메뉴 건너뛰기




Volumn 15, Issue 1, 2017, Pages 21-36

Protein export through the bacterial Sec pathway

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL PROTEIN; PROTEIN SECA; PROTEIN SECB; PROTEIN SECYEG; SIGNAL PEPTIDE; SIGNAL RECOGNITION PARTICLE; TRIGGER FACTOR; UNCLASSIFIED DRUG; ADENOSINE TRIPHOSPHATASE; ESCHERICHIA COLI PROTEIN; SECA PROTEIN, BACTERIA; SECYEG PROTEIN, E COLI; TRANSLOCON;

EID: 84997207343     PISSN: 17401526     EISSN: 17401534     Source Type: Journal    
DOI: 10.1038/nrmicro.2016.161     Document Type: Review
Times cited : (315)

References (162)
  • 1
    • 84928253866 scopus 로고    scopus 로고
    • Proteome-wide subcellular topologies of E. Coli polypeptides database (STEPdb)
    • Orfanoudaki, G. & Economou, A. Proteome-wide subcellular topologies of E. Coli polypeptides database (STEPdb). Mol. Cell. Proteomics 13, 3674-3687 (2014).
    • (2014) Mol. Cell. Proteomics , vol.13 , pp. 3674-3687
    • Orfanoudaki, G.1    Economou, A.2
  • 2
    • 84870859321 scopus 로고    scopus 로고
    • Breaking on through to the other side: Protein export through the bacterial Sec system
    • Chatzi, K. E., Sardis, M. F., Karamanou, S. & Economou, A. Breaking on through to the other side: protein export through the bacterial Sec system. Biochem. J. 449, 25-37 (2013).
    • (2013) Biochem. J. , vol.449 , pp. 25-37
    • Chatzi, K.E.1    Sardis, M.F.2    Karamanou, S.3    Economou, A.4
  • 3
    • 84991211421 scopus 로고    scopus 로고
    • Protein folding in the cell envelope of Escherichia coli
    • De Geyter, J. et al. Protein folding in the cell envelope of Escherichia coli. Nat. Microbiol. 1, 1 6107 (2016).
    • (2016) Nat. Microbiol. , vol.1 , Issue.1 , pp. 6107
    • De Geyter, J.1
  • 4
    • 0347192985 scopus 로고    scopus 로고
    • X-Ray structure of a protein-conducting channel
    • Van den Berg, B. et al. X-Ray structure of a protein-conducting channel. Nature 427, 36-44 (2004).
    • (2004) Nature , vol.427 , pp. 36-44
    • Van Den Berg, B.1
  • 5
    • 85018453735 scopus 로고    scopus 로고
    • The canonical and accessory Sec system of Gram-positive bacteria
    • Prabudiansyah, I. & Driessen, A. J. The canonical and accessory Sec system of Gram-positive bacteria. Curr. Top. Microbiol. Immunol. http://dx.doi. org/10.1007/82-2016-9 (2016).
    • (2016) Curr. Top. Microbiol. Immunol
    • Prabudiansyah, I.1    Driessen, A.J.2
  • 6
    • 84897558347 scopus 로고    scopus 로고
    • Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC
    • Schulze, R. J. et al. Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Proc. Natl Acad. Sci. USA 111, 4844-4849 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 4844-4849
    • Schulze, R.J.1
  • 7
    • 0030959069 scopus 로고    scopus 로고
    • Distinct catalytic roles of the SecYE SecG and SecDFyajC subunits of preprotein translocase holoenzyme
    • Duong, F. & Wickner, W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J. 16, 2756-2768 (1997).
    • (1997) EMBO J. , vol.16 , pp. 2756-2768
    • Duong, F.1    Wickner, W.2
  • 8
    • 84878746549 scopus 로고    scopus 로고
    • YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein
    • Sachelaru, I. et al. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J. Biol. Chem. 288, 16295-16307 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 16295-16307
    • Sachelaru, I.1
  • 9
    • 85009952069 scopus 로고    scopus 로고
    • Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG-SecDF-YajC-YidC
    • Komar, J. et al. Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Biochem. J. 473, 3341-3354 (2016).
    • (2016) Biochem. J. , vol.473 , pp. 3341-3354
    • Komar, J.1
  • 10
    • 0025297583 scopus 로고
    • The signal peptide
    • von Heijne, G. The signal peptide. J. Membr. Biol. 115, 195-201 (1990).
    • (1990) J. Membr. Biol. , vol.115 , pp. 195-201
    • Von Heijne, G.1
  • 11
    • 84878941023 scopus 로고    scopus 로고
    • Signal recognition particle: An essential protein-targeting machine
    • Akopian, D., Shen, K., Zhang, X. & Shan, S. O. Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. 82, 693-721 (2013).
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 693-721
    • Akopian, D.1    Shen, K.2    Zhang, X.3    Shan, S.O.4
  • 12
  • 13
    • 0025036708 scopus 로고
    • The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. Coli plasma membrane
    • Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P. & Wickner, W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. Coli plasma membrane. Cell 63, 269-279 (1990).
    • (1990) Cell , vol.63 , pp. 269-279
    • Hartl, F.U.1    Lecker, S.2    Schiebel, E.3    Hendrick, J.P.4    Wickner, W.5
  • 14
    • 79251576465 scopus 로고    scopus 로고
    • SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria
    • Huber, D. et al. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol. Cell 41, 343-353 (2011).
    • (2011) Mol. Cell , vol.41 , pp. 343-353
    • Huber, D.1
  • 15
    • 84896803769 scopus 로고    scopus 로고
    • Cryo-electron microscopic structure of SecA protein bound to the 70S ribosome
    • Singh, R. et al. Cryo-electron microscopic structure of SecA protein bound to the 70S ribosome. J. Biol. Chem. 289, 7190-7199 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 7190-7199
    • Singh, R.1
  • 16
    • 0026073817 scopus 로고
    • H+ and ATP function at different steps of the catalytic cycle of preprotein translocase
    • H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927-939 (1991).
    • (1991) Cell , vol.64 , pp. 927-939
    • Schiebel, E.1    Driessen, A.J.2    Hartl, F.U.3    Wickner, W.4
  • 17
    • 0025019705 scopus 로고
    • The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins
    • Lill, R., Dowhan, W. & Wickner, W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60, 271-280 (1990).
    • (1990) Cell , vol.60 , pp. 271-280
    • Lill, R.1    Dowhan, W.2    Wickner, W.3
  • 18
    • 84926419545 scopus 로고    scopus 로고
    • Charge-driven dynamics of nascent-chain movement through the SecYEG translocon
    • Ismail, N., Hedman, R., Linden, M. & von Heijne, G. Charge-driven dynamics of nascent-chain movement through the SecYEG translocon. Nat. Struct. Mol. Biol. 22, 145-149 (2015).
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 145-149
    • Ismail, N.1    Hedman, R.2    Linden, M.3    Von Heijne, G.4
  • 19
    • 0025087853 scopus 로고
    • The purified E. Coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation
    • Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. & Wickner, W. The purified E. Coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649-657 (1990).
