-
1
-
-
84928253866
-
Proteome-wide subcellular topologies of E. Coli polypeptides database (STEPdb)
-
Orfanoudaki, G. & Economou, A. Proteome-wide subcellular topologies of E. Coli polypeptides database (STEPdb). Mol. Cell. Proteomics 13, 3674-3687 (2014).
-
(2014)
Mol. Cell. Proteomics
, vol.13
, pp. 3674-3687
-
-
Orfanoudaki, G.1
Economou, A.2
-
2
-
-
84870859321
-
Breaking on through to the other side: Protein export through the bacterial Sec system
-
Chatzi, K. E., Sardis, M. F., Karamanou, S. & Economou, A. Breaking on through to the other side: protein export through the bacterial Sec system. Biochem. J. 449, 25-37 (2013).
-
(2013)
Biochem. J.
, vol.449
, pp. 25-37
-
-
Chatzi, K.E.1
Sardis, M.F.2
Karamanou, S.3
Economou, A.4
-
3
-
-
84991211421
-
Protein folding in the cell envelope of Escherichia coli
-
De Geyter, J. et al. Protein folding in the cell envelope of Escherichia coli. Nat. Microbiol. 1, 1 6107 (2016).
-
(2016)
Nat. Microbiol.
, vol.1
, Issue.1
, pp. 6107
-
-
De Geyter, J.1
-
4
-
-
0347192985
-
X-Ray structure of a protein-conducting channel
-
Van den Berg, B. et al. X-Ray structure of a protein-conducting channel. Nature 427, 36-44 (2004).
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van Den Berg, B.1
-
5
-
-
85018453735
-
The canonical and accessory Sec system of Gram-positive bacteria
-
Prabudiansyah, I. & Driessen, A. J. The canonical and accessory Sec system of Gram-positive bacteria. Curr. Top. Microbiol. Immunol. http://dx.doi. org/10.1007/82-2016-9 (2016).
-
(2016)
Curr. Top. Microbiol. Immunol
-
-
Prabudiansyah, I.1
Driessen, A.J.2
-
6
-
-
84897558347
-
Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC
-
Schulze, R. J. et al. Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Proc. Natl Acad. Sci. USA 111, 4844-4849 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 4844-4849
-
-
Schulze, R.J.1
-
7
-
-
0030959069
-
Distinct catalytic roles of the SecYE SecG and SecDFyajC subunits of preprotein translocase holoenzyme
-
Duong, F. & Wickner, W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J. 16, 2756-2768 (1997).
-
(1997)
EMBO J.
, vol.16
, pp. 2756-2768
-
-
Duong, F.1
Wickner, W.2
-
8
-
-
84878746549
-
YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein
-
Sachelaru, I. et al. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J. Biol. Chem. 288, 16295-16307 (2013).
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 16295-16307
-
-
Sachelaru, I.1
-
9
-
-
85009952069
-
Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG-SecDF-YajC-YidC
-
Komar, J. et al. Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Biochem. J. 473, 3341-3354 (2016).
-
(2016)
Biochem. J.
, vol.473
, pp. 3341-3354
-
-
Komar, J.1
-
10
-
-
0025297583
-
The signal peptide
-
von Heijne, G. The signal peptide. J. Membr. Biol. 115, 195-201 (1990).
-
(1990)
J. Membr. Biol.
, vol.115
, pp. 195-201
-
-
Von Heijne, G.1
-
11
-
-
84878941023
-
Signal recognition particle: An essential protein-targeting machine
-
Akopian, D., Shen, K., Zhang, X. & Shan, S. O. Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. 82, 693-721 (2013).
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 693-721
-
-
Akopian, D.1
Shen, K.2
Zhang, X.3
Shan, S.O.4
-
12
-
-
84902270898
-
SecA-mediated targeting and translocation of secretory proteins
-
Chatzi, K. E., Sardis, M. F., Economou, A. & Karamanou, S. SecA-mediated targeting and translocation of secretory proteins. Biochim. Biophys. Acta 1843, 1466-1474 (2014).
