-
1
-
-
84962538329
-
Host-directed therapies for infectious diseases: current status, recent progress, and future prospects
-
1 Zumla, A., et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect. Dis. 16 (2016), e47–e63.
-
(2016)
Lancet Infect. Dis.
, vol.16
, pp. e47-e63
-
-
Zumla, A.1
-
2
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
2 Mizushima, N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27 (2011), 107–132.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
-
3
-
-
0021322401
-
Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae
-
3 Rikihisa, Y., Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae. Anat. Rec. 208 (1984), 319–327.
-
(1984)
Anat. Rec.
, vol.208
, pp. 319-327
-
-
Rikihisa, Y.1
-
4
-
-
84860284485
-
IL-6 inhibits IFN-γ induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages
-
4 Dutta, R.K., et al. IL-6 inhibits IFN-γ induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. Int. J. Biochem. Cell Biol. 44 (2012), 942–954.
-
(2012)
Int. J. Biochem. Cell Biol.
, vol.44
, pp. 942-954
-
-
Dutta, R.K.1
-
5
-
-
84860241844
-
NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans
-
5 Juárez, E., et al. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans. Eur. J. Immunol. 42 (2012), 880–889.
-
(2012)
Eur. J. Immunol.
, vol.42
, pp. 880-889
-
-
Juárez, E.1
-
6
-
-
84865220380
-
Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway
-
6 Watson, R.O., et al. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150 (2012), 803–815.
-
(2012)
Cell
, vol.150
, pp. 803-815
-
-
Watson, R.O.1
-
7
-
-
84893441002
-
Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells
-
7 Seto, S., et al. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells. PLoS One, 8, 2013, e86017.
-
(2013)
PLoS One
, vol.8
, pp. e86017
-
-
Seto, S.1
-
8
-
-
84938812137
-
Ubiquilin 1 promotes IFN-γ-induced xenophagy of Mycobacterium tuberculosis
-
8 Sakowski, E.T., et al. Ubiquilin 1 promotes IFN-γ-induced xenophagy of Mycobacterium tuberculosis. PLOS Pathog., 11, 2015, e1005076.
-
(2015)
PLOS Pathog.
, vol.11
, pp. e1005076
-
-
Sakowski, E.T.1
-
9
-
-
77954039582
-
Identification of host-dependent survival factors for intracellular Mycobacterium tuberculosis through an siRNA screen
-
9 Jayaswal, S., et al. Identification of host-dependent survival factors for intracellular Mycobacterium tuberculosis through an siRNA screen. PLoS Pathog., 6, 2010, e1000839.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1000839
-
-
Jayaswal, S.1
-
10
-
-
84861180818
-
Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action
-
10 Kim, J-J., et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11 (2012), 457–468.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 457-468
-
-
Kim, J.-J.1
-
11
-
-
84887296519
-
MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb
-
11 Wang, J., et al. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog., 9, 2013, e1003697.
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003697
-
-
Wang, J.1
-
12
-
-
84869217908
-
Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation
-
12 Castillo, E.F., et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), E3168–E3176.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. E3168-E3176
-
-
Castillo, E.F.1
-
13
-
-
80055109822
-
Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection
-
13 Nandi, B., Behar, S.M., Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J. Exp. Med. 208 (2011), 2251–2262.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 2251-2262
-
-
Nandi, B.1
Behar, S.M.2
-
14
-
-
84951336143
-
Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection
-
14 Kimmey, J.M., et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528 (2015), 565–569.
-
(2015)
Nature
, vol.528
, pp. 565-569
-
-
Kimmey, J.M.1
-
15
-
-
84885576570
-
The ubiquitin ligase parkin mediates resistance to intracellular pathogens
-
15 Manzanillo, P.S., et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501 (2013), 512–516.
-
(2013)
Nature
, vol.501
, pp. 512-516
-
-
Manzanillo, P.S.1
-
16
-
-
10744220764
-
Susceptibility to leprosy is associated with PARK2 and PACRG
-
16 Mira, M.T., et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427 (2004), 636–640.
-
(2004)
Nature
, vol.427
, pp. 636-640
-
-
Mira, M.T.1
-
17
-
-
33744471365
-
PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever
-
17 Ali, S., et al. PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever. Clin. Exp. Immunol. 144 (2006), 425–431.
-
(2006)
Clin. Exp. Immunol.
, vol.144
, pp. 425-431
-
-
Ali, S.1
-
18
-
-
84946782287
-
Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages
-
18 Chandra, P., et al. Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages. Sci. Rep., 5, 2015, 16320.
-
(2015)
Sci. Rep.
, vol.5
, pp. 16320
-
-
Chandra, P.1
-
19
-
-
0041920891
-
2+/calmodulin–PI3K hVPS34 cascade
-
2+/calmodulin–PI3K hVPS34 cascade. J. Exp. Med. 198 (2003), 653–659.