    • (1990) Cell , vol.62 , pp. 649-657
    • Brundage, L.1    Hendrick, J.P.2    Schiebel, E.3    Driessen, A.J.4    Wickner, W.5
  • 21
    • 84455204799 scopus 로고    scopus 로고
    • Signal peptidase I: Cleaving the way to mature proteins
    • Auclair, S. M., Bhanu, M. K. & Kendall, D. A. Signal peptidase I: cleaving the way to mature proteins. Protein Sci. 21, 13-25 (2012).
    • (2012) Protein Sci. , vol.21 , pp. 13-25
    • Auclair, S.M.1    Bhanu, M.K.2    Kendall, D.A.3
  • 22
    • 83255164895 scopus 로고    scopus 로고
    • Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo
    • Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295-1308 (2011).
    • (2011) Cell , vol.147 , pp. 1295-1308
    • Oh, E.1
  • 23
    • 70450171353 scopus 로고    scopus 로고
    • Signal peptides are allosteric activators of the protein translocase
    • Gouridis, G., Karamanou, S., Gelis, I., Kalodimos, C. G. & Economou, A. Signal peptides are allosteric activators of the protein translocase. Nature 462, 363-367 (2009).
    • (2009) Nature , vol.462 , pp. 363-367
    • Gouridis, G.1    Karamanou, S.2    Gelis, I.3    Kalodimos, C.G.4    Economou, A.5
  • 24
    • 84900336916 scopus 로고    scopus 로고
    • Structural basis for protein antiaggregation activity of the trigger factor chaperone
    • Saio, T., Guan, X., Rossi, P., Economou, A. & Kalodimos, C. G. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344, 1250494 (2014).
    • (2014) Science , vol.344 , pp. 1250494
    • Saio, T.1    Guan, X.2    Rossi, P.3    Economou, A.4    Kalodimos, C.G.5
  • 25
    • 84865704339 scopus 로고    scopus 로고
    • Information encoded in non-native states drives substrate-chaperone pairing
    • Mapa, K., Tiwari, S., Kumar, V., Jayaraj, G. G. & Maiti, S. Information encoded in non-native states drives substrate-chaperone pairing. Structure 20, 1562-1573 (2012).
    • (2012) Structure , vol.20 , pp. 1562-1573
    • Mapa, K.1    Tiwari, S.2    Kumar, V.3    Jayaraj, G.G.4    Maiti, S.5
  • 26
    • 84955516320 scopus 로고    scopus 로고
    • Structures of the E. Coli translating ribosome with SRP and its receptor and with the translocon
    • Jomaa, A., Boehringer, D., Leibundgut, M. & Ban, N. Structures of the E. Coli translating ribosome with SRP and its receptor and with the translocon. Nat. Commun. 7, 10471 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 10471
    • Jomaa, A.1    Boehringer, D.2    Leibundgut, M.3    Ban, N.4
  • 27
    • 84930960539 scopus 로고    scopus 로고
    • Signal-sequence induced conformational changes in the signal recognition particle
    • Hainzl, T. & Sauer-Eriksson, A. E. Signal-sequence induced conformational changes in the signal recognition particle. Nat. Commun. 6, 7163 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7163
    • Hainzl, T.1    Sauer-Eriksson, A.E.2
  • 28
    • 84870979537 scopus 로고    scopus 로고
    • Activated GTPase movement on an RNA scaffold drives co-translational protein targeting
    • Shen, K., Arslan, S., Akopian, D., Ha, T. & Shan, S. O. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492, 271-275 (2012).
    • (2012) Nature , vol.492 , pp. 271-275
    • Shen, K.1    Arslan, S.2    Akopian, D.3    Ha, T.4    Shan, S.O.5
  • 29
    • 77952127782 scopus 로고    scopus 로고
    • Sequential checkpoints govern substrate selection during cotranslational protein targeting
    • Zhang, X., Rashid, R., Wang, K. & Shan, S. O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328, 757-760 (2010).
    • (2010) Science , vol.328 , pp. 757-760
    • Zhang, X.1    Rashid, R.2    Wang, K.3    Shan, S.O.4
  • 30
    • 84902846778 scopus 로고    scopus 로고
    • Interplay between trigger factor and other protein biogenesis factors on the ribosome
    • Bornemann, T., Holtkamp, W. & Wintermeyer, W. Interplay between trigger factor and other protein biogenesis factors on the ribosome. Nat. Commun. 5, 4180 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 4180
    • Bornemann, T.1    Holtkamp, W.2    Wintermeyer, W.3
  • 31
    • 58149264965 scopus 로고    scopus 로고
    • Signal sequences activate the catalytic switch of SRP RNA
    • Bradshaw, N., Neher, S. B., Booth, D. S. & Walter, P. Signal sequences activate the catalytic switch of SRP RNA. Science 323, 127-130 (2009).
    • (2009) Science , vol.323 , pp. 127-130
    • Bradshaw, N.1    Neher, S.B.2    Booth, D.S.3    Walter, P.4
  • 32
    • 79952470913 scopus 로고    scopus 로고
    • Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level
    • Kusters, I. et al. Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level. Structure 19, 430-439 (2011).
    • (2011) Structure , vol.19 , pp. 430-439
    • Kusters, I.1
  • 33
    • 84959917885 scopus 로고    scopus 로고
    • Unlocking the bacterial SecY translocon
    • Corey, R. A. et al. Unlocking the bacterial SecY translocon. Structure 24, 518-527 (2016).
    • (2016) Structure , vol.24 , pp. 518-527
    • Corey, R.A.1
  • 34
    • 84923247437 scopus 로고    scopus 로고
    • Lateral opening of the bacterial translocon on ribosome binding and signal peptide insertion
    • Ge, Y., Draycheva, A., Bornemann, T., Rodnina, M. V. & Wintermeyer, W. Lateral opening of the bacterial translocon on ribosome binding and signal peptide insertion. Nat. Commun. 5, 5263 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5263
    • Ge, Y.1    Draycheva, A.2    Bornemann, T.3    Rodnina, M.V.4    Wintermeyer, W.5
  • 35
    • 84869090494 scopus 로고    scopus 로고
    • Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid
    • Hou, B., Lin, P. J. & Johnson, A. E. Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid. Mol. Cell 48, 398-408 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 398-408
    • Hou, B.1    Lin, P.J.2    Johnson, A.E.3
  • 36
    • 84952886698 scopus 로고    scopus 로고
    • Structure of the Sec61 channel opened by a signal sequence
    • Voorhees, R. M. & Hegde, R. S. Structure of the Sec61 channel opened by a signal sequence. Science 351, 88-91 (2016).
    • (2016) Science , vol.351 , pp. 88-91
    • Voorhees, R.M.1    Hegde, R.S.2
  • 37
    • 54049111011 scopus 로고    scopus 로고
    • Structure of a complex of the ATPase SecA and the protein-translocation channel
    • Zimmer, J., Nam, Y. & Rapoport, T. A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455, 936-943 (2008).
    • (2008) Nature , vol.455 , pp. 936-943
    • Zimmer, J.1    Nam, Y.2    Rapoport, T.A.3
  • 38
    • 84872016140 scopus 로고    scopus 로고
    • A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function
    • Trueman, S. F., Mandon, E. C. & Gilmore, R. A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function. J. Cell Biol. 199, 907-918 (2012).
    • (2012) J. Cell Biol. , vol.199 , pp. 907-918
    • Trueman, S.F.1    Mandon, E.C.2    Gilmore, R.3
  • 40
    • 84893630228 scopus 로고    scopus 로고
    • Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion
    • Gogala, M. et al. Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506, 107-110 (2014).