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 1466-1474
-
-
Chatzi, K.E.1
Sardis, M.F.2
Economou, A.3
Karamanou, S.4
-
13
-
-
0025036708
-
The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. Coli plasma membrane
-
Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P. & Wickner, W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. Coli plasma membrane. Cell 63, 269-279 (1990).
-
(1990)
Cell
, vol.63
, pp. 269-279
-
-
Hartl, F.U.1
Lecker, S.2
Schiebel, E.3
Hendrick, J.P.4
Wickner, W.5
-
14
-
-
79251576465
-
SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria
-
Huber, D. et al. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol. Cell 41, 343-353 (2011).
-
(2011)
Mol. Cell
, vol.41
, pp. 343-353
-
-
Huber, D.1
-
15
-
-
84896803769
-
Cryo-electron microscopic structure of SecA protein bound to the 70S ribosome
-
Singh, R. et al. Cryo-electron microscopic structure of SecA protein bound to the 70S ribosome. J. Biol. Chem. 289, 7190-7199 (2014).
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 7190-7199
-
-
Singh, R.1
-
16
-
-
0026073817
-
H+ and ATP function at different steps of the catalytic cycle of preprotein translocase
-
H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927-939 (1991).
-
(1991)
Cell
, vol.64
, pp. 927-939
-
-
Schiebel, E.1
Driessen, A.J.2
Hartl, F.U.3
Wickner, W.4
-
17
-
-
0025019705
-
The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins
-
Lill, R., Dowhan, W. & Wickner, W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60, 271-280 (1990).
-
(1990)
Cell
, vol.60
, pp. 271-280
-
-
Lill, R.1
Dowhan, W.2
Wickner, W.3
-
18
-
-
84926419545
-
Charge-driven dynamics of nascent-chain movement through the SecYEG translocon
-
Ismail, N., Hedman, R., Linden, M. & von Heijne, G. Charge-driven dynamics of nascent-chain movement through the SecYEG translocon. Nat. Struct. Mol. Biol. 22, 145-149 (2015).
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 145-149
-
-
Ismail, N.1
Hedman, R.2
Linden, M.3
Von Heijne, G.4
-
19
-
-
0025087853
-
The purified E. Coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation
-
Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. & Wickner, W. The purified E. Coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649-657 (1990).
-
(1990)
Cell
, vol.62
, pp. 649-657
-
-
Brundage, L.1
Hendrick, J.P.2
Schiebel, E.3
Driessen, A.J.4
Wickner, W.5
-
20
-
-
84902290560
-
The membrane insertase YidC
-
Dalbey, R. E., Kuhn, A., Zhu, L. & Kiefer, D. The membrane insertase YidC. Biochim. Biophys. Acta 1843, 1489-1496 (2014).
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 1489-1496
-
-
Dalbey, R.E.1
Kuhn, A.2
Zhu, L.3
Kiefer, D.4
-
21
-
-
84455204799
-
Signal peptidase I: Cleaving the way to mature proteins
-
Auclair, S. M., Bhanu, M. K. & Kendall, D. A. Signal peptidase I: cleaving the way to mature proteins. Protein Sci. 21, 13-25 (2012).
-
(2012)
Protein Sci.
, vol.21
, pp. 13-25
-
-
Auclair, S.M.1
Bhanu, M.K.2
Kendall, D.A.3
-
22
-
-
83255164895
-
Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo
-
Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295-1308 (2011).
-
(2011)
Cell
, vol.147
, pp. 1295-1308
-
-
Oh, E.1
-
23
-
-
70450171353
-
Signal peptides are allosteric activators of the protein translocase
-
Gouridis, G., Karamanou, S., Gelis, I., Kalodimos, C. G. & Economou, A. Signal peptides are allosteric activators of the protein translocase. Nature 462, 363-367 (2009).
-
(2009)
Nature
, vol.462
, pp. 363-367
-
-
Gouridis, G.1
Karamanou, S.2
Gelis, I.3
Kalodimos, C.G.4
Economou, A.5
-
24
-
-
84900336916
-
Structural basis for protein antiaggregation activity of the trigger factor chaperone
-
Saio, T., Guan, X., Rossi, P., Economou, A. & Kalodimos, C. G. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344, 1250494 (2014).