-
(2003)
J. Exp. Med.
, vol.198
, pp. 653-659
-
-
Vergne, I.1
-
20
-
-
79951539400
-
Organelle membrane proteomics reveals differential influence of mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation
-
20 Shui, W., et al. Organelle membrane proteomics reveals differential influence of mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation. J. Proteome Res. 10 (2011), 339–348.
-
(2011)
J. Proteome Res.
, vol.10
, pp. 339-348
-
-
Shui, W.1
-
21
-
-
84859884162
-
Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages
-
21 Seto, S., et al. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell. Microbiol. 14 (2012), 710–727.
-
(2012)
Cell. Microbiol.
, vol.14
, pp. 710-727
-
-
Seto, S.1
-
22
-
-
78651226124
-
Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling
-
22 Shin, D.M., et al. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog., 6, 2010, e1001230.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1001230
-
-
Shin, D.M.1
-
23
-
-
84861210566
-
Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7
-
23 Kim, K.H., et al. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 7729–7734.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 7729-7734
-
-
Kim, K.H.1
-
24
-
-
84898731112
-
The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance
-
24 Case, E.D.R., et al. The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance. Cell. Microbiol. 16 (2014), 862–877.
-
(2014)
Cell. Microbiol.
, vol.16
, pp. 862-877
-
-
Case, E.D.R.1
-
25
-
-
84964689454
-
Antioxidant defenses of Francisella tularensis modulate macrophage function and production of proinflammatory cytokines
-
25 Rabadi, S.M., et al. Antioxidant defenses of Francisella tularensis modulate macrophage function and production of proinflammatory cytokines. J. Biol. Chem. 291 (2016), 5009–5021.
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 5009-5021
-
-
Rabadi, S.M.1
-
26
-
-
84883401064
-
Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth
-
26 Steele, S., et al. Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth. PLoS Pathog., 9, 2013, e1003562.
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003562
-
-
Steele, S.1
-
27
-
-
33749264796
-
Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication
-
27 Checroun, C., et al. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 14578–14583.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 14578-14583
-
-
Checroun, C.1
-
28
-
-
70349652310
-
Listeria monocytogenes ActA-mediated escape from autophagic recognition
-
28 Yoshikawa, Y., et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 11 (2009), 1233–1240.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1233-1240
-
-
Yoshikawa, Y.1
-
29
-
-
80052337539
-
Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy
-
29 Dortet, L., et al. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog., 7, 2011, e1002168.
-
(2011)
PLoS Pathog.
, vol.7
, pp. e1002168
-
-
Dortet, L.1
-
30
-
-
84888881200
-
Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures
-
30 Tattoli, I., et al. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures. EMBO J. 32 (2013), 3066–3078.
-
(2013)
EMBO J.
, vol.32
, pp. 3066-3078
-
-
Tattoli, I.1
-
31
-
-
84928183057
-
Avoidance of autophagy mediated by PlcA or ActA is required for Listeria monocytogenes growth in macrophages
-
31 Mitchell, G., et al. Avoidance of autophagy mediated by PlcA or ActA is required for Listeria monocytogenes growth in macrophages. Infect. Immun. 83 (2015), 2175–2184.
-
(2015)
Infect. Immun.
, vol.83
, pp. 2175-2184
-
-
Mitchell, G.1
-
32
-
-
13244256806
-
Escape of intracellular Shigella from autophagy
-
32 Ogawa, M., et al. Escape of intracellular Shigella from autophagy. Science 307 (2005), 727–731.
-
(2005)
Science
, vol.307
, pp. 727-731
-
-
Ogawa, M.1
-
33
-
-
84899553358
-
Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection
-
33 Baxt, L.A., Goldberg, M.B., Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection. PLoS One, 9, 2014, e94653.
-
(2014)
PLoS One
, vol.9
, pp. e94653
-
-
Baxt, L.A.1
Goldberg, M.B.2
-
34
-
-
77958107375
-
Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB
-
34 Kayath, C.A., et al. Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB. Microbes Infect. 12 (2010), 956–966.
-
(2010)
Microbes Infect.
, vol.12
, pp. 956-966
-
-
Kayath, C.A.1
-
35
-
-
84936929461
-
Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA
-
35 Campbell-Valois, F-X., et al. Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. MBio 6 (2015), e02567–e2614.
-
(2015)
MBio
, vol.6
, pp. e02567-e2614
-
-
Campbell-Valois, F.-X.1
-
36
-
-
84873035876
-
Active escape of Orientia tsutsugamushii from cellular autophagy
-
36 Ko, Y., et al. Active escape of Orientia tsutsugamushii from cellular autophagy. Infect. Immun. 81 (2013), 552–559.
-
(2013)
Infect. Immun.
, vol.81
, pp. 552-559
-
-
Ko, Y.1
-
37
-
-
84873494256
-
Orientia tsutsugamushii subverts dendritic cell functions by escaping from autophagy and impairing their migration
-
37 Choi, J-H., et al. Orientia tsutsugamushii subverts dendritic cell functions by escaping from autophagy and impairing their migration. PLoS Negl. Trop. Dis., 7, 2013, e1981.