    • (2014) Nature , vol.506 , pp. 107-110
    • Gogala, M.1
  • 41
    • 84890202427 scopus 로고    scopus 로고
    • Quaternary dynamics of the SecA motor drive translocase catalysis
    • Gouridis, G. et al. Quaternary dynamics of the SecA motor drive translocase catalysis. Mol. Cell 52, 655-666 (2013).
    • (2013) Mol. Cell , vol.52 , pp. 655-666
    • Gouridis, G.1
  • 42
    • 36049046667 scopus 로고    scopus 로고
    • Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR
    • Gelis, I. et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131, 756-769 (2007).
    • (2007) Cell , vol.131 , pp. 756-769
    • Gelis, I.1
  • 43
    • 34250792185 scopus 로고    scopus 로고
    • Preprotein-controlled catalysis in the helicase motor of SecA
    • Karamanou, S. et al. Preprotein-controlled catalysis in the helicase motor of SecA. EMBO J. 26, 2904-2914 (2007).
    • (2007) EMBO J. , vol.26 , pp. 2904-2914
    • Karamanou, S.1
  • 44
    • 33745863903 scopus 로고    scopus 로고
    • Disorder-order folding transitions underlie catalysis in the helicase motor of SecA
    • Keramisanou, D. et al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nat. Struct. Mol. Biol. 13, 594-602 (2006).
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 594-602
    • Keramisanou, D.1
  • 45
    • 84902097375 scopus 로고    scopus 로고
    • A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase
    • Bauer, B. W., Shemesh, T., Chen, Y. & Rapoport, T. A. A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. Cell 157, 1416-1429 (2014).
    • (2014) Cell , vol.157 , pp. 1416-1429
    • Bauer, B.W.1    Shemesh, T.2    Chen, Y.3    Rapoport, T.A.4
  • 46
    • 84982182123 scopus 로고    scopus 로고
    • Crystal structure of a substrate-engaged SecY protein-translocation channel
    • Li, L. et al. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531, 395-399 (2016).
    • (2016) Nature , vol.531 , pp. 395-399
    • Li, L.1
  • 47
    • 36148937889 scopus 로고    scopus 로고
    • Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix
    • Parlitz, R. et al. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 282, 32176-32184 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 32176-32184
    • Parlitz, R.1
  • 48
    • 20044388542 scopus 로고    scopus 로고
    • FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon
    • Angelini, S., Deitermann, S. & Koch, H. G. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep. 6, 476-481 (2005).
    • (2005) EMBO Rep. , vol.6 , pp. 476-481
    • Angelini, S.1    Deitermann, S.2    Koch, H.G.3
  • 49
    • 84902330606 scopus 로고    scopus 로고
    • Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting
    • Saraogi, I., Akopian, D. & Shan, S. O. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. J. Cell Biol. 205, 693-706 (2014).
    • (2014) J. Cell Biol. , vol.205 , pp. 693-706
    • Saraogi, I.1    Akopian, D.2    Shan, S.O.3
  • 50
    • 33751321592 scopus 로고    scopus 로고
    • Real-time observation of trigger factor function on translating ribosomes
    • Kaiser, C. M. et al. Real-time observation of trigger factor function on translating ribosomes. Nature 444, 455-460 (2006).
    • (2006) Nature , vol.444 , pp. 455-460
    • Kaiser, C.M.1
  • 51
    • 84902255537 scopus 로고    scopus 로고
    • Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane
    • Castanie-Cornet, M. P., Bruel, N. & Genevaux, P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim. Biophys. Acta 1843, 1442-1456 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 1442-1456
    • Castanie-Cornet, M.P.1    Bruel, N.2    Genevaux, P.3
  • 52
    • 84920651078 scopus 로고    scopus 로고
    • Multitasking SecB chaperones in bacteria
    • Sala, A., Bordes, P. & Genevaux, P. Multitasking SecB chaperones in bacteria. Front. Microbiol. 5, 666 (2014).
    • (2014) Front. Microbiol. , vol.5 , pp. 666
    • Sala, A.1    Bordes, P.2    Genevaux, P.3
  • 53
    • 36749011854 scopus 로고    scopus 로고
    • Direct observation of chaperone-induced changes in a protein folding pathway
    • Bechtluft, P. et al. Direct observation of chaperone-induced changes in a protein folding pathway. Science 318, 1458-1461 (2007).
    • (2007) Science , vol.318 , pp. 1458-1461
    • Bechtluft, P.1
  • 54
    • 79960652801 scopus 로고    scopus 로고
    • Molecular chaperones in protein folding and proteostasis
    • Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332 (2011).
    • (2011) Nature , vol.475 , pp. 324-332
    • Hartl, F.U.1    Bracher, A.2    Hayer-Hartl, M.3
  • 55
    • 33744522928 scopus 로고    scopus 로고
    • Defining the role of the Escherichia coli chaperone SecB using comparative proteomics
    • Baars, L. et al. Defining the role of the Escherichia coli chaperone SecB using comparative proteomics. J. Biol. Chem. 281, 10024-10034 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 10024-10034
    • Baars, L.1
  • 56
    • 33847629610 scopus 로고    scopus 로고
    • Trigger factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli
    • Ullers, R. S., Ang, D., Schwager, F., Georgopoulos, C. & Genevaux, P. Trigger factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli. Proc. Natl Acad. Sci. USA 104, 3101-3106 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 3101-3106
    • Ullers, R.S.1    Ang, D.2    Schwager, F.3    Georgopoulos, C.4    Genevaux, P.5
  • 57
    • 0037044752 scopus 로고    scopus 로고
    • Trigger factor retards protein export in Escherichia coli
    • Lee, H. C. & Bernstein, H. D. Trigger factor retards protein export in Escherichia coli. J. Biol. Chem. 277, 43527-43535 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 43527-43535
    • Lee, H.C.1    Bernstein, H.D.2
  • 58
    • 1642348275 scopus 로고    scopus 로고
    • Effect of signal peptide on the stability and folding kinetics of maltose binding protein
    • Beena, K., Udgaonkar, J. B. & Varadarajan, R. Effect of signal peptide on the stability and folding kinetics of maltose binding protein. Biochemistry 43, 3608-3619 (2004).
    • (2004) Biochemistry , vol.43 , pp. 3608-3619
    • Beena, K.1    Udgaonkar, J.B.2    Varadarajan, R.3
  • 59
    • 0036439069 scopus 로고    scopus 로고
    • The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli
    • Adams, H., Scotti, P. A., De Cock, H., Luirink, J. & Tommassen, J. The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli. Eur. J. Biochem. 269, 5564-5571 (2002).
    • (2002) Eur. J. Biochem. , vol.269 , pp. 5564-5571
    • Adams, H.1    Scotti, P.A.2    De Cock, H.3    Luirink, J.4    Tommassen, J.5
  • 61
    • 84935014070 scopus 로고    scopus 로고
    • Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting
    • Ariosa, A., Lee, J. H., Wang, S., Saraogi, I. & Shan, S. O. Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting. Proc. Natl Acad. Sci. USA 112, E3169-E3178 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. E3169-E3178
    • Ariosa, A.1    Lee, J.H.2    Wang, S.3    Saraogi, I.4    Shan, S.O.5
  • 62
    • 85017331117 scopus 로고    scopus 로고
    • Real-time observation of signal recognition particle binding to actively translating ribosomes
    • Noriega, T. R., Chen, J., Walter, P. & Puglisi, J. D. Real-time observation of signal recognition particle binding to actively translating ribosomes. eLife 3, e04418 (2014).