-
(2014)
Science
, vol.344
, pp. 1250494
-
-
Saio, T.1
Guan, X.2
Rossi, P.3
Economou, A.4
Kalodimos, C.G.5
-
25
-
-
84865704339
-
Information encoded in non-native states drives substrate-chaperone pairing
-
Mapa, K., Tiwari, S., Kumar, V., Jayaraj, G. G. & Maiti, S. Information encoded in non-native states drives substrate-chaperone pairing. Structure 20, 1562-1573 (2012).
-
(2012)
Structure
, vol.20
, pp. 1562-1573
-
-
Mapa, K.1
Tiwari, S.2
Kumar, V.3
Jayaraj, G.G.4
Maiti, S.5
-
26
-
-
84955516320
-
Structures of the E. Coli translating ribosome with SRP and its receptor and with the translocon
-
Jomaa, A., Boehringer, D., Leibundgut, M. & Ban, N. Structures of the E. Coli translating ribosome with SRP and its receptor and with the translocon. Nat. Commun. 7, 10471 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 10471
-
-
Jomaa, A.1
Boehringer, D.2
Leibundgut, M.3
Ban, N.4
-
27
-
-
84930960539
-
Signal-sequence induced conformational changes in the signal recognition particle
-
Hainzl, T. & Sauer-Eriksson, A. E. Signal-sequence induced conformational changes in the signal recognition particle. Nat. Commun. 6, 7163 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 7163
-
-
Hainzl, T.1
Sauer-Eriksson, A.E.2
-
28
-
-
84870979537
-
Activated GTPase movement on an RNA scaffold drives co-translational protein targeting
-
Shen, K., Arslan, S., Akopian, D., Ha, T. & Shan, S. O. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492, 271-275 (2012).
-
(2012)
Nature
, vol.492
, pp. 271-275
-
-
Shen, K.1
Arslan, S.2
Akopian, D.3
Ha, T.4
Shan, S.O.5
-
29
-
-
77952127782
-
Sequential checkpoints govern substrate selection during cotranslational protein targeting
-
Zhang, X., Rashid, R., Wang, K. & Shan, S. O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328, 757-760 (2010).
-
(2010)
Science
, vol.328
, pp. 757-760
-
-
Zhang, X.1
Rashid, R.2
Wang, K.3
Shan, S.O.4
-
30
-
-
84902846778
-
Interplay between trigger factor and other protein biogenesis factors on the ribosome
-
Bornemann, T., Holtkamp, W. & Wintermeyer, W. Interplay between trigger factor and other protein biogenesis factors on the ribosome. Nat. Commun. 5, 4180 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 4180
-
-
Bornemann, T.1
Holtkamp, W.2
Wintermeyer, W.3
-
31
-
-
58149264965
-
Signal sequences activate the catalytic switch of SRP RNA
-
Bradshaw, N., Neher, S. B., Booth, D. S. & Walter, P. Signal sequences activate the catalytic switch of SRP RNA. Science 323, 127-130 (2009).
-
(2009)
Science
, vol.323
, pp. 127-130
-
-
Bradshaw, N.1
Neher, S.B.2
Booth, D.S.3
Walter, P.4
-
32
-
-
79952470913
-
Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level
-
Kusters, I. et al. Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level. Structure 19, 430-439 (2011).
-
(2011)
Structure
, vol.19
, pp. 430-439
-
-
Kusters, I.1
-
33
-
-
84959917885
-
Unlocking the bacterial SecY translocon
-
Corey, R. A. et al. Unlocking the bacterial SecY translocon. Structure 24, 518-527 (2016).
-
(2016)
Structure
, vol.24
, pp. 518-527
-
-
Corey, R.A.1
-
34
-
-
84923247437
-
Lateral opening of the bacterial translocon on ribosome binding and signal peptide insertion
-
Ge, Y., Draycheva, A., Bornemann, T., Rodnina, M. V. & Wintermeyer, W. Lateral opening of the bacterial translocon on ribosome binding and signal peptide insertion. Nat. Commun. 5, 5263 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 5263
-
-
Ge, Y.1
Draycheva, A.2
Bornemann, T.3
Rodnina, M.V.4
Wintermeyer, W.5
-
35
-
-
84869090494
-
Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid
-
Hou, B., Lin, P. J. & Johnson, A. E. Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid. Mol. Cell 48, 398-408 (2012).