-
(2013)
PLoS Negl. Trop. Dis.
, vol.7
, pp. e1981
-
-
Choi, J.-H.1
-
38
-
-
80052311756
-
Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence
-
38 D'Cruze, T., et al. Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence. Infect. Immun. 79 (2011), 3659–3664.
-
(2011)
Infect. Immun.
, vol.79
, pp. 3659-3664
-
-
D'Cruze, T.1
-
39
-
-
80655134731
-
Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis
-
39 Abdulrahman, B.A., et al. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy 7 (2011), 1359–1370.
-
(2011)
Autophagy
, vol.7
, pp. 1359-1370
-
-
Abdulrahman, B.A.1
-
40
-
-
84943801536
-
Burkholderia pseudomallei survival in lung epithelial cells benefits from miRNA-mediated suppression of ATG10
-
40 Li, Q., et al. Burkholderia pseudomallei survival in lung epithelial cells benefits from miRNA-mediated suppression of ATG10. Autophagy 11 (2015), 1293–1307.
-
(2015)
Autophagy
, vol.11
, pp. 1293-1307
-
-
Li, Q.1
-
41
-
-
84919807837
-
The role of autophagy during group B Streptococcus infection of blood–brain barrier endothelium
-
41 Cutting, A.S., et al. The role of autophagy during group B Streptococcus infection of blood–brain barrier endothelium. J. Biol. Chem. 289 (2014), 35711–35723.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 35711-35723
-
-
Cutting, A.S.1
-
42
-
-
84924629739
-
Superoxide dismutase of Streptococcus suis serotype 2 plays a role in anti-autophagic response by scavenging reactive oxygen species in infected macrophages
-
42 Fang, L., et al. Superoxide dismutase of Streptococcus suis serotype 2 plays a role in anti-autophagic response by scavenging reactive oxygen species in infected macrophages. Vet. Microbiol. 176 (2015), 328–336.
-
(2015)
Vet. Microbiol.
, vol.176
, pp. 328-336
-
-
Fang, L.1
-
43
-
-
84947442809
-
Autophagy proteins promote repair of endosomal membranes damaged by the Salmonella type three secretion system 1
-
43 Kreibich, S., et al. Autophagy proteins promote repair of endosomal membranes damaged by the Salmonella type three secretion system 1. Cell Host Microbe 18 (2015), 527–537.
-
(2015)
Cell Host Microbe
, vol.18
, pp. 527-537
-
-
Kreibich, S.1
-
44
-
-
84862301902
-
Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program
-
44 Tattoli, I., et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11 (2012), 563–575.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 563-575
-
-
Tattoli, I.1
-
45
-
-
84903487919
-
Activation of focal adhesion kinase by Salmonella suppresses autophagy via an Akt/mTOR signaling pathway and promotes bacterial survival in macrophages
-
45 Owen, K.A., et al. Activation of focal adhesion kinase by Salmonella suppresses autophagy via an Akt/mTOR signaling pathway and promotes bacterial survival in macrophages. PLoS Pathog., 10, 2014, e1004159.
-
(2014)
PLoS Pathog.
, vol.10
, pp. e1004159
-
-
Owen, K.A.1
-
46
-
-
33744958258
-
Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole
-
46 Birmingham, C.L., et al. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281 (2006), 11374–11383.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 11374-11383
-
-
Birmingham, C.L.1
-
47
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
47 Zheng, Y.T., et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183 (2009), 5909–5916.
-
(2009)
J. Immunol.
, vol.183
, pp. 5909-5916
-
-
Zheng, Y.T.1
-
48
-
-
84903711945
-
Inhibition of macrophage autophagy induced by Salmonella enterica serovar typhi plasmid
-
48 Wu, S., et al. Inhibition of macrophage autophagy induced by Salmonella enterica serovar typhi plasmid. Front. Biosci. 19 (2014), 490–503.
-
(2014)
Front. Biosci.
, vol.19
, pp. 490-503
-
-
Wu, S.1
-
49
-
-
80855136614
-
Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles
-
49 Yasir, M., et al. Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Infect. Immun. 79 (2011), 4019–4028.
-
(2011)
Infect. Immun.
, vol.79
, pp. 4019-4028
-
-
Yasir, M.1
-
50
-
-
79961112822
-
Autophagy-independent function of MAP-LC3 during intracellular propagation of Chlamydia trachomatis
-
50 Al-Younes, H.M., et al. Autophagy-independent function of MAP-LC3 during intracellular propagation of Chlamydia trachomatis. Autophagy 7 (2011), 814–828.
