1
  • 37
    • 84873494256 scopus 로고    scopus 로고
    • Orientia tsutsugamushii subverts dendritic cell functions by escaping from autophagy and impairing their migration
    • 37 Choi, J-H., et al. Orientia tsutsugamushii subverts dendritic cell functions by escaping from autophagy and impairing their migration. PLoS Negl. Trop. Dis., 7, 2013, e1981.
    • (2013) PLoS Negl. Trop. Dis. , vol.7 , pp. e1981
    • Choi, J.-H.1
  • 38
    • 80052311756 scopus 로고    scopus 로고
    • Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence
    • 38 D'Cruze, T., et al. Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence. Infect. Immun. 79 (2011), 3659–3664.
    • (2011) Infect. Immun. , vol.79 , pp. 3659-3664
    • D'Cruze, T.1
  • 39
    • 80655134731 scopus 로고    scopus 로고
    • Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis
    • 39 Abdulrahman, B.A., et al. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy 7 (2011), 1359–1370.
    • (2011) Autophagy , vol.7 , pp. 1359-1370
    • Abdulrahman, B.A.1
  • 40
    • 84943801536 scopus 로고    scopus 로고
    • Burkholderia pseudomallei survival in lung epithelial cells benefits from miRNA-mediated suppression of ATG10
    • 40 Li, Q., et al. Burkholderia pseudomallei survival in lung epithelial cells benefits from miRNA-mediated suppression of ATG10. Autophagy 11 (2015), 1293–1307.
    • (2015) Autophagy , vol.11 , pp. 1293-1307
    • Li, Q.1
  • 41
    • 84919807837 scopus 로고    scopus 로고
    • The role of autophagy during group B Streptococcus infection of blood–brain barrier endothelium
    • 41 Cutting, A.S., et al. The role of autophagy during group B Streptococcus infection of blood–brain barrier endothelium. J. Biol. Chem. 289 (2014), 35711–35723.
    • (2014) J. Biol. Chem. , vol.289 , pp. 35711-35723
    • Cutting, A.S.1
  • 42
    • 84924629739 scopus 로고    scopus 로고
    • Superoxide dismutase of Streptococcus suis serotype 2 plays a role in anti-autophagic response by scavenging reactive oxygen species in infected macrophages
    • 42 Fang, L., et al. Superoxide dismutase of Streptococcus suis serotype 2 plays a role in anti-autophagic response by scavenging reactive oxygen species in infected macrophages. Vet. Microbiol. 176 (2015), 328–336.
    • (2015) Vet. Microbiol. , vol.176 , pp. 328-336
    • Fang, L.1
  • 43
    • 84947442809 scopus 로고    scopus 로고
    • Autophagy proteins promote repair of endosomal membranes damaged by the Salmonella type three secretion system 1
    • 43 Kreibich, S., et al. Autophagy proteins promote repair of endosomal membranes damaged by the Salmonella type three secretion system 1. Cell Host Microbe 18 (2015), 527–537.
    • (2015) Cell Host Microbe , vol.18 , pp. 527-537
    • Kreibich, S.1
  • 44
    • 84862301902 scopus 로고    scopus 로고
    • Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program
    • 44 Tattoli, I., et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11 (2012), 563–575.
    • (2012) Cell Host Microbe , vol.11 , pp. 563-575
    • Tattoli, I.1
  • 45
    • 84903487919 scopus 로고    scopus 로고
    • Activation of focal adhesion kinase by Salmonella suppresses autophagy via an Akt/mTOR signaling pathway and promotes bacterial survival in macrophages
    • 45 Owen, K.A., et al. Activation of focal adhesion kinase by Salmonella suppresses autophagy via an Akt/mTOR signaling pathway and promotes bacterial survival in macrophages. PLoS Pathog., 10, 2014, e1004159.
    • (2014) PLoS Pathog. , vol.10 , pp. e1004159
    • Owen, K.A.1
  • 46
    • 33744958258 scopus 로고    scopus 로고
    • Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole
    • 46 Birmingham, C.L., et al. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281 (2006), 11374–11383.
    • (2006) J. Biol. Chem. , vol.281 , pp. 11374-11383
    • Birmingham, C.L.1
  • 47
    • 74049126112 scopus 로고    scopus 로고
    • The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
    • 47 Zheng, Y.T., et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183 (2009), 5909–5916.