-
(2012)
Mol. Cell
, vol.48
, pp. 398-408
-
-
Hou, B.1
Lin, P.J.2
Johnson, A.E.3
-
36
-
-
84952886698
-
Structure of the Sec61 channel opened by a signal sequence
-
Voorhees, R. M. & Hegde, R. S. Structure of the Sec61 channel opened by a signal sequence. Science 351, 88-91 (2016).
-
(2016)
Science
, vol.351
, pp. 88-91
-
-
Voorhees, R.M.1
Hegde, R.S.2
-
37
-
-
54049111011
-
Structure of a complex of the ATPase SecA and the protein-translocation channel
-
Zimmer, J., Nam, Y. & Rapoport, T. A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455, 936-943 (2008).
-
(2008)
Nature
, vol.455
, pp. 936-943
-
-
Zimmer, J.1
Nam, Y.2
Rapoport, T.A.3
-
38
-
-
84872016140
-
A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function
-
Trueman, S. F., Mandon, E. C. & Gilmore, R. A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function. J. Cell Biol. 199, 907-918 (2012).
-
(2012)
J. Cell Biol.
, vol.199
, pp. 907-918
-
-
Trueman, S.F.1
Mandon, E.C.2
Gilmore, R.3
-
39
-
-
84886722797
-
Monitoring the activity of single translocons
-
Taufik, I., Kedrov, A., Exterkate, M. & Driessen, A. J. Monitoring the activity of single translocons. J. Mol. Biol. 425, 4145-4153 (2013).
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 4145-4153
-
-
Taufik, I.1
Kedrov, A.2
Exterkate, M.3
Driessen, A.J.4
-
40
-
-
84893630228
-
Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion
-
Gogala, M. et al. Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506, 107-110 (2014).
-
(2014)
Nature
, vol.506
, pp. 107-110
-
-
Gogala, M.1
-
41
-
-
84890202427
-
Quaternary dynamics of the SecA motor drive translocase catalysis
-
Gouridis, G. et al. Quaternary dynamics of the SecA motor drive translocase catalysis. Mol. Cell 52, 655-666 (2013).
-
(2013)
Mol. Cell
, vol.52
, pp. 655-666
-
-
Gouridis, G.1
-
42
-
-
36049046667
-
Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR
-
Gelis, I. et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131, 756-769 (2007).
-
(2007)
Cell
, vol.131
, pp. 756-769
-
-
Gelis, I.1
-
43
-
-
34250792185
-
Preprotein-controlled catalysis in the helicase motor of SecA
-
Karamanou, S. et al. Preprotein-controlled catalysis in the helicase motor of SecA. EMBO J. 26, 2904-2914 (2007).
-
(2007)
EMBO J.
, vol.26
, pp. 2904-2914
-
-
Karamanou, S.1
-
44
-
-
33745863903
-
Disorder-order folding transitions underlie catalysis in the helicase motor of SecA
-
Keramisanou, D. et al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nat. Struct. Mol. Biol. 13, 594-602 (2006).
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 594-602
-
-
Keramisanou, D.1
-
45
-
-
84902097375
-
A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase
-
Bauer, B. W., Shemesh, T., Chen, Y. & Rapoport, T. A. A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. Cell 157, 1416-1429 (2014).
-
(2014)
Cell
, vol.157
, pp. 1416-1429
-
-
Bauer, B.W.1
Shemesh, T.2
Chen, Y.3
Rapoport, T.A.4
-
46
-
-
84982182123
-
Crystal structure of a substrate-engaged SecY protein-translocation channel
-
Li, L. et al. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531, 395-399 (2016).