-
(2011)
Autophagy
, vol.7
, pp. 814-828
-
-
Al-Younes, H.M.1
-
51
-
-
84892786901
-
Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy
-
51 Nguyen, H.T.T., et al. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 146 (2014), 508–519.
-
(2014)
Gastroenterology
, vol.146
, pp. 508-519
-
-
Nguyen, H.T.T.1
-
52
-
-
84871346779
-
Subversion of autophagy in adherent invasive Escherichia coli-infected neutrophils induces inflammation and cell death
-
52 Chargui, A., et al. Subversion of autophagy in adherent invasive Escherichia coli-infected neutrophils induces inflammation and cell death. PLoS One, 7, 2012, e51727.
-
(2012)
PLoS One
, vol.7
, pp. e51727
-
-
Chargui, A.1
-
53
-
-
84869886358
-
The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation
-
53 Choy, A., et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338 (2012), 1072–1076.
-
(2012)
Science
, vol.338
, pp. 1072-1076
-
-
Choy, A.1
-
54
-
-
84959018593
-
Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy
-
54 Rolando, M., et al. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 1901–1906.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. 1901-1906
-
-
Rolando, M.1
-
55
-
-
80052083381
-
Serratia marcescens is able to survive and proliferate in autophagic-like vacuoles inside non-phagocytic cells
-
55 Fedrigo, G.V., et al. Serratia marcescens is able to survive and proliferate in autophagic-like vacuoles inside non-phagocytic cells. PLoS One, 6, 2011, e24054.
-
(2011)
PLoS One
, vol.6
, pp. e24054
-
-
Fedrigo, G.V.1
-
56
-
-
66549126665
-
Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification
-
56 Pujol, C., et al. Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect. Immun. 77 (2009), 2251–2261.
-
(2009)
Infect. Immun.
, vol.77
, pp. 2251-2261
-
-
Pujol, C.1
-
57
-
-
77953019211
-
Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages
-
57 Moreau, K., et al. Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cell. Microbiol. 12 (2010), 1108–1123.
-
(2010)
Cell. Microbiol.
, vol.12
, pp. 1108-1123
-
-
Moreau, K.1
-
58
-
-
8344247016
-
Autophagy defends cells against invading group A Streptococcus
-
58 Nakagawa, I., et al. Autophagy defends cells against invading group A Streptococcus. Science 306 (2004), 1037–1040.
-
(2004)
Science
, vol.306
, pp. 1037-1040
-
-
Nakagawa, I.1
-
59
-
-
84965057555
-
Cytosolic replication of group A Streptococcus in human macrophages
-
e00020-16
-
59 O'Neill, A.M., et al. Cytosolic replication of group A Streptococcus in human macrophages. MBio, 7, 2016 e00020-16.
-
(2016)
MBio
, vol.7
-
-
O'Neill, A.M.1
-
60
-
-
84879513881
-
Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from xenophagic killing
-
60 O'Seaghdha, M., Wessels, M.R., Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from xenophagic killing. PLoS Pathog., 9, 2013, e1003394.
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003394
-
-
O'Seaghdha, M.1
Wessels, M.R.2
-
61
-
-
84946616110
-
Insufficient acidification of autophagosomes facilitates group A Streptococcus survival and growth in endothelial cells
-
61 Lu, S-L., et al. Insufficient acidification of autophagosomes facilitates group A Streptococcus survival and growth in endothelial cells. MBio 6 (2015), e01435–e1515.
-
(2015)
MBio
, vol.6
, pp. e01435-e1515
-
-
Lu, S.-L.1
-
62
-
-
84890293210
-
The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication
-
62 Barnett, T.C., et al. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14 (2013), 675–682.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 675-682
-
-
Barnett, T.C.1
-
63
-
-
38849200959
-
Subversion of cellular autophagy by Anaplasma phagocytophilum
-
63 Niu, H., et al. Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell. Microbiol. 10 (2008), 593–605.
-
(2008)
Cell. Microbiol.
, vol.10
, pp. 593-605
-
-
Niu, H.1
-
64
-
-
84871385890
-
Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection
-
64 Niu, H., et al. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 20800–20807.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 20800-20807
-
-
Niu, H.1
-
65
-
-
76749117962
-
Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection
-
65 Vázquez, C.L., Colombo, M.I., Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection. Cell Death Differ. 17 (2010), 421–438.
-
(2010)
Cell Death Differ.
, vol.17
, pp. 421-438
-
-
Vázquez, C.L.1
Colombo, M.I.2
-
66
-
-
84900440490
-
Coxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes
-
66 Winchell, C.G., et al. Coxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes. Infect. Immun. 82 (2014), 2229–2238.
-
(2014)
Infect. Immun.
, vol.82
, pp. 2229-2238
-
-
Winchell, C.G.1
-
67
-
-
0036784707
-
Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics
-
67 Berón, W., et al. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect. Immun. 70 (2002), 5816–5821.
-
(2002)
Infect. Immun.
, vol.70
, pp. 5816-5821
-
-
Berón, W.1
-
68
-
-
84905395102
-
A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis
-
68 Newton, H.J., et al. A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis. PLoS Pathog., 10, 2014, e1004286.
-
(2014)
PLoS Pathog.