    • (2014) ELife , vol.3 , pp. e04418
    • Noriega, T.R.1    Chen, J.2    Walter, P.3    Puglisi, J.D.4
  • 63
    • 84925998694 scopus 로고    scopus 로고
    • mRNA-programmed translation pauses in the targeting of E. Coli membrane proteins
    • Fluman, N., Navon, S., Bibi, E. & Pilpel, Y. mRNA-programmed translation pauses in the targeting of E. Coli membrane proteins. eLife 3, e03440 (2014).
    • (2014) ELife , vol.3 , pp. e03440
    • Fluman, N.1    Navon, S.2    Bibi, E.3    Pilpel, Y.4
  • 64
    • 84925553022 scopus 로고    scopus 로고
    • Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo
    • Pechmann, S., Chartron, J. W. & Frydman, J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. Struct. Mol. Biol. 21, 1100-1105 (2014).
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 1100-1105
    • Pechmann, S.1    Chartron, J.W.2    Frydman, J.3
  • 65
    • 4444356342 scopus 로고    scopus 로고
    • Whole genome analysis reveals a high incidence of non-optimal codons in secretory signal sequences of Escherichia coli
    • Power, P. M., Jones, R. A., Beacham, I. R., Bucholtz, C. & Jennings, M. P. Whole genome analysis reveals a high incidence of non-optimal codons in secretory signal sequences of Escherichia coli. Biochem. Biophys. Res. Commun. 322, 1038-1044 (2004).
    • (2004) Biochem. Biophys. Res. Commun. , vol.322 , pp. 1038-1044
    • Power, P.M.1    Jones, R.A.2    Beacham, I.R.3    Bucholtz, C.4    Jennings, M.P.5
  • 66
    • 84958554893 scopus 로고    scopus 로고
    • Accurate prediction of cellular co-translational folding indicates proteins can switch from post-to co-translational folding
    • Nissley, D. A. et al. Accurate prediction of cellular co-translational folding indicates proteins can switch from post-to co-translational folding. Nat. Commun. 7, 10341 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 10341
    • Nissley, D.A.1
  • 67
    • 80051797261 scopus 로고    scopus 로고
    • Directed evolution of efficient secretion in the SRP-dependent export of TolB
    • Zalucki, Y. M., Shafer, W. M. & Jennings, M. P. Directed evolution of efficient secretion in the SRP-dependent export of TolB. Biochim. Biophys. Acta 1808, 2544-2550 (2011).
    • (2011) Biochim. Biophys. Acta , vol.1808 , pp. 2544-2550
    • Zalucki, Y.M.1    Shafer, W.M.2    Jennings, M.P.3
  • 68
    • 44649188719 scopus 로고    scopus 로고
    • Molecular mechanism and structure of trigger factor bound to the translating ribosome
    • Merz, F. et al. Molecular mechanism and structure of trigger factor bound to the translating ribosome. EMBO J. 27, 1622-1632 (2008).
    • (2008) EMBO J. , vol.27 , pp. 1622-1632
    • Merz, F.1
  • 69
    • 17644386832 scopus 로고    scopus 로고
    • Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation
    • Huber, D. et al. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 187, 2983-2991 (2005).
    • (2005) J. Bacteriol. , vol.187 , pp. 2983-2991
    • Huber, D.1
  • 70
    • 33646918973 scopus 로고    scopus 로고
    • An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex
    • Peterson, J. H., Szabady, R. L. & Bernstein, H. D. An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex. J. Biol. Chem. 281, 9038-9048 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 9038-9048
    • Peterson, J.H.1    Szabady, R.L.2    Bernstein, H.D.3
  • 71
    • 79960923840 scopus 로고    scopus 로고
    • Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes
    • del Alamo, M. et al. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLoS Biol. 9, e1001100 (2011).
    • (2011) PLoS Biol. , vol.9 , pp. e1001100
    • Del Alamo, M.1
  • 72
    • 84899537656 scopus 로고    scopus 로고
    • Signal recognition particle and SecA cooperate during export of secretory proteins with highly hydrophobic signal sequences
    • Zhou, Y., Ueda, T. & Muller, M. Signal recognition particle and SecA cooperate during export of secretory proteins with highly hydrophobic signal sequences. PLoS ONE 9, e92994 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e92994
    • Zhou, Y.1    Ueda, T.2    Muller, M.3
  • 73
    • 1542358892 scopus 로고    scopus 로고
    • Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
    • Woolhead, C. A., McCormick, P. J. & Johnson, A. E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725-736 (2004).
    • (2004) Cell , vol.116 , pp. 725-736
    • Woolhead, C.A.1    McCormick, P.J.2    Johnson, A.E.3
  • 74
    • 84948470148 scopus 로고    scopus 로고
    • Cotranslational protein folding on the ribosome monitored in real time
    • Holtkamp, W. et al. Cotranslational protein folding on the ribosome monitored in real time. Science 350, 1104-1107 (2015).
    • (2015) Science , vol.350 , pp. 1104-1107
    • Holtkamp, W.1
  • 75
    • 0024022420 scopus 로고
    • ProOmpA spontaneously folds in a membrane assembly competent state which trigger factor stabilizes
    • Crooke, E., Brundage, L., Rice, M. & Wickner, W. ProOmpA spontaneously folds in a membrane assembly competent state which trigger factor stabilizes. EMBO J. 7, 1831-1835 (1988).
    • (1988) EMBO J. , vol.7 , pp. 1831-1835
    • Crooke, E.1    Brundage, L.2    Rice, M.3    Wickner, W.4
  • 76
    • 0026025966 scopus 로고
    • A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperone SecB
    • Hardy, S. J. & Randall, L. L. A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperone SecB. Science 251, 439-443 (1991).
    • (1991) Science , vol.251 , pp. 439-443
    • Hardy, S.J.1    Randall, L.L.2
  • 77
    • 0027457077 scopus 로고
    • A signal sequence is not required for protein export in prlA mutants of Escherichia coli
    • Derman, A. I., Puziss, J. W., Bassford, P. J. Jr & Beckwith, J. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12, 879-888 (1993).
    • (1993) EMBO J. , vol.12 , pp. 879-888
    • Derman, A.I.1    Puziss, J.W.2    Bassford, P.J.3    Beckwith, J.4
  • 78
    • 0030832397 scopus 로고    scopus 로고
    • Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor
    • Powers, T. & Walter, P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16, 4880-4886 (1997).
    • (1997) EMBO J. , vol.16 , pp. 4880-4886
    • Powers, T.1    Walter, P.2
  • 79
    • 0025601549 scopus 로고
    • The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence
    • Zopf, D., Bernstein, H. D., Johnson, A. E. & Walter, P. The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511-4517 (1990).