-
(2016)
Nature
, vol.531
, pp. 395-399
-
-
Li, L.1
-
47
-
-
36148937889
-
Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix
-
Parlitz, R. et al. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 282, 32176-32184 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 32176-32184
-
-
Parlitz, R.1
-
48
-
-
20044388542
-
FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon
-
Angelini, S., Deitermann, S. & Koch, H. G. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep. 6, 476-481 (2005).
-
(2005)
EMBO Rep.
, vol.6
, pp. 476-481
-
-
Angelini, S.1
Deitermann, S.2
Koch, H.G.3
-
49
-
-
84902330606
-
Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting
-
Saraogi, I., Akopian, D. & Shan, S. O. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. J. Cell Biol. 205, 693-706 (2014).
-
(2014)
J. Cell Biol.
, vol.205
, pp. 693-706
-
-
Saraogi, I.1
Akopian, D.2
Shan, S.O.3
-
50
-
-
33751321592
-
Real-time observation of trigger factor function on translating ribosomes
-
Kaiser, C. M. et al. Real-time observation of trigger factor function on translating ribosomes. Nature 444, 455-460 (2006).
-
(2006)
Nature
, vol.444
, pp. 455-460
-
-
Kaiser, C.M.1
-
51
-
-
84902255537
-
Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane
-
Castanie-Cornet, M. P., Bruel, N. & Genevaux, P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim. Biophys. Acta 1843, 1442-1456 (2014).
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 1442-1456
-
-
Castanie-Cornet, M.P.1
Bruel, N.2
Genevaux, P.3
-
52
-
-
84920651078
-
Multitasking SecB chaperones in bacteria
-
Sala, A., Bordes, P. & Genevaux, P. Multitasking SecB chaperones in bacteria. Front. Microbiol. 5, 666 (2014).
-
(2014)
Front. Microbiol.
, vol.5
, pp. 666
-
-
Sala, A.1
Bordes, P.2
Genevaux, P.3
-
53
-
-
36749011854
-
Direct observation of chaperone-induced changes in a protein folding pathway
-
Bechtluft, P. et al. Direct observation of chaperone-induced changes in a protein folding pathway. Science 318, 1458-1461 (2007).
-
(2007)
Science
, vol.318
, pp. 1458-1461
-
-
Bechtluft, P.1
-
54
-
-
79960652801
-
Molecular chaperones in protein folding and proteostasis
-
Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332 (2011).
-
(2011)
Nature
, vol.475
, pp. 324-332
-
-
Hartl, F.U.1
Bracher, A.2
Hayer-Hartl, M.3
-
55
-
-
33744522928
-
Defining the role of the Escherichia coli chaperone SecB using comparative proteomics
-
Baars, L. et al. Defining the role of the Escherichia coli chaperone SecB using comparative proteomics. J. Biol. Chem. 281, 10024-10034 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 10024-10034
-
-
Baars, L.1
-
56
-
-
33847629610
-
Trigger factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli
-
Ullers, R. S., Ang, D., Schwager, F., Georgopoulos, C. & Genevaux, P. Trigger factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli. Proc. Natl Acad. Sci. USA 104, 3101-3106 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 3101-3106
-
-
Ullers, R.S.1
Ang, D.2
Schwager, F.3
Georgopoulos, C.4
Genevaux, P.5
-
57
-
-
0037044752
-
Trigger factor retards protein export in Escherichia coli
-
Lee, H. C. & Bernstein, H. D. Trigger factor retards protein export in Escherichia coli. J. Biol. Chem. 277, 43527-43535 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 43527-43535
-
-
Lee, H.C.1
Bernstein, H.D.2
-
58
-
-
1642348275
-
Effect of signal peptide on the stability and folding kinetics of maltose binding protein
-
Beena, K., Udgaonkar, J. B. & Varadarajan, R. Effect of signal peptide on the stability and folding kinetics of maltose binding protein. Biochemistry 43, 3608-3619 (2004).
-
(2004)
Biochemistry
, vol.43
, pp. 3608-3619
-
-
Beena, K.1
Udgaonkar, J.B.2
Varadarajan, R.3
-
59
-
-
0036439069
-
The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli
-
Adams, H., Scotti, P. A., De Cock, H., Luirink, J. & Tommassen, J. The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli. Eur. J. Biochem. 269, 5564-5571 (2002).