, vol.10
, pp. e1004286
-
-
Newton, H.J.1
-
69
-
-
84973344436
-
Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development
-
69 Martinez, E., et al. Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E3260–E3269.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. E3260-E3269
-
-
Martinez, E.1
-
70
-
-
84924351873
-
Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk
-
70 El-Awady, A.R., et al. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk. PLoS Pathog., 10, 2015, e1004647.
-
(2015)
PLoS Pathog.
, vol.10
, pp. e1004647
-
-
El-Awady, A.R.1
-
71
-
-
21344472825
-
Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles
-
71 Gutierrez, M.G., et al. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell. Microbiol. 7 (2005), 981–993.
-
(2005)
Cell. Microbiol.
, vol.7
, pp. 981-993
-
-
Gutierrez, M.G.1
-
72
-
-
0034876410
-
Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells
-
72 Dorn, B.R., et al. Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infect. Immun. 69 (2001), 5698–5708.
-
(2001)
Infect. Immun.
, vol.69
, pp. 5698-5708
-
-
Dorn, B.R.1
-
73
-
-
33745855122
-
Autophagy: a highway for Porphyromonas gingivalis in endothelial cells
-
73 Bélanger, M., et al. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2 (2006), 165–170.
-
(2006)
Autophagy
, vol.2
, pp. 165-170
-
-
Bélanger, M.1
-
74
-
-
34047271297
-
Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death
-
74 Schnaith, A., et al. Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J. Biol. Chem. 282 (2007), 2695–2706.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 2695-2706
-
-
Schnaith, A.1
-
75
-
-
84947029362
-
IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus
-
75 Liu, P-F., et al. IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus. J. Invest. Dermatol. 135 (2015), 2714–2722.
-
(2015)
J. Invest. Dermatol.
, vol.135
, pp. 2714-2722
-
-
Liu, P.-F.1
-
76
-
-
84907990643
-
Replication of Brucella abortus and Brucella melitensis in fibroblasts does not require Atg5-dependent macroautophagy
-
76 Hamer, I., et al. Replication of Brucella abortus and Brucella melitensis in fibroblasts does not require Atg5-dependent macroautophagy. BMC Microbiol., 14, 2014, 223.
-
(2014)
BMC Microbiol.
, vol.14
, pp. 223
-
-
Hamer, I.1
-
77
-
-
84856010816
-
Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle
-
77 Starr, T., et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11 (2012), 33–45.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 33-45
-
-
Starr, T.1
-
78
-
-
84864632809
-
Autophagy favors Brucella melitensis survival in infected macrophages
-
78 Guo, F., et al. Autophagy favors Brucella melitensis survival in infected macrophages. Cell. Mol. Biol. Lett. 17 (2012), 249–257.
-
(2012)
Cell. Mol. Biol. Lett.
, vol.17
, pp. 249-257
-
-
Guo, F.1
-
79
-
-
84937012155
-
ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1β-dependent manner
-
79 Symington, J.W., et al. ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1β-dependent manner. Mucosal Immunol. 8 (2015), 1388–1399.
-
(2015)
Mucosal Immunol.
, vol.8
, pp. 1388-1399
-
-
Symington, J.W.1
-
80
-
-
77956269504
-
Helicobacter pylori impairs murine dendritic cell responses to infection
-
80 Wang, Y-H., et al. Helicobacter pylori impairs murine dendritic cell responses to infection. PLoS One, 5, 2010, e10844.
-
(2010)
PLoS One
, vol.5
, pp. e10844
-
-
Wang, Y.-H.1
-
81
-
-
60549097046
-
The autophagic induction in Helicobacter pylori-infected macrophage
-
81 Wang, Y-H., et al. The autophagic induction in Helicobacter pylori-infected macrophage. Exp. Biol. Med. 234 (2009), 171–180.
-
(2009)
Exp. Biol. Med.
, vol.234
, pp. 171-180
-
-
Wang, Y.-H.1
-
82
-
-
84866053839
-
Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori
-
82 Tang, B., et al. Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori. Autophagy 8 (2012), 1045–1057.
-
(2012)
Autophagy
, vol.8
, pp. 1045-1057
-
-
Tang, B.1
-
83
-
-
84925652601
-
Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS hypergeneration in A549 cells
-
83 Li, P., et al. Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS hypergeneration in A549 cells. PLoS One 10 (2015), 1–15.
-
(2015)
PLoS One
, vol.10
, pp. 1-15
-
-
Li, P.1
-
84
-
-
84957655186
-
Pseudomonas aeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome
-
84 Deng, Q., et al. Pseudomonas aeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome. Infect. Immun. 84 (2016), 56–66.
-
(2016)
Infect. Immun.
, vol.84
, pp. 56-66
-
-
Deng, Q.1
-
85
-
-
84864149296
-
Helminth infection impairs autophagy-mediated killing of bacterial enteropathogens by macrophages
-
85 Su, C., et al. Helminth infection impairs autophagy-mediated killing of bacterial enteropathogens by macrophages. J. Immunol. 189 (2012), 1459–1466.