    • (2009) J. Immunol. , vol.183 , pp. 5909-5916
    • Zheng, Y.T.1
  • 48
    • 84903711945 scopus 로고    scopus 로고
    • Inhibition of macrophage autophagy induced by Salmonella enterica serovar typhi plasmid
    • 48 Wu, S., et al. Inhibition of macrophage autophagy induced by Salmonella enterica serovar typhi plasmid. Front. Biosci. 19 (2014), 490–503.
    • (2014) Front. Biosci. , vol.19 , pp. 490-503
    • Wu, S.1
  • 49
    • 80855136614 scopus 로고    scopus 로고
    • Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles
    • 49 Yasir, M., et al. Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Infect. Immun. 79 (2011), 4019–4028.
    • (2011) Infect. Immun. , vol.79 , pp. 4019-4028
    • Yasir, M.1
  • 50
    • 79961112822 scopus 로고    scopus 로고
    • Autophagy-independent function of MAP-LC3 during intracellular propagation of Chlamydia trachomatis
    • 50 Al-Younes, H.M., et al. Autophagy-independent function of MAP-LC3 during intracellular propagation of Chlamydia trachomatis. Autophagy 7 (2011), 814–828.
    • (2011) Autophagy , vol.7 , pp. 814-828
    • Al-Younes, H.M.1
  • 51
    • 84892786901 scopus 로고    scopus 로고
    • Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy
    • 51 Nguyen, H.T.T., et al. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 146 (2014), 508–519.
    • (2014) Gastroenterology , vol.146 , pp. 508-519
    • Nguyen, H.T.T.1
  • 52
    • 84871346779 scopus 로고    scopus 로고
    • Subversion of autophagy in adherent invasive Escherichia coli-infected neutrophils induces inflammation and cell death
    • 52 Chargui, A., et al. Subversion of autophagy in adherent invasive Escherichia coli-infected neutrophils induces inflammation and cell death. PLoS One, 7, 2012, e51727.
    • (2012) PLoS One , vol.7 , pp. e51727
    • Chargui, A.1
  • 53
    • 84869886358 scopus 로고    scopus 로고
    • The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation
    • 53 Choy, A., et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338 (2012), 1072–1076.
    • (2012) Science , vol.338 , pp. 1072-1076
    • Choy, A.1
  • 54
    • 84959018593 scopus 로고    scopus 로고
    • Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy
    • 54 Rolando, M., et al. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 1901–1906.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 1901-1906
    • Rolando, M.1
  • 55
    • 80052083381 scopus 로고    scopus 로고
    • Serratia marcescens is able to survive and proliferate in autophagic-like vacuoles inside non-phagocytic cells
    • 55 Fedrigo, G.V., et al. Serratia marcescens is able to survive and proliferate in autophagic-like vacuoles inside non-phagocytic cells. PLoS One, 6, 2011, e24054.
    • (2011) PLoS One , vol.6 , pp. e24054
    • Fedrigo, G.V.1
  • 56
    • 66549126665 scopus 로고    scopus 로고
    • Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification
    • 56 Pujol, C., et al. Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect. Immun. 77 (2009), 2251–2261.
    • (2009) Infect. Immun. , vol.77 , pp. 2251-2261
    • Pujol, C.1
  • 57
    • 77953019211 scopus 로고    scopus 로고
    • Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages
    • 57 Moreau, K., et al. Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cell. Microbiol. 12 (2010), 1108–1123.
    • (2010) Cell. Microbiol. , vol.12 , pp. 1108-1123
    • Moreau, K.1
  • 58
    • 8344247016 scopus 로고    scopus 로고
    • Autophagy defends cells against invading group A Streptococcus
    • 58 Nakagawa, I., et al. Autophagy defends cells against invading group A Streptococcus. Science 306 (2004), 1037–1040.
    • (2004) Science , vol.306 , pp. 1037-1040
    • Nakagawa, I.1
  • 59
    • 84965057555 scopus 로고    scopus 로고
    • Cytosolic replication of group A Streptococcus in human macrophages
    • e00020-16
    • 59 O'Neill, A.M., et al. Cytosolic replication of group A Streptococcus in human macrophages. MBio, 7, 2016 e00020-16.