-
(2002)
Eur. J. Biochem.
, vol.269
, pp. 5564-5571
-
-
Adams, H.1
Scotti, P.A.2
De Cock, H.3
Luirink, J.4
Tommassen, J.5
-
60
-
-
79952363483
-
Structural basis of signal-sequence recognition by the signal recognition particle
-
Hainzl, T., Huang, S., Merilainen, G., Brannstrom, K. & Sauer-Eriksson, A. E. Structural basis of signal-sequence recognition by the signal recognition particle. Nat. Struct. Mol. Biol. 18, 389-391 (2011).
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 389-391
-
-
Hainzl, T.1
Huang, S.2
Merilainen, G.3
Brannstrom, K.4
Sauer-Eriksson, A.E.5
-
61
-
-
84935014070
-
Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting
-
Ariosa, A., Lee, J. H., Wang, S., Saraogi, I. & Shan, S. O. Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting. Proc. Natl Acad. Sci. USA 112, E3169-E3178 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. E3169-E3178
-
-
Ariosa, A.1
Lee, J.H.2
Wang, S.3
Saraogi, I.4
Shan, S.O.5
-
62
-
-
85017331117
-
Real-time observation of signal recognition particle binding to actively translating ribosomes
-
Noriega, T. R., Chen, J., Walter, P. & Puglisi, J. D. Real-time observation of signal recognition particle binding to actively translating ribosomes. eLife 3, e04418 (2014).
-
(2014)
ELife
, vol.3
, pp. e04418
-
-
Noriega, T.R.1
Chen, J.2
Walter, P.3
Puglisi, J.D.4
-
63
-
-
84925998694
-
mRNA-programmed translation pauses in the targeting of E. Coli membrane proteins
-
Fluman, N., Navon, S., Bibi, E. & Pilpel, Y. mRNA-programmed translation pauses in the targeting of E. Coli membrane proteins. eLife 3, e03440 (2014).
-
(2014)
ELife
, vol.3
, pp. e03440
-
-
Fluman, N.1
Navon, S.2
Bibi, E.3
Pilpel, Y.4
-
64
-
-
84925553022
-
Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo
-
Pechmann, S., Chartron, J. W. & Frydman, J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. Struct. Mol. Biol. 21, 1100-1105 (2014).
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 1100-1105
-
-
Pechmann, S.1
Chartron, J.W.2
Frydman, J.3
-
65
-
-
4444356342
-
Whole genome analysis reveals a high incidence of non-optimal codons in secretory signal sequences of Escherichia coli
-
Power, P. M., Jones, R. A., Beacham, I. R., Bucholtz, C. & Jennings, M. P. Whole genome analysis reveals a high incidence of non-optimal codons in secretory signal sequences of Escherichia coli. Biochem. Biophys. Res. Commun. 322, 1038-1044 (2004).
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.322
, pp. 1038-1044
-
-
Power, P.M.1
Jones, R.A.2
Beacham, I.R.3
Bucholtz, C.4
Jennings, M.P.5
-
66
-
-
84958554893
-
Accurate prediction of cellular co-translational folding indicates proteins can switch from post-to co-translational folding
-
Nissley, D. A. et al. Accurate prediction of cellular co-translational folding indicates proteins can switch from post-to co-translational folding. Nat. Commun. 7, 10341 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 10341
-
-
Nissley, D.A.1
-
67
-
-
80051797261
-
Directed evolution of efficient secretion in the SRP-dependent export of TolB
-
Zalucki, Y. M., Shafer, W. M. & Jennings, M. P. Directed evolution of efficient secretion in the SRP-dependent export of TolB. Biochim. Biophys. Acta 1808, 2544-2550 (2011).
-
(2011)
Biochim. Biophys. Acta
, vol.1808
, pp. 2544-2550
-
-
Zalucki, Y.M.1
Shafer, W.M.2
Jennings, M.P.3
-
68
-
-
44649188719
-
Molecular mechanism and structure of trigger factor bound to the translating ribosome
-
Merz, F. et al. Molecular mechanism and structure of trigger factor bound to the translating ribosome. EMBO J. 27, 1622-1632 (2008).