-
(2012)
J. Immunol.
, vol.189
, pp. 1459-1466
-
-
Su, C.1
-
86
-
-
84941953933
-
Autophagy and autophagy-related proteins in the immune system
-
86 Shibutani, S.T., et al. Autophagy and autophagy-related proteins in the immune system. Nat. Immunol. 16 (2015), 1014–1024.
-
(2015)
Nat. Immunol.
, vol.16
, pp. 1014-1024
-
-
Shibutani, S.T.1
-
87
-
-
78751672975
-
Autophagy in immunity and inflammation
-
87 Levine, B., et al. Autophagy in immunity and inflammation. Nature 469 (2011), 323–335.
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
-
88
-
-
84886797274
-
Autophagy in infection, inflammation and immunity
-
88 Deretic, V., et al. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13 (2013), 722–737.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 722-737
-
-
Deretic, V.1
-
89
-
-
84882712453
-
Autophagy and cellular immune responses
-
89 Ma, Y., et al. Autophagy and cellular immune responses. Immunity 39 (2013), 211–227.
-
(2013)
Immunity
, vol.39
, pp. 211-227
-
-
Ma, Y.1
-
90
-
-
55249109400
-
Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
-
90 Zhao, Z., et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4 (2008), 458–469.
-
(2008)
Cell Host Microbe
, vol.4
, pp. 458-469
-
-
Zhao, Z.1
-
91
-
-
84879107779
-
Intestinal epithelial autophagy is essential for host defense against invasive bacteria
-
91 Benjamin, J.L., et al. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13 (2013), 723–734.
-
(2013)
Cell Host Microbe
, vol.13
, pp. 723-734
-
-
Benjamin, J.L.1
-
92
-
-
84888223618
-
Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection
-
92 Conway, K.L., et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145 (2013), 1347–1357.
-
(2013)
Gastroenterology
, vol.145
, pp. 1347-1357
-
-
Conway, K.L.1
-
93
-
-
56249135538
-
A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
-
93 Cadwell, K., et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456 (2008), 259–263.
-
(2008)
Nature
, vol.456
, pp. 259-263
-
-
Cadwell, K.1
-
94
-
-
84860440174
-
Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection
-
94 Inoue, J., et al. Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection. Arch. Biochem. Biophys. 521 (2012), 95–101.
-
(2012)
Arch. Biochem. Biophys.
, vol.521
, pp. 95-101
-
-
Inoue, J.1
-
95
-
-
84926656919
-
Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin
-
95 Maurer, K., et al. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host Microbe 17 (2015), 429–440.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 429-440
-
-
Maurer, K.1
-
96
-
-
84868148976
-
Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection
-
96 Kuang, E., et al. Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection. PLoS Genet., 8, 2012, e1003007.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1003007
-
-
Kuang, E.1
-
97
-
-
84863598031
-
Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo
-
97 Wang, C., et al. Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 11008–11013.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 11008-11013
-
-
Wang, C.1
-
98
-
-
84882369710
-
A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection
-
98 Marchiando, A.M., et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 14 (2013), 216–224.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 216-224
-
-
Marchiando, A.M.1
-
99
-
-
84920407208
-
Development of autophagy inducers in clinical medicine
-
99 Levine, B., et al. Development of autophagy inducers in clinical medicine. J. Clin. Invest. 125 (2015), 14–24.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 14-24
-
-
Levine, B.1
-
100
-
-
84859795511
-
Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay
-
100 Romano, P.S., et al. Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay. IUBMB Life 64 (2012), 387–396.
-
(2012)
IUBMB Life
, vol.64
, pp. 387-396
-
-
Romano, P.S.1
-
101
-
-
84880919517
-
Autophagy and viruses: adversaries or allies?
-
101 Dong, X., Levine, B., Autophagy and viruses: adversaries or allies?. J. Innate Immun. 5 (2013), 480–493.
-
(2013)
J. Innate Immun.
, vol.5
, pp. 480-493
-
-
Dong, X.1
Levine, B.2
-
102
-
-
84866122688
-
Autophagy modulation as a potential therapeutic target for diverse diseases
-
102 Rubinsztein, D.C., et al. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11 (2012), 709–730.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 709-730
-
-
Rubinsztein, D.C.1
-
103
-
-
84863259013
-
Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages
-
103 Yuan, K., et al. Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages. J. Cell Sci. 125 (2012), 507–515.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 507-515
-
-
Yuan, K.1
-
104
-
-
50249111985
-
Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines
-
104 Cullinane, M., et al. Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 4 (2008), 744–753.
-
(2008)
Autophagy
, vol.4
, pp. 744-753
-
-
Cullinane, M.1
-
105
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
105 Gutierrez, M.G., et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119 (2004), 753–766.
-
(2004)
Cell
, vol.119
, pp. 753-766
-
-
Gutierrez, M.G.1
-
106
-
-
84975029687
-
Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages
-
106 Andersson, A-M., et al. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci. Rep., 6, 2016, 28171.
-
(2016)
Sci. Rep.