    • (2016) MBio , vol.7
    • O'Neill, A.M.1
  • 60
    • 84879513881 scopus 로고    scopus 로고
    • Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from xenophagic killing
    • 60 O'Seaghdha, M., Wessels, M.R., Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from xenophagic killing. PLoS Pathog., 9, 2013, e1003394.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003394
    • O'Seaghdha, M.1    Wessels, M.R.2
  • 61
    • 84946616110 scopus 로고    scopus 로고
    • Insufficient acidification of autophagosomes facilitates group A Streptococcus survival and growth in endothelial cells
    • 61 Lu, S-L., et al. Insufficient acidification of autophagosomes facilitates group A Streptococcus survival and growth in endothelial cells. MBio 6 (2015), e01435–e1515.
    • (2015) MBio , vol.6 , pp. e01435-e1515
    • Lu, S.-L.1
  • 62
    • 84890293210 scopus 로고    scopus 로고
    • The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication
    • 62 Barnett, T.C., et al. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14 (2013), 675–682.
    • (2013) Cell Host Microbe , vol.14 , pp. 675-682
    • Barnett, T.C.1
  • 63
    • 38849200959 scopus 로고    scopus 로고
    • Subversion of cellular autophagy by Anaplasma phagocytophilum
    • 63 Niu, H., et al. Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell. Microbiol. 10 (2008), 593–605.
    • (2008) Cell. Microbiol. , vol.10 , pp. 593-605
    • Niu, H.1
  • 64
    • 84871385890 scopus 로고    scopus 로고
    • Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection
    • 64 Niu, H., et al. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 20800–20807.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 20800-20807
    • Niu, H.1
  • 65
    • 76749117962 scopus 로고    scopus 로고
    • Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection
    • 65 Vázquez, C.L., Colombo, M.I., Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection. Cell Death Differ. 17 (2010), 421–438.
    • (2010) Cell Death Differ. , vol.17 , pp. 421-438
    • Vázquez, C.L.1    Colombo, M.I.2
  • 66
    • 84900440490 scopus 로고    scopus 로고
    • Coxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes
    • 66 Winchell, C.G., et al. Coxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes. Infect. Immun. 82 (2014), 2229–2238.
    • (2014) Infect. Immun. , vol.82 , pp. 2229-2238
    • Winchell, C.G.1
  • 67
    • 0036784707 scopus 로고    scopus 로고
    • Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics
    • 67 Berón, W., et al. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect. Immun. 70 (2002), 5816–5821.
    • (2002) Infect. Immun. , vol.70 , pp. 5816-5821
    • Berón, W.1
  • 68
    • 84905395102 scopus 로고    scopus 로고
    • A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis
    • 68 Newton, H.J., et al. A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis. PLoS Pathog., 10, 2014, e1004286.
    • (2014) PLoS Pathog. , vol.10 , pp. e1004286
    • Newton, H.J.1
  • 69
    • 84973344436 scopus 로고    scopus 로고
    • Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development
    • 69 Martinez, E., et al. Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E3260–E3269.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. E3260-E3269
    • Martinez, E.1
  • 70
    • 84924351873 scopus 로고    scopus 로고
    • Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk
    • 70 El-Awady, A.R., et al. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk. PLoS Pathog., 10, 2015, e1004647.
    • (2015) PLoS Pathog. , vol.10 , pp. e1004647
    • El-Awady, A.R.1
  • 71
    • 21344472825 scopus 로고    scopus 로고
    • Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles
    • 71 Gutierrez, M.G., et al. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell. Microbiol. 7 (2005), 981–993.
    • (2005) Cell. Microbiol. , vol.7 , pp. 981-993
    • Gutierrez, M.G.1
  • 72
    • 0034876410 scopus 로고    scopus 로고
    • Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells
    • 72 Dorn, B.R., et al. Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infect. Immun. 69 (2001), 5698–5708.
    • (2001) Infect. Immun. , vol.69 , pp. 5698-5708
    • Dorn, B.R.1
  • 73
    • 33745855122 scopus 로고    scopus 로고
    • Autophagy: a highway for Porphyromonas gingivalis in endothelial cells
    • 73 Bélanger, M., et al. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2 (2006), 165–170.