    • (1990) EMBO J. , vol.9 , pp. 4511-4517
    • Zopf, D.1    Bernstein, H.D.2    Johnson, A.E.3    Walter, P.4
  • 80
    • 77955881180 scopus 로고    scopus 로고
    • Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting
    • Lam, V. Q., Akopian, D., Rome, M., Henningsen, D. & Shan, S. O. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J. Cell Biol. 190, 623-635 (2010).
    • (2010) J. Cell Biol. , vol.190 , pp. 623-635
    • Lam, V.Q.1    Akopian, D.2    Rome, M.3    Henningsen, D.4    Shan, S.O.5
  • 81
    • 0025003789 scopus 로고
    • Trigger factor depletion or overproduction causes defective cell division but does not block protein export
    • Guthrie, B. & Wickner, W. Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J. Bacteriol. 172, 5555-5562 (1990).
    • (1990) J. Bacteriol. , vol.172 , pp. 5555-5562
    • Guthrie, B.1    Wickner, W.2
  • 82
    • 77953027489 scopus 로고    scopus 로고
    • Structure and function of the molecular chaperone trigger factor
    • Hoffmann, A., Bukau, B. & Kramer, G. Structure and function of the molecular chaperone trigger factor. Biochim. Biophys. Acta 1803, 650-661 (2010).
    • (2010) Biochim. Biophys. Acta , vol.1803 , pp. 650-661
    • Hoffmann, A.1    Bukau, B.2    Kramer, G.3
  • 83
    • 0035807963 scopus 로고    scopus 로고
    • Binding specificity of Escherichia coli trigger factor
    • Patzelt, H. et al. Binding specificity of Escherichia coli trigger factor. Proc. Natl Acad. Sci. USA 98, 14244-14249 (2001).
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 14244-14249
    • Patzelt, H.1
  • 84
    • 84867379923 scopus 로고    scopus 로고
    • Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding
    • Hoffmann, A. et al. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol. Cell 48, 63-74 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 63-74
    • Hoffmann, A.1
  • 85
    • 69449095153 scopus 로고    scopus 로고
    • Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone
    • Martinez-Hackert, E. & Hendrickson, W. A. Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138, 923-934 (2009).
    • (2009) Cell , vol.138 , pp. 923-934
    • Martinez-Hackert, E.1    Hendrickson, W.A.2
  • 86
    • 0344983315 scopus 로고    scopus 로고
    • Crystal structure of SecB from Escherichia coli
    • Dekker, C., de Kruijff, B. & Gros, P. Crystal structure of SecB from Escherichia coli. J. Struct. Biol. 144, 313-319 (2003).
    • (2003) J. Struct. Biol. , vol.144 , pp. 313-319
    • Dekker, C.1    De Kruijff, B.2    Gros, P.3
  • 87
    • 0033675260 scopus 로고    scopus 로고
    • Crystal structure of the bacterial protein export chaperone SecB
    • Xu, Z., Knafels, J. D. & Yoshino, K. Crystal structure of the bacterial protein export chaperone SecB. Nat. Struct. Biol. 7, 1172-1177 (2000).
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 1172-1177
    • Xu, Z.1    Knafels, J.D.2    Yoshino, K.3
  • 88
    • 77949510819 scopus 로고    scopus 로고
    • Tight hydrophobic contacts with the SecB chaperone prevent folding of substrate proteins
    • Bechtluft, P. et al. Tight hydrophobic contacts with the SecB chaperone prevent folding of substrate proteins. Biochemistry 49, 2380-2388 (2010).
    • (2010) Biochemistry , vol.49 , pp. 2380-2388
    • Bechtluft, P.1
  • 89
    • 84984661295 scopus 로고    scopus 로고
    • Structural basis for the antifolding activity of a molecular chaperone
    • Huang, C., Rossi, P., Saio, T. & Kalodimos, C. G. Structural basis for the antifolding activity of a molecular chaperone. Nature 537, 202-206 (2016).
    • (2016) Nature , vol.537 , pp. 202-206
    • Huang, C.1    Rossi, P.2    Saio, T.3    Kalodimos, C.G.4
  • 90
    • 69249101589 scopus 로고    scopus 로고
    • Export chaperone SecB uses one surface of interaction for diverse unfolded polypeptide ligands
    • Lilly, A. A., Crane, J. M. & Randall, L. L. Export chaperone SecB uses one surface of interaction for diverse unfolded polypeptide ligands. Protein Sci. 18, 1860-1868 (2009).
    • (2009) Protein Sci. , vol.18 , pp. 1860-1868
    • Lilly, A.A.1    Crane, J.M.2    Randall, L.L.3
  • 91
    • 0041154140 scopus 로고    scopus 로고
    • Substrate specificity of the SecB chaperone
    • Knoblauch, N. T. et al. Substrate specificity of the SecB chaperone. J. Biol. Chem. 274, 34219-34225 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 34219-34225
    • Knoblauch, N.T.1
  • 92
    • 0028883731 scopus 로고
    • High-affinity binding of Escherichia coli SecB to the signal sequence region of a presecretory protein
    • Watanabe, M. & Blobel, G. High-affinity binding of Escherichia coli SecB to the signal sequence region of a presecretory protein. Proc. Natl Acad. Sci. USA 92, 10133-10136 (1995).
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 10133-10136
    • Watanabe, M.1    Blobel, G.2
  • 93
    • 0030703175 scopus 로고    scopus 로고
    • The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation
    • Fekkes, P., van der Does, C. & Driessen, A. J. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J. 16, 6105-6113 (1997).
    • (1997) EMBO J. , vol.16 , pp. 6105-6113
    • Fekkes, P.1    Van Der Does, C.2    Driessen, A.J.3
  • 94
    • 84922345092 scopus 로고    scopus 로고
    • The basis of asymmetry in the SecA-SecB complex
    • Suo, Y., Hardy, S. J. & Randall, L. L. The basis of asymmetry in the SecA-SecB complex. J. Mol. Biol. 427, 887-900 (2015).
    • (2015) J. Mol. Biol. , vol.427 , pp. 887-900
    • Suo, Y.1    Hardy, S.J.2    Randall, L.L.3
  • 95
    • 0242407175 scopus 로고    scopus 로고
    • Structural determinants of SecB recognition by SecA in bacterial protein translocation
    • Zhou, J. & Xu, Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nat. Struct. Biol. 10, 942-947 (2003).
    • (2003) Nat. Struct. Biol. , vol.10 , pp. 942-947
    • Zhou, J.1    Xu, Z.2
  • 96
    • 78650095172 scopus 로고    scopus 로고
    • Orientation of SecA and SecB in complex, derived from disulfide cross-linking
    • Suo, Y., Hardy, S. J. & Randall, L. L. Orientation of SecA and SecB in complex, derived from disulfide cross-linking. J. Bacteriol. 193, 190-196 (2011).
    • (2011) J. Bacteriol. , vol.193 , pp. 190-196
    • Suo, Y.1    Hardy, S.J.2    Randall, L.L.3
  • 97
    • 79551533114 scopus 로고    scopus 로고
    • Dimeric SecA couples the preprotein translocation in an asymmetric manner
    • Tang, Y., Pan, X., Chen, Y., Tai, P. C. & Sui, S. F. Dimeric SecA couples the preprotein translocation in an asymmetric manner. PLoS ONE 6, e16498 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e16498
    • Tang, Y.1    Pan, X.2    Chen, Y.3    Tai, P.C.4    Sui, S.F.5
  • 98
    • 0037144467 scopus 로고    scopus 로고
    • Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA
    • Hunt, J. F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018-2026 (2002).