, vol.6
, pp. 28171
-
-
Andersson, A.-M.1
-
107
-
-
84883174355
-
Autophagy enhances bacterial clearance during P. aeruginosa lung infection
-
107 Junkins, R.D., et al. Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS One, 8, 2013, e72263.
-
(2013)
PLoS One
, vol.8
, pp. e72263
-
-
Junkins, R.D.1
-
108
-
-
84902246218
-
miR-155 suppresses bacterial clearance in Pseudomonas aeruginosa-induced keratitis by targeting Rheb
-
108 Yang, K., et al. miR-155 suppresses bacterial clearance in Pseudomonas aeruginosa-induced keratitis by targeting Rheb. J. Infect. Dis. 210 (2014), 89–98.
-
(2014)
J. Infect. Dis.
, vol.210
, pp. 89-98
-
-
Yang, K.1
-
109
-
-
71249103401
-
Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent
-
109 Chiu, H-C., et al. Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent. Antimicrob. Agents Chemother. 53 (2009), 5236–5244.
-
(2009)
Antimicrob. Agents Chemother.
, vol.53
, pp. 5236-5244
-
-
Chiu, H.-C.1
-
110
-
-
84912121162
-
Sensitization of intracellular Salmonella enterica serovar Typhimurium to aminoglycosides in vitro and in vivo by a host-targeted antimicrobial agent
-
110 Lo, J-H., et al. Sensitization of intracellular Salmonella enterica serovar Typhimurium to aminoglycosides in vitro and in vivo by a host-targeted antimicrobial agent. Antimicrob. Agents Chemother. 58 (2014), 7375–7382.
-
(2014)
Antimicrob. Agents Chemother.
, vol.58
, pp. 7375-7382
-
-
Lo, J.-H.1
-
111
-
-
84895732971
-
Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth
-
111 Stanley, S.A., et al. Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog., 10, 2014, e1003946.
-
(2014)
PLoS Pathog.
, vol.10
, pp. e1003946
-
-
Stanley, S.A.1
-
112
-
-
84894226758
-
Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation
-
112 Parihar, S.P., et al. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J. Infect. Dis. 209 (2014), 754–763.
-
(2014)
J. Infect. Dis.
, vol.209
, pp. 754-763
-
-
Parihar, S.P.1
-
113
-
-
84873709314
-
Identification of a candidate therapeutic autophagy-inducing peptide
-
113 Shoji-Kawata, S., et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494 (2013), 201–206.
-
(2013)
Nature
, vol.494
, pp. 201-206
-
-
Shoji-Kawata, S.1
-
114
-
-
84888380983
-
The autophagosome: origins unknown, biogenesis complex
-
114 Lamb, C.A., et al. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14 (2013), 759–774.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 759-774
-
-
Lamb, C.A.1
-
115
-
-
84859386792
-
Autophagy and the immune system
-
115 Kuballa, P., et al. Autophagy and the immune system. Annu. Rev. Immunol. 30 (2012), 611–646.
-
(2012)
Annu. Rev. Immunol.
, vol.30
, pp. 611-646
-
-
Kuballa, P.1
-
116
-
-
0032563798
-
A protein conjugation system essential for autophagy
-
116 Mizushima, N., et al. A protein conjugation system essential for autophagy. Nature 395 (1998), 395–398.
-
(1998)
Nature
, vol.395
, pp. 395-398
-
-
Mizushima, N.1
-
117
-
-
84877324063
-
Dissecting the role of the Atg12–Atg5–Atg16 complex during autophagosome formation
-
117 Walczak, M., Martens, S., Dissecting the role of the Atg12–Atg5–Atg16 complex during autophagosome formation. Autophagy 9 (2013), 424–425.
-
(2013)
Autophagy
, vol.9
, pp. 424-425
-
-
Walczak, M.1
Martens, S.2
-
118
-
-
73849121209
-
Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
-
118 Travassos, L.H., et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11 (2010), 55–62.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 55-62
-
-
Travassos, L.H.1
-
119
-
-
41949101594
-
Toll-like receptors control autophagy
-
119 Delgado, M.A., et al. Toll-like receptors control autophagy. EMBO J. 27 (2008), 1110–1121.
-
(2008)
EMBO J.
, vol.27
, pp. 1110-1121
-
-
Delgado, M.A.1
-
120
-
-
84892678766
-
Bacteria–autophagy interplay: a battle for survival
-
120 Huang, J., Brumell, J.H., Bacteria–autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12 (2014), 101–114.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 101-114
-
-
Huang, J.1
Brumell, J.H.2
-
121
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
121 Stolz, A., et al. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16 (2014), 495–501.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 495-501
-
-
Stolz, A.1
-
122
-
-
84940753095
-
TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation
-
122 Matsumoto, G., et al. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 24 (2015), 4429–4442.
-
(2015)
Hum. Mol. Genet.