    • (2006) Autophagy , vol.2 , pp. 165-170
    • Bélanger, M.1
  • 74
    • 34047271297 scopus 로고    scopus 로고
    • Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death
    • 74 Schnaith, A., et al. Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J. Biol. Chem. 282 (2007), 2695–2706.
    • (2007) J. Biol. Chem. , vol.282 , pp. 2695-2706
    • Schnaith, A.1
  • 75
    • 84947029362 scopus 로고    scopus 로고
    • IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus
    • 75 Liu, P-F., et al. IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus. J. Invest. Dermatol. 135 (2015), 2714–2722.
    • (2015) J. Invest. Dermatol. , vol.135 , pp. 2714-2722
    • Liu, P.-F.1
  • 76
    • 84907990643 scopus 로고    scopus 로고
    • Replication of Brucella abortus and Brucella melitensis in fibroblasts does not require Atg5-dependent macroautophagy
    • 76 Hamer, I., et al. Replication of Brucella abortus and Brucella melitensis in fibroblasts does not require Atg5-dependent macroautophagy. BMC Microbiol., 14, 2014, 223.
    • (2014) BMC Microbiol. , vol.14 , pp. 223
    • Hamer, I.1
  • 77
    • 84856010816 scopus 로고    scopus 로고
    • Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle
    • 77 Starr, T., et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11 (2012), 33–45.
    • (2012) Cell Host Microbe , vol.11 , pp. 33-45
    • Starr, T.1
  • 78
    • 84864632809 scopus 로고    scopus 로고
    • Autophagy favors Brucella melitensis survival in infected macrophages
    • 78 Guo, F., et al. Autophagy favors Brucella melitensis survival in infected macrophages. Cell. Mol. Biol. Lett. 17 (2012), 249–257.
    • (2012) Cell. Mol. Biol. Lett. , vol.17 , pp. 249-257
    • Guo, F.1
  • 79
    • 84937012155 scopus 로고    scopus 로고
    • ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1β-dependent manner
    • 79 Symington, J.W., et al. ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1β-dependent manner. Mucosal Immunol. 8 (2015), 1388–1399.
    • (2015) Mucosal Immunol. , vol.8 , pp. 1388-1399
    • Symington, J.W.1
  • 80
    • 77956269504 scopus 로고    scopus 로고
    • Helicobacter pylori impairs murine dendritic cell responses to infection
    • 80 Wang, Y-H., et al. Helicobacter pylori impairs murine dendritic cell responses to infection. PLoS One, 5, 2010, e10844.
    • (2010) PLoS One , vol.5 , pp. e10844
    • Wang, Y.-H.1
  • 81
    • 60549097046 scopus 로고    scopus 로고
    • The autophagic induction in Helicobacter pylori-infected macrophage
    • 81 Wang, Y-H., et al. The autophagic induction in Helicobacter pylori-infected macrophage. Exp. Biol. Med. 234 (2009), 171–180.
    • (2009) Exp. Biol. Med. , vol.234 , pp. 171-180
    • Wang, Y.-H.1
  • 82
    • 84866053839 scopus 로고    scopus 로고
    • Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori
    • 82 Tang, B., et al. Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori. Autophagy 8 (2012), 1045–1057.
    • (2012) Autophagy , vol.8 , pp. 1045-1057
    • Tang, B.1
  • 83
    • 84925652601 scopus 로고    scopus 로고
    • Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS hypergeneration in A549 cells
    • 83 Li, P., et al. Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS hypergeneration in A549 cells. PLoS One 10 (2015), 1–15.
    • (2015) PLoS One , vol.10 , pp. 1-15
    • Li, P.1
  • 84
    • 84957655186 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome
    • 84 Deng, Q., et al. Pseudomonas aeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome. Infect. Immun. 84 (2016), 56–66.
    • (2016) Infect. Immun. , vol.84 , pp. 56-66
    • Deng, Q.1
  • 85
    • 84864149296 scopus 로고    scopus 로고
    • Helminth infection impairs autophagy-mediated killing of bacterial enteropathogens by macrophages
    • 85 Su, C., et al. Helminth infection impairs autophagy-mediated killing of bacterial enteropathogens by macrophages. J. Immunol. 189 (2012), 1459–1466.