    • (2002) Science , vol.297 , pp. 2018-2026
    • Hunt, J.F.1
  • 99
    • 70449534599 scopus 로고    scopus 로고
    • Conformational flexibility and peptide interaction of the translocation ATPase SecA
    • Zimmer, J. & Rapoport, T. A. Conformational flexibility and peptide interaction of the translocation ATPase SecA. J. Mol. Biol. 394, 606-612 (2009).
    • (2009) J. Mol. Biol. , vol.394 , pp. 606-612
    • Zimmer, J.1    Rapoport, T.A.2
  • 100
    • 30044431592 scopus 로고    scopus 로고
    • Identification of the preprotein binding domain of SecA
    • Papanikou, E. et al. Identification of the preprotein binding domain of SecA. J. Biol. Chem. 280, 43209-43217 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 43209-43217
    • Papanikou, E.1
  • 101
    • 0033428711 scopus 로고    scopus 로고
    • A molecular switch in SecA protein couples ATP hydrolysis to protein translocation
    • Karamanou, S. et al. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. 34, 1133-1145 (1999).
    • (1999) Mol. Microbiol. , vol.34 , pp. 1133-1145
    • Karamanou, S.1
  • 102
    • 73949146135 scopus 로고    scopus 로고
    • Mapping polypeptide interactions of the SecA ATPase during translocation
    • Bauer, B. W. & Rapoport, T. A. Mapping polypeptide interactions of the SecA ATPase during translocation. Proc. Natl Acad. Sci. USA 106, 20800-20805 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 20800-20805
    • Bauer, B.W.1    Rapoport, T.A.2
  • 103
    • 79955901001 scopus 로고    scopus 로고
    • Preserving the membrane barrier for small molecules during bacterial protein translocation
    • Park, E. & Rapoport, T. A. Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature 473, 239-242 (2011).
    • (2011) Nature , vol.473 , pp. 239-242
    • Park, E.1    Rapoport, T.A.2
  • 104
    • 27144525002 scopus 로고    scopus 로고
    • Investigating the SecY plug movement at the SecYEG translocation channel
    • Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380-3388 (2005).
    • (2005) EMBO J. , vol.24 , pp. 3380-3388
    • Tam, P.C.1    Maillard, A.P.2    Chan, K.K.3    Duong, F.4
  • 105
    • 84952873695 scopus 로고    scopus 로고
    • Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state
    • Tanaka, Y. et al. Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state. Cell Rep. 13, 1561-1568 (2015).
    • (2015) Cell Rep. , vol.13 , pp. 1561-1568
    • Tanaka, Y.1
  • 106
    • 84861167327 scopus 로고    scopus 로고
    • Structure of the SecY complex unlocked by a preprotein mimic
    • Hizlan, D. et al. Structure of the SecY complex unlocked by a preprotein mimic. Cell Rep. 1, 21-28 (2012).
    • (2012) Cell Rep. , vol.1 , pp. 21-28
    • Hizlan, D.1
  • 107
    • 0037043724 scopus 로고    scopus 로고
    • Three-dimensional structure of the bacterial protein-translocation complex SecYEG
    • Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662-665 (2002).
    • (2002) Nature , vol.418 , pp. 662-665
    • Breyton, C.1    Haase, W.2    Rapoport, T.A.3    Kuhlbrandt, W.4    Collinson, I.5
  • 108
    • 27844444793 scopus 로고    scopus 로고
    • Structure of the E. Coli protein-conducting channel bound to a translating ribosome
    • Mitra, K. et al. Structure of the E. Coli protein-conducting channel bound to a translating ribosome. Nature 438, 318-324 (2005).
    • (2005) Nature , vol.438 , pp. 318-324
    • Mitra, K.1
  • 109
    • 84866388574 scopus 로고    scopus 로고
    • Bacterial protein translocation requires only one copy of the SecY complex in vivo
    • Park, E. & Rapoport, T. A. Bacterial protein translocation requires only one copy of the SecY complex in vivo. J. Cell Biol. 198, 881-893 (2012).
    • (2012) J. Cell Biol. , vol.198 , pp. 881-893
    • Park, E.1    Rapoport, T.A.2
  • 110
    • 79953022888 scopus 로고    scopus 로고
    • The oligomeric state and arrangement of the active bacterial translocon
    • Deville, K. et al. The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 286, 4659-4669 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 4659-4669
    • Deville, K.1
  • 111
    • 84858238365 scopus 로고    scopus 로고
    • Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase
    • Dalal, K., Chan, C. S., Sligar, S. G. & Duong, F. Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase. Proc. Natl Acad. Sci. USA 109, 4104-4109 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 4104-4109
    • Dalal, K.1    Chan, C.S.2    Sligar, S.G.3    Duong, F.4
  • 112
    • 80455155003 scopus 로고    scopus 로고
    • A single copy of SecYEG is sufficient for preprotein translocation
    • Kedrov, A., Kusters, I., Krasnikov, V. V. & Driessen, A. J. A single copy of SecYEG is sufficient for preprotein translocation. EMBO J. 30, 4387-4397 (2011).
    • (2011) EMBO J. , vol.30 , pp. 4387-4397
    • Kedrov, A.1    Kusters, I.2    Krasnikov, V.V.3    Driessen, A.J.4
  • 113
    • 33947717366 scopus 로고    scopus 로고
    • Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel
    • Osborne, A. R. & Rapoport, T. A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97-110 (2007).
    • (2007) Cell , vol.129 , pp. 97-110
    • Osborne, A.R.1    Rapoport, T.A.2
  • 114
    • 54049151196 scopus 로고    scopus 로고
    • Conformational transition of Sec machinery inferred from bacterial SecYE structures
    • Tsukazaki, T. et al. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988-991 (2008).
    • (2008) Nature , vol.455 , pp. 988-991
    • Tsukazaki, T.1
  • 115
    • 77950448361 scopus 로고    scopus 로고
    • Hydrophobically stabilized open state for the lateral gate of the Sec translocon
    • Zhang, B. & Miller, T. F. Hydrophobically stabilized open state for the lateral gate of the Sec translocon. Proc. Natl Acad. Sci. USA 107, 5399-5404 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 5399-5404
    • Zhang, B.1    Miller, T.F.2
  • 116
    • 84878768073 scopus 로고    scopus 로고
    • Dynamic structure of the translocon SecYEG in membrane: Direct single molecule observations
    • Sanganna Gari, R. R., Frey, N. C., Mao, C., Randall, L. L. & King, G. M. Dynamic structure of the translocon SecYEG in membrane: direct single molecule observations. J. Biol. Chem. 288, 16848-16854 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 16848-16854
    • Sanganna Gari, R.R.1    Frey, N.C.2    Mao, C.3    Randall, L.L.4    King, G.M.5
  • 117
    • 84903310310 scopus 로고    scopus 로고
    • Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution
    • Voorhees, R. M., Fernandez, I. S., Scheres, S. H. & Hegde, R. S. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157, 1632-1643 (2014).