-
(2008)
EMBO J.
, vol.27
, pp. 1622-1632
-
-
Merz, F.1
-
69
-
-
17644386832
-
Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation
-
Huber, D. et al. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 187, 2983-2991 (2005).
-
(2005)
J. Bacteriol.
, vol.187
, pp. 2983-2991
-
-
Huber, D.1
-
70
-
-
33646918973
-
An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex
-
Peterson, J. H., Szabady, R. L. & Bernstein, H. D. An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex. J. Biol. Chem. 281, 9038-9048 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 9038-9048
-
-
Peterson, J.H.1
Szabady, R.L.2
Bernstein, H.D.3
-
71
-
-
79960923840
-
Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes
-
del Alamo, M. et al. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLoS Biol. 9, e1001100 (2011).
-
(2011)
PLoS Biol.
, vol.9
, pp. e1001100
-
-
Del Alamo, M.1
-
72
-
-
84899537656
-
Signal recognition particle and SecA cooperate during export of secretory proteins with highly hydrophobic signal sequences
-
Zhou, Y., Ueda, T. & Muller, M. Signal recognition particle and SecA cooperate during export of secretory proteins with highly hydrophobic signal sequences. PLoS ONE 9, e92994 (2014).
-
(2014)
PLoS ONE
, vol.9
, pp. e92994
-
-
Zhou, Y.1
Ueda, T.2
Muller, M.3
-
73
-
-
1542358892
-
Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
-
Woolhead, C. A., McCormick, P. J. & Johnson, A. E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725-736 (2004).
-
(2004)
Cell
, vol.116
, pp. 725-736
-
-
Woolhead, C.A.1
McCormick, P.J.2
Johnson, A.E.3
-
74
-
-
84948470148
-
Cotranslational protein folding on the ribosome monitored in real time
-
Holtkamp, W. et al. Cotranslational protein folding on the ribosome monitored in real time. Science 350, 1104-1107 (2015).
-
(2015)
Science
, vol.350
, pp. 1104-1107
-
-
Holtkamp, W.1
-
75
-
-
0024022420
-
ProOmpA spontaneously folds in a membrane assembly competent state which trigger factor stabilizes
-
Crooke, E., Brundage, L., Rice, M. & Wickner, W. ProOmpA spontaneously folds in a membrane assembly competent state which trigger factor stabilizes. EMBO J. 7, 1831-1835 (1988).
-
(1988)
EMBO J.
, vol.7
, pp. 1831-1835
-
-
Crooke, E.1
Brundage, L.2
Rice, M.3
Wickner, W.4
-
76
-
-
0026025966
-
A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperone SecB
-
Hardy, S. J. & Randall, L. L. A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperone SecB. Science 251, 439-443 (1991).
-
(1991)
Science
, vol.251
, pp. 439-443
-
-
Hardy, S.J.1
Randall, L.L.2
-
77
-
-
0027457077
-
A signal sequence is not required for protein export in prlA mutants of Escherichia coli
-
Derman, A. I., Puziss, J. W., Bassford, P. J. Jr & Beckwith, J. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12, 879-888 (1993).
-
(1993)
EMBO J.
, vol.12
, pp. 879-888
-
-
Derman, A.I.1
Puziss, J.W.2
Bassford, P.J.3
Beckwith, J.4
-
78
-
-
0030832397
-
Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor
-
Powers, T. & Walter, P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16, 4880-4886 (1997).
-
(1997)
EMBO J.
, vol.16
, pp. 4880-4886
-
-
Powers, T.1
Walter, P.2
-
79
-
-
0025601549
-
The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence
-
Zopf, D., Bernstein, H. D., Johnson, A. E. & Walter, P. The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511-4517 (1990).
-
(1990)
EMBO J.