    • (2012) J. Immunol. , vol.189 , pp. 1459-1466
    • Su, C.1
  • 86
    • 84941953933 scopus 로고    scopus 로고
    • Autophagy and autophagy-related proteins in the immune system
    • 86 Shibutani, S.T., et al. Autophagy and autophagy-related proteins in the immune system. Nat. Immunol. 16 (2015), 1014–1024.
    • (2015) Nat. Immunol. , vol.16 , pp. 1014-1024
    • Shibutani, S.T.1
  • 87
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • 87 Levine, B., et al. Autophagy in immunity and inflammation. Nature 469 (2011), 323–335.
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1
  • 88
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • 88 Deretic, V., et al. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13 (2013), 722–737.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 722-737
    • Deretic, V.1
  • 89
    • 84882712453 scopus 로고    scopus 로고
    • Autophagy and cellular immune responses
    • 89 Ma, Y., et al. Autophagy and cellular immune responses. Immunity 39 (2013), 211–227.
    • (2013) Immunity , vol.39 , pp. 211-227
    • Ma, Y.1
  • 90
    • 55249109400 scopus 로고    scopus 로고
    • Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
    • 90 Zhao, Z., et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4 (2008), 458–469.
    • (2008) Cell Host Microbe , vol.4 , pp. 458-469
    • Zhao, Z.1
  • 91
    • 84879107779 scopus 로고    scopus 로고
    • Intestinal epithelial autophagy is essential for host defense against invasive bacteria
    • 91 Benjamin, J.L., et al. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13 (2013), 723–734.
    • (2013) Cell Host Microbe , vol.13 , pp. 723-734
    • Benjamin, J.L.1
  • 92
    • 84888223618 scopus 로고    scopus 로고
    • Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection
    • 92 Conway, K.L., et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145 (2013), 1347–1357.
    • (2013) Gastroenterology , vol.145 , pp. 1347-1357
    • Conway, K.L.1
  • 93
    • 56249135538 scopus 로고    scopus 로고
    • A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
    • 93 Cadwell, K., et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456 (2008), 259–263.
    • (2008) Nature , vol.456 , pp. 259-263
    • Cadwell, K.1
  • 94
    • 84860440174 scopus 로고    scopus 로고
    • Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection
    • 94 Inoue, J., et al. Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection. Arch. Biochem. Biophys. 521 (2012), 95–101.
    • (2012) Arch. Biochem. Biophys. , vol.521 , pp. 95-101
    • Inoue, J.1
  • 95
    • 84926656919 scopus 로고    scopus 로고
    • Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin
    • 95 Maurer, K., et al. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host Microbe 17 (2015), 429–440.
    • (2015) Cell Host Microbe , vol.17 , pp. 429-440
    • Maurer, K.1
  • 96
    • 84868148976 scopus 로고    scopus 로고
    • Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection
    • 96 Kuang, E., et al. Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection. PLoS Genet., 8, 2012, e1003007.
    • (2012) PLoS Genet. , vol.8 , pp. e1003007
    • Kuang, E.1
  • 97
    • 84863598031 scopus 로고    scopus 로고
    • Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo
    • 97 Wang, C., et al. Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 11008–11013.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 11008-11013
    • Wang, C.1
  • 98
    • 84882369710 scopus 로고    scopus 로고
    • A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection
    • 98 Marchiando, A.M., et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 14 (2013), 216–224.
    • (2013) Cell Host Microbe , vol.14 , pp. 216-224
    • Marchiando, A.M.1
  • 99
    • 84920407208 scopus 로고    scopus 로고
    • Development of autophagy inducers in clinical medicine
    • 99 Levine, B., et al. Development of autophagy inducers in clinical medicine. J. Clin. Invest. 125 (2015), 14–24.
    • (2015) J. Clin. Invest. , vol.125 , pp. 14-24
    • Levine, B.1
  • 100
    • 84859795511 scopus 로고    scopus 로고
    • Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay
    • 100 Romano, P.S., et al. Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay. IUBMB Life 64 (2012), 387–396.
    • (2012) IUBMB Life , vol.64 , pp. 387-396
    • Romano, P.S.1
  • 101
    • 84880919517 scopus 로고    scopus 로고
    • Autophagy and viruses: adversaries or allies?