, vol.24
, pp. 4429-4442
-
-
Matsumoto, G.1
-
123
-
-
84865357562
-
TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation
-
123 Pilli, M., et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37 (2012), 223–234.
-
(2012)
Immunity
, vol.37
, pp. 223-234
-
-
Pilli, M.1
-
124
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
124 Wild, P., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333 (2011), 228–233.
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
-
125
-
-
84924423819
-
Selective autophagy: xenophagy
-
125 Bauckman, K.A., et al. Selective autophagy: xenophagy. Methods 75 (2015), 120–127.
-
(2015)
Methods
, vol.75
, pp. 120-127
-
-
Bauckman, K.A.1
-
126
-
-
75749122303
-
Methods in mammalian autophagy research
-
126 Mizushima, N., et al. Methods in mammalian autophagy research. Cell 140 (2010), 313–326.
-
(2010)
Cell
, vol.140
, pp. 313-326
-
-
Mizushima, N.1
-
127
-
-
84884340814
-
Autophagy regulates phagocytosis by modulating the expression of scavenger receptors
-
127 Bonilla, D.L., et al. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39 (2013), 537–547.
-
(2013)
Immunity
, vol.39
, pp. 537-547
-
-
Bonilla, D.L.1
-
128
-
-
84934287492
-
Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins
-
128 Martinez, J., et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17 (2015), 893–906.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 893-906
-
-
Martinez, J.1
-
129
-
-
84920463081
-
Immunologic manifestations of autophagy
-
129 Deretic, V., et al. Immunologic manifestations of autophagy. J. Clin. Invest. 125 (2015), 75–84.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 75-84
-
-
Deretic, V.1
-
130
-
-
84973513790
-
The roles of type I interferon in bacterial infection
-
130 Boxx, G.M., Cheng, G., The roles of type I interferon in bacterial infection. Cell Host Microbe 19 (2016), 760–769.
-
(2016)
Cell Host Microbe
, vol.19
, pp. 760-769
-
-
Boxx, G.M.1
Cheng, G.2
-
131
-
-
81455139884
-
Role of the inflammasome, IL-1β, and IL-18 in bacterial infections
-
131 Sahoo, M., et al. Role of the inflammasome, IL-1β, and IL-18 in bacterial infections. Sci. World J. 11 (2011), 2037–2050.
-
(2011)
Sci. World J.
, vol.11
, pp. 2037-2050
-
-
Sahoo, M.1
-
132
-
-
84857195479
-
Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction
-
132 Shi, C-S., et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13 (2012), 255–263.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 255-263
-
-
Shi, C.-S.1
-
133
-
-
79953176280
-
Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation
-
133 Harris, J., et al. Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation. J. Biol. Chem. 286 (2011), 9587–9597.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 9587-9597
-
-
Harris, J.1
-
134
-
-
82455210868
-
Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β
-
134 Dupont, N., et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30 (2011), 4701–4711.
-
(2011)
EMBO J.
, vol.30
, pp. 4701-4711
-
-
Dupont, N.1
-
135
-
-
84955292894
-
Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion
-
135 Zhang, M., et al. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. Elife 4 (2015), 1–23.
-
(2015)
Elife
, vol.4
, pp. 1-23
-
-
Zhang, M.1
-
136
-
-
84922541234
-
Autosis and autophagic cell death: the dark side of autophagy
-
136 Liu, Y., Levine, B., Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 22 (2015), 367–376.
-
(2015)
Cell Death Differ.
, vol.22
, pp. 367-376
-
-
Liu, Y.1
Levine, B.2
-
137
-
-
84900792294
-
Die another way – non-apoptotic mechanisms of cell death
-
137 Tait, S.W.G., et al. Die another way – non-apoptotic mechanisms of cell death. J. Cell Sci. 127 (2014), 2135–2144.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 2135-2144
-
-
Tait, S.W.G.1
-
138
-
-
33749162486
-
Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis
-
138 Yousefi, S., et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 8 (2006), 1124–1132.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 1124-1132
-
-
Yousefi, S.1
-
139
-
-
84883655855
-
Hidden behind autophagy: the unconventional roles of ATG proteins
-
139 Bestebroer, J., et al. Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic 14 (2013), 1029–1041.
-
(2013)
Traffic
, vol.14
, pp. 1029-1041
-
-
Bestebroer, J.1
-
140
-
-
79959564980
-
+ T cells during Mycobacterium tuberculosis infection
-
+ T cells during Mycobacterium tuberculosis infection. J. Immunol. 186 (2011), 7110–7119.
-
(2011)
J. Immunol.
, vol.186
, pp. 7110-7119
-
-
Blomgran, R.1
Ernst, J.D.2
-
141
-
-
84866403046
-
Efferocytosis is an innate antibacterial mechanism
-
141 Martin, C.J., et al. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12 (2012), 289–300.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 289-300
-
-
Martin, C.J.1
|