    • (2014) Cell , vol.157 , pp. 1632-1643
    • Voorhees, R.M.1    Fernandez, I.S.2    Scheres, S.H.3    Hegde, R.S.4
  • 118
    • 70350738240 scopus 로고    scopus 로고
    • Regulation of the protein-conducting channel by a bound ribosome
    • Gumbart, J., Trabuco, L. G., Schreiner, E., Villa, E. & Schulten, K. Regulation of the protein-conducting channel by a bound ribosome. Structure 17, 1453-1464 (2009).
    • (2009) Structure , vol.17 , pp. 1453-1464
    • Gumbart, J.1    Trabuco, L.G.2    Schreiner, E.3    Villa, E.4    Schulten, K.5
  • 120
    • 24944465005 scopus 로고    scopus 로고
    • Modeling the effects of prl mutations on the Escherichia coli SecY complex
    • Smith, M. A., Clemons, W. M. Jr., DeMars, C. J. & Flower, A. M. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 187, 6454-6465 (2005).
    • (2005) J. Bacteriol. , vol.187 , pp. 6454-6465
    • Smith, M.A.1    Clemons, W.M.2    DeMars, C.J.3    Flower, A.M.4
  • 121
    • 0033564538 scopus 로고    scopus 로고
    • The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits
    • Duong, F. & Wickner, W. The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits. EMBO J. 18, 3263-3270 (1999).
    • (1999) EMBO J. , vol.18 , pp. 3263-3270
    • Duong, F.1    Wickner, W.2
  • 122
    • 84893726448 scopus 로고    scopus 로고
    • Structure of the SecY channel during initiation of protein translocation
    • Park, E. et al. Structure of the SecY channel during initiation of protein translocation. Nature 506, 102-106 (2014).
    • (2014) Nature , vol.506 , pp. 102-106
    • Park, E.1
  • 123
    • 36349034451 scopus 로고    scopus 로고
    • Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology
    • Junne, T., Schwede, T., Goder, V. & Spiess, M. Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology. J. Biol. Chem. 282, 33201-33209 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 33201-33209
    • Junne, T.1    Schwede, T.2    Goder, V.3    Spiess, M.4
  • 124
    • 84874621061 scopus 로고    scopus 로고
    • ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase
    • Kim, D. M., Zheng, H., Huang, Y. J., Montelione, G. T. & Hunt, J. F. ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase. J. Am. Chem. Soc. 135, 2999-3010 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 2999-3010
    • Kim, D.M.1    Zheng, H.2    Huang, Y.J.3    Montelione, G.T.4    Hunt, J.F.5
  • 125
    • 84872460710 scopus 로고    scopus 로고
    • The dynamic action of SecA during the initiation of protein translocation
    • Gold, V. A., Whitehouse, S., Robson, A. & Collinson, I. The dynamic action of SecA during the initiation of protein translocation. Biochem. J. 449, 695-705 (2013).
    • (2013) Biochem. J. , vol.449 , pp. 695-705
    • Gold, V.A.1    Whitehouse, S.2    Robson, A.3    Collinson, I.4
  • 126
    • 84934914155 scopus 로고    scopus 로고
    • Conformational changes of the clamp of the protein translocation ATPase SecA
    • Chen, Y., Bauer, B. W., Rapoport, T. A. & Gumbart, J. C. Conformational changes of the clamp of the protein translocation ATPase SecA. J. Mol. Biol. 427, 2348-2359 (2015).
    • (2015) J. Mol. Biol. , vol.427 , pp. 2348-2359
    • Chen, Y.1    Bauer, B.W.2    Rapoport, T.A.3    Gumbart, J.C.4
  • 127
    • 4444316122 scopus 로고    scopus 로고
    • Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase
    • Papanikou, E. et al. Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase. EMBO Rep. 5, 807-811 (2004).
    • (2004) EMBO Rep. , vol.5 , pp. 807-811
    • Papanikou, E.1
  • 128
    • 33750821188 scopus 로고    scopus 로고
    • A novel dimer interface and conformational changes revealed by an X-ray structure of B. Subtilis SecA
    • Zimmer, J., Li, W. & Rapoport, T. A. A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA. J. Mol. Biol. 364, 259-265 (2006).
    • (2006) J. Mol. Biol. , vol.364 , pp. 259-265
    • Zimmer, J.1    Li, W.2    Rapoport, T.A.3
  • 129
    • 0345184333 scopus 로고    scopus 로고
    • Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase
    • Sharma, V. et al. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc. Natl Acad. Sci. USA 100, 2243-2248 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 2243-2248
    • Sharma, V.1
  • 130
    • 36048929458 scopus 로고    scopus 로고
    • A large conformational change couples the ATP binding site of SecA to the SecY protein channel
    • Robson, A., Booth, A. E., Gold, V. A., Clarke, A. R. & Collinson, I. A large conformational change couples the ATP binding site of SecA to the SecY protein channel. J. Mol. Biol. 374, 965-976 (2007).
    • (2007) J. Mol. Biol. , vol.374 , pp. 965-976
    • Robson, A.1    Booth, A.E.2    Gold, V.A.3    Clarke, A.R.4    Collinson, I.5
  • 131
    • 0035282958 scopus 로고    scopus 로고
    • Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function
    • Sianidis, G. et al. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J. 20, 961-970 (2001).
    • (2001) EMBO J. , vol.20 , pp. 961-970
    • Sianidis, G.1
  • 132
    • 34247214427 scopus 로고    scopus 로고
    • Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA
    • Alami, M., Dalal, K., Lelj-Garolla, B., Sligar, S. G. & Duong, F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 26, 1995-2004 (2007).
    • (2007) EMBO J. , vol.26 , pp. 1995-2004
    • Alami, M.1    Dalal, K.2    Lelj-Garolla, B.3    Sligar, S.G.4    Duong, F.5
  • 133
    • 77952850206 scopus 로고    scopus 로고
    • SecA: A tale of two protomers
    • Sardis, M. F. & Economou, A. SecA: a tale of two protomers. Mol. Microbiol. 76, 1070-1081 (2010).
    • (2010) Mol. Microbiol. , vol.76 , pp. 1070-1081
    • Sardis, M.F.1    Economou, A.2
  • 134
    • 83755168976 scopus 로고    scopus 로고
    • Conformational dynamics of the plug domain of the SecYEG protein-conducting channel
    • Lycklama a, Nijeholt, J. A., Wu, Z. C. & Driessen, A. J. Conformational dynamics of the plug domain of the SecYEG protein-conducting channel. J. Biol. Chem. 286, 43881-43890 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 43881-43890
    • Lycklama, A.1    Nijeholt, J.A.2    Wu, Z.C.3    Driessen, A.J.4
  • 135
    • 84975225082 scopus 로고    scopus 로고
    • Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation
    • Allen, W. J. et al. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife 5, e15598 (2016).
    • (2016) ELife , vol.5 , pp. e15598
    • Allen, W.J.1
  • 136
    • 0034697967 scopus 로고    scopus 로고
    • The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
    • Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233-244 (2000).
    • (2000) Cell , vol.102 , pp. 233-244
    • Heinrich, S.U.1    Mothes, W.2    Brunner, J.3    Rapoport, T.A.4
  • 137
    • 37249037182 scopus 로고    scopus 로고
    • Molecular code for transmembrane-helix recognition by the Sec61 translocon
    • Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026-1030 (2007).