    • 101 Dong, X., Levine, B., Autophagy and viruses: adversaries or allies?. J. Innate Immun. 5 (2013), 480–493.
    • (2013) J. Innate Immun. , vol.5 , pp. 480-493
    • Dong, X.1    Levine, B.2
  • 102
    • 84866122688 scopus 로고    scopus 로고
    • Autophagy modulation as a potential therapeutic target for diverse diseases
    • 102 Rubinsztein, D.C., et al. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11 (2012), 709–730.
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 709-730
    • Rubinsztein, D.C.1
  • 103
    • 84863259013 scopus 로고    scopus 로고
    • Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages
    • 103 Yuan, K., et al. Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages. J. Cell Sci. 125 (2012), 507–515.
    • (2012) J. Cell Sci. , vol.125 , pp. 507-515
    • Yuan, K.1
  • 104
    • 50249111985 scopus 로고    scopus 로고
    • Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines
    • 104 Cullinane, M., et al. Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 4 (2008), 744–753.
    • (2008) Autophagy , vol.4 , pp. 744-753
    • Cullinane, M.1
  • 105
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
    • 105 Gutierrez, M.G., et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119 (2004), 753–766.
    • (2004) Cell , vol.119 , pp. 753-766
    • Gutierrez, M.G.1
  • 106
    • 84975029687 scopus 로고    scopus 로고
    • Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages
    • 106 Andersson, A-M., et al. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci. Rep., 6, 2016, 28171.
    • (2016) Sci. Rep. , vol.6 , pp. 28171
    • Andersson, A.-M.1
  • 107
    • 84883174355 scopus 로고    scopus 로고
    • Autophagy enhances bacterial clearance during P. aeruginosa lung infection
    • 107 Junkins, R.D., et al. Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS One, 8, 2013, e72263.
    • (2013) PLoS One , vol.8 , pp. e72263
    • Junkins, R.D.1
  • 108
    • 84902246218 scopus 로고    scopus 로고
    • miR-155 suppresses bacterial clearance in Pseudomonas aeruginosa-induced keratitis by targeting Rheb
    • 108 Yang, K., et al. miR-155 suppresses bacterial clearance in Pseudomonas aeruginosa-induced keratitis by targeting Rheb. J. Infect. Dis. 210 (2014), 89–98.
    • (2014) J. Infect. Dis. , vol.210 , pp. 89-98
    • Yang, K.1
  • 109
    • 71249103401 scopus 로고    scopus 로고
    • Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent
    • 109 Chiu, H-C., et al. Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent. Antimicrob. Agents Chemother. 53 (2009), 5236–5244.
    • (2009) Antimicrob. Agents Chemother. , vol.53 , pp. 5236-5244
    • Chiu, H.-C.1
  • 110
    • 84912121162 scopus 로고    scopus 로고
    • Sensitization of intracellular Salmonella enterica serovar Typhimurium to aminoglycosides in vitro and in vivo by a host-targeted antimicrobial agent
    • 110 Lo, J-H., et al. Sensitization of intracellular Salmonella enterica serovar Typhimurium to aminoglycosides in vitro and in vivo by a host-targeted antimicrobial agent. Antimicrob. Agents Chemother. 58 (2014), 7375–7382.
    • (2014) Antimicrob. Agents Chemother. , vol.58 , pp. 7375-7382
    • Lo, J.-H.1
  • 111
    • 84895732971 scopus 로고    scopus 로고
    • Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth
    • 111 Stanley, S.A., et al. Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog., 10, 2014, e1003946.
    • (2014) PLoS Pathog. , vol.10 , pp. e1003946
    • Stanley, S.A.1
  • 112
    • 84894226758 scopus 로고    scopus 로고
    • Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation
    • 112 Parihar, S.P., et al. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J. Infect. Dis. 209 (2014), 754–763.
    • (2014) J. Infect. Dis. , vol.209 , pp. 754-763
    • Parihar, S.P.1
  • 113
    • 84873709314 scopus 로고    scopus 로고
    • Identification of a candidate therapeutic autophagy-inducing peptide
    • 113 Shoji-Kawata, S., et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494 (2013), 201–206.
    • (2013) Nature , vol.494 , pp. 201-206
    • Shoji-Kawata, S.1
  • 114
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: origins unknown, biogenesis complex
    • 114 Lamb, C.A., et al. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14 (2013), 759–774.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 759-774
    • Lamb, C.A.1
  • 115
    • 84859386792 scopus 로고    scopus 로고
    • Autophagy and the immune system
    • 115 Kuballa, P., et al. Autophagy and the immune system. Annu. Rev. Immunol. 30 (2012), 611–646.
    • (2012) Annu. Rev. Immunol. , vol.30 , pp. 611-646
    • Kuballa, P.1
  • 116
    • 0032563798 scopus 로고    scopus 로고
    • A protein conjugation system essential for autophagy
    • 116 Mizushima, N., et al. A protein conjugation system essential for autophagy. Nature 395 (1998), 395–398.
    • (1998) Nature , vol.395 , pp. 395-398
    • Mizushima, N.1
  • 117
    • 84877324063 scopus 로고    scopus 로고
    • Dissecting the role of the Atg12–Atg5–Atg16 complex during autophagosome formation
    • 117 Walczak, M., Martens, S., Dissecting the role of the Atg12–Atg5–Atg16 complex during autophagosome formation. Autophagy 9 (2013), 424–425.
    • (2013) Autophagy , vol.9 , pp. 424-425
    • Walczak, M.1    Martens, S.2
  • 118
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • 118 Travassos, L.H., et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11 (2010), 55–62.
    • (2010) Nat. Immunol. , vol.11 , pp. 55-62
    • Travassos, L.H.1
  • 119
    • 41949101594 scopus 로고    scopus 로고
    • Toll-like receptors control autophagy
    • 119 Delgado, M.A., et al. Toll-like receptors control autophagy. EMBO J. 27 (2008), 1110–1121.
    • (2008) EMBO J. , vol.27 , pp. 1110-1121
    • Delgado, M.A.1
  • 120
    • 84892678766 scopus 로고    scopus 로고
    • Bacteria–autophagy interplay: a battle for survival
    • 120 Huang, J., Brumell, J.H., Bacteria–autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12 (2014), 101–114.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 101-114
    • Huang, J.1    Brumell, J.H.2
  • 121
    • 84901815187 scopus 로고    scopus 로고
    • Cargo recognition and trafficking in selective autophagy
    • 121 Stolz, A., et al. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16 (2014), 495–501.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 495-501
    • Stolz, A.1
  • 122
    • 84940753095 scopus 로고    scopus 로고
    • TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation
    • 122 Matsumoto, G., et al. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 24 (2015), 4429–4442.
    • (2015) Hum. Mol. Genet. , vol.24 , pp. 4429-4442
    • Matsumoto, G.1
  • 123
    • 84865357562 scopus 로고    scopus 로고
    • TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation
    • 123 Pilli, M., et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37 (2012), 223–234.
    • (2012) Immunity , vol.37 , pp. 223-234
    • Pilli, M.1
  • 124
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
    • 124 Wild, P., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333 (2011), 228–233.
    • (2011) Science , vol.333 , pp. 228-233
    • Wild, P.1
  • 125
    • 84924423819 scopus 로고    scopus 로고
    • Selective autophagy: xenophagy
    • 125 Bauckman, K.A., et al. Selective autophagy: xenophagy. Methods 75 (2015), 120–127.
    • (2015) Methods , vol.75 , pp. 120-127
    • Bauckman, K.A.1
  • 126
    • 75749122303 scopus 로고    scopus 로고
    • Methods in mammalian autophagy research
    • 126 Mizushima, N., et al. Methods in mammalian autophagy research. Cell 140 (2010), 313–326.
    • (2010) Cell , vol.140 , pp. 313-326
    • Mizushima, N.1
  • 127
    • 84884340814 scopus 로고    scopus 로고
    • Autophagy regulates phagocytosis by modulating the expression of scavenger receptors
    • 127 Bonilla, D.L., et al. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39 (2013), 537–547.