    • (2007) Nature , vol.450 , pp. 1026-1030
    • Hessa, T.1
  • 138
    • 48249095616 scopus 로고    scopus 로고
    • How translocons select transmembrane helices
    • White, S. H. & von Heijne, G. How translocons select transmembrane helices. Annu. Rev. Biophys. 37, 23-42 (2008).
    • (2008) Annu. Rev. Biophys. , vol.37 , pp. 23-42
    • White, S.H.1    Von Heijne, G.2
  • 139
    • 33646191829 scopus 로고    scopus 로고
    • Motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes
    • Tian, P. & Andricioaei, I. Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes. Biophys. J. 90, 2718-2730 (2006).
    • (2006) Biophys. J. , vol.90 , pp. 2718-2730
    • Tian, P.1    Size, A.I.2
  • 140
    • 84867218476 scopus 로고    scopus 로고
    • A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration
    • Ismail, N., Hedman, R., Schiller, N. & von Heijne, G. A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat. Struct. Mol. Biol. 19, 1018-1022 (2012).
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1018-1022
    • Ismail, N.1    Hedman, R.2    Schiller, N.3    Von Heijne, G.4
  • 141
    • 84857439394 scopus 로고    scopus 로고
    • Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix
    • Ojemalm, K., Halling, K. K., Nilsson, I. & von Heijne, G. Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix. Mol. Cell 45, 529-540 (2012).
    • (2012) Mol. Cell , vol.45 , pp. 529-540
    • Ojemalm, K.1    Halling, K.K.2    Nilsson, I.3    Von Heijne, G.4
  • 142
    • 28244452583 scopus 로고    scopus 로고
    • A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli
    • Deitermann, S., Sprie, G. S. & Koch, H. G. A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli. J. Biol. Chem. 280, 39077-39085 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 39077-39085
    • Deitermann, S.1    Sprie, G.S.2    Koch, H.G.3
  • 143
    • 84902239988 scopus 로고    scopus 로고
    • Lipids and topological rules governing membrane protein assembly
    • Bogdanov, M., Dowhan, W. & Vitrac, H. Lipids and topological rules governing membrane protein assembly. Biochim. Biophys. Acta 1843, 1475-1488 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 1475-1488
    • Bogdanov, M.1    Dowhan, W.2    Vitrac, H.3
  • 144
    • 0028064967 scopus 로고
    • SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion
    • Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835-843 (1994).
    • (1994) Cell , vol.78 , pp. 835-843
    • Economou, A.1    Wickner, W.2
  • 145
    • 54049142467 scopus 로고    scopus 로고
    • A role for the two-helix finger of the SecA ATPase in protein translocation
    • Erlandson, K. J. et al. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455, 984-987 (2008).
    • (2008) Nature , vol.455 , pp. 984-987
    • Erlandson, K.J.1
  • 146
    • 84872008993 scopus 로고    scopus 로고
    • Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex
    • Whitehouse, S. et al. Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex. J. Cell Biol. 199, 919-929 (2012).
    • (2012) J. Cell Biol. , vol.199 , pp. 919-929
    • Whitehouse, S.1
  • 147
    • 79958281760 scopus 로고    scopus 로고
    • Structure and function of a membrane component SecDF that enhances protein export
    • Tsukazaki, T. et al. Structure and function of a membrane component SecDF that enhances protein export. Nature 474, 235-238 (2011).
    • (2011) Nature , vol.474 , pp. 235-238
    • Tsukazaki, T.1
  • 148
    • 0031435335 scopus 로고    scopus 로고
    • The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events
    • van der Wolk, J. P., de Wit, J. G. & Driessen, A. J. The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J. 16, 7297-7304 (1997).
    • (1997) EMBO J. , vol.16 , pp. 7297-7304
    • Van Der Wolk, J.P.1    De Wit, J.G.2    Driessen, A.J.3
  • 149
    • 70350148599 scopus 로고    scopus 로고
    • Bacterial Sec protein transport is rate-limited by precursor length: A single turnover study
    • Liang, F. C., Bageshwar, U. K. & Musser, S. M. Bacterial Sec protein transport is rate-limited by precursor length: a single turnover study. Mol. Biol. Cell 20, 4256-4266 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4256-4266
    • Liang, F.C.1    Bageshwar, U.K.2    Musser, S.M.3
  • 150
    • 84953867922 scopus 로고    scopus 로고
    • Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization
    • Ting, Y. T. et al. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCrJ 3, 10-19 (2016).
    • (2016) IUCrJ , vol.3 , pp. 10-19
    • Ting, Y.T.1
  • 151
    • 84905382347 scopus 로고    scopus 로고
    • Dynamic interaction of the Sec translocon with the chaperone PpiD
    • Sachelaru, I., Petriman, N. A., Kudva, R. & Koch, H. G. Dynamic interaction of the Sec translocon with the chaperone PpiD. J. Biol. Chem. 289, 21706-21715 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 21706-21715
    • Sachelaru, I.1    Petriman, N.A.2    Kudva, R.3    Koch, H.G.4
  • 152
    • 43949125856 scopus 로고    scopus 로고
    • The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon
    • Antonoaea, R., Furst, M., Nishiyama, K. & Muller, M. The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. Biochemistry 47, 5649-5656 (2008).
    • (2008) Biochemistry , vol.47 , pp. 5649-5656
    • Antonoaea, R.1    Furst, M.2    Nishiyama, K.3    Muller, M.4
  • 153
    • 39149133696 scopus 로고    scopus 로고
    • Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases
    • Xie, K. & Dalbey, R. E. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat. Rev. Microbiol. 6, 234-244 (2008).
    • (2008) Nat. Rev. Microbiol. , vol.6 , pp. 234-244
    • Xie, K.1    Dalbey, R.E.2
  • 154
    • 84902267629 scopus 로고    scopus 로고
    • Protein transport by the bacterial Ta t pathway
    • Patel, R., Smith, S. M. & Robinson, C. Protein transport by the bacterial Ta t pathway. Biochim. Biophys. Acta 1843, 1620-1628 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 1620-1628
    • Patel, R.1    Smith, S.M.2    Robinson, C.3
  • 155
    • 84929314375 scopus 로고    scopus 로고
    • Secretion systems in Gram-negative bacteria: Structural and mechanistic insights
    • Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343-359 (2015).
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 343-359
    • Costa, T.R.1
  • 159
    • 80053280679 scopus 로고    scopus 로고
    • Lipoprotein sorting in bacteria
    • Okuda, S. & Tokuda, H. Lipoprotein sorting in bacteria. Annu. Rev. Microbiol. 65, 239-259 (2011).
    • (2011) Annu. Rev. Microbiol. , vol.65 , pp. 239-259
    • Okuda, S.1    Tokuda, H.2
  • 160
    • 84863533501 scopus 로고    scopus 로고
    • A protein export pathway involving Escherichia coli porins
    • Prehna, G. et al. A protein export pathway involving Escherichia coli porins. Structure 20, 1154-1166 (2012).
    • (2012) Structure , vol.20 , pp. 1154-1166
    • Prehna, G.1
  • 161
    • 34748828756 scopus 로고    scopus 로고
    • Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli
    • Lee, E. Y. et al. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7, 3143-3153 (2007).
    • (2007) Proteomics , vol.7 , pp. 3143-3153
    • Lee, E.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.