    • (2013) Immunity , vol.39 , pp. 537-547
    • Bonilla, D.L.1
  • 128
    • 84934287492 scopus 로고    scopus 로고
    • Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins
    • 128 Martinez, J., et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17 (2015), 893–906.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 893-906
    • Martinez, J.1
  • 129
    • 84920463081 scopus 로고    scopus 로고
    • Immunologic manifestations of autophagy
    • 129 Deretic, V., et al. Immunologic manifestations of autophagy. J. Clin. Invest. 125 (2015), 75–84.
    • (2015) J. Clin. Invest. , vol.125 , pp. 75-84
    • Deretic, V.1
  • 130
    • 84973513790 scopus 로고    scopus 로고
    • The roles of type I interferon in bacterial infection
    • 130 Boxx, G.M., Cheng, G., The roles of type I interferon in bacterial infection. Cell Host Microbe 19 (2016), 760–769.
    • (2016) Cell Host Microbe , vol.19 , pp. 760-769
    • Boxx, G.M.1    Cheng, G.2
  • 131
    • 81455139884 scopus 로고    scopus 로고
    • Role of the inflammasome, IL-1β, and IL-18 in bacterial infections
    • 131 Sahoo, M., et al. Role of the inflammasome, IL-1β, and IL-18 in bacterial infections. Sci. World J. 11 (2011), 2037–2050.
    • (2011) Sci. World J. , vol.11 , pp. 2037-2050
    • Sahoo, M.1
  • 132
    • 84857195479 scopus 로고    scopus 로고
    • Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction
    • 132 Shi, C-S., et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13 (2012), 255–263.
    • (2012) Nat. Immunol. , vol.13 , pp. 255-263
    • Shi, C.-S.1
  • 133
    • 79953176280 scopus 로고    scopus 로고
    • Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation
    • 133 Harris, J., et al. Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation. J. Biol. Chem. 286 (2011), 9587–9597.
    • (2011) J. Biol. Chem. , vol.286 , pp. 9587-9597
    • Harris, J.1
  • 134
    • 82455210868 scopus 로고    scopus 로고
    • Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β
    • 134 Dupont, N., et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30 (2011), 4701–4711.
    • (2011) EMBO J. , vol.30 , pp. 4701-4711
    • Dupont, N.1
  • 135
    • 84955292894 scopus 로고    scopus 로고
    • Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion
    • 135 Zhang, M., et al. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. Elife 4 (2015), 1–23.
    • (2015) Elife , vol.4 , pp. 1-23
    • Zhang, M.1
  • 136
    • 84922541234 scopus 로고    scopus 로고
    • Autosis and autophagic cell death: the dark side of autophagy
    • 136 Liu, Y., Levine, B., Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 22 (2015), 367–376.
    • (2015) Cell Death Differ. , vol.22 , pp. 367-376
    • Liu, Y.1    Levine, B.2
  • 137
    • 84900792294 scopus 로고    scopus 로고
    • Die another way – non-apoptotic mechanisms of cell death
    • 137 Tait, S.W.G., et al. Die another way – non-apoptotic mechanisms of cell death. J. Cell Sci. 127 (2014), 2135–2144.
    • (2014) J. Cell Sci. , vol.127 , pp. 2135-2144
    • Tait, S.W.G.1
  • 138
    • 33749162486 scopus 로고    scopus 로고
    • Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis
    • 138 Yousefi, S., et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 8 (2006), 1124–1132.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1124-1132
    • Yousefi, S.1
  • 139
    • 84883655855 scopus 로고    scopus 로고
    • Hidden behind autophagy: the unconventional roles of ATG proteins
    • 139 Bestebroer, J., et al. Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic 14 (2013), 1029–1041.
    • (2013) Traffic , vol.14 , pp. 1029-1041
    • Bestebroer, J.1
  • 140
    • 79959564980 scopus 로고    scopus 로고
    • + T cells during Mycobacterium tuberculosis infection
    • + T cells during Mycobacterium tuberculosis infection. J. Immunol. 186 (2011), 7110–7119.
    • (2011) J. Immunol. , vol.186 , pp. 7110-7119
    • Blomgran, R.1    Ernst, J.D.2
  • 141
    • 84866403046 scopus 로고    scopus 로고
    • Efferocytosis is an innate antibacterial mechanism
    • 141 Martin, C.J., et al. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12 (2012), 289–300.
    • (2012) Cell Host Microbe , vol.12 , pp. 289-300
    • Martin, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.