, vol.9
, pp. 4511-4517
-
-
Zopf, D.1
Bernstein, H.D.2
Johnson, A.E.3
Walter, P.4
-
80
-
-
77955881180
-
Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting
-
Lam, V. Q., Akopian, D., Rome, M., Henningsen, D. & Shan, S. O. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J. Cell Biol. 190, 623-635 (2010).
-
(2010)
J. Cell Biol.
, vol.190
, pp. 623-635
-
-
Lam, V.Q.1
Akopian, D.2
Rome, M.3
Henningsen, D.4
Shan, S.O.5
-
81
-
-
0025003789
-
Trigger factor depletion or overproduction causes defective cell division but does not block protein export
-
Guthrie, B. & Wickner, W. Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J. Bacteriol. 172, 5555-5562 (1990).
-
(1990)
J. Bacteriol.
, vol.172
, pp. 5555-5562
-
-
Guthrie, B.1
Wickner, W.2
-
82
-
-
77953027489
-
Structure and function of the molecular chaperone trigger factor
-
Hoffmann, A., Bukau, B. & Kramer, G. Structure and function of the molecular chaperone trigger factor. Biochim. Biophys. Acta 1803, 650-661 (2010).
-
(2010)
Biochim. Biophys. Acta
, vol.1803
, pp. 650-661
-
-
Hoffmann, A.1
Bukau, B.2
Kramer, G.3
-
83
-
-
0035807963
-
Binding specificity of Escherichia coli trigger factor
-
Patzelt, H. et al. Binding specificity of Escherichia coli trigger factor. Proc. Natl Acad. Sci. USA 98, 14244-14249 (2001).
-
(2001)
Proc. Natl Acad. Sci. USA
, vol.98
, pp. 14244-14249
-
-
Patzelt, H.1
-
84
-
-
84867379923
-
Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding
-
Hoffmann, A. et al. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol. Cell 48, 63-74 (2012).
-
(2012)
Mol. Cell
, vol.48
, pp. 63-74
-
-
Hoffmann, A.1
-
85
-
-
69449095153
-
Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone
-
Martinez-Hackert, E. & Hendrickson, W. A. Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138, 923-934 (2009).
-
(2009)
Cell
, vol.138
, pp. 923-934
-
-
Martinez-Hackert, E.1
Hendrickson, W.A.2
-
86
-
-
0344983315
-
Crystal structure of SecB from Escherichia coli
-
Dekker, C., de Kruijff, B. & Gros, P. Crystal structure of SecB from Escherichia coli. J. Struct. Biol. 144, 313-319 (2003).
-
(2003)
J. Struct. Biol.
, vol.144
, pp. 313-319
-
-
Dekker, C.1
De Kruijff, B.2
Gros, P.3
-
87
-
-
0033675260
-
Crystal structure of the bacterial protein export chaperone SecB
-
Xu, Z., Knafels, J. D. & Yoshino, K. Crystal structure of the bacterial protein export chaperone SecB. Nat. Struct. Biol. 7, 1172-1177 (2000).
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 1172-1177
-
-
Xu, Z.1
Knafels, J.D.2
Yoshino, K.3
-
88
-
-
77949510819
-
Tight hydrophobic contacts with the SecB chaperone prevent folding of substrate proteins
-
Bechtluft, P. et al. Tight hydrophobic contacts with the SecB chaperone prevent folding of substrate proteins. Biochemistry 49, 2380-2388 (2010).
-
(2010)
Biochemistry
, vol.49
, pp. 2380-2388
-
-
Bechtluft, P.1
-
89
-
-
84984661295
-
Structural basis for the antifolding activity of a molecular chaperone
-
Huang, C., Rossi, P., Saio, T. & Kalodimos, C. G. Structural basis for the antifolding activity of a molecular chaperone. Nature 537, 202-206 (2016).
-
(2016)
Nature
, vol.537
, pp. 202-206
-
-
Huang, C.1
Rossi, P.2
Saio, T.3
Kalodimos, C.G.4
-
90
-
-
69249101589
-
Export chaperone SecB uses one surface of interaction for diverse unfolded polypeptide ligands
-
Lilly, A. A., Crane, J. M. & Randall, L. L. Export chaperone SecB uses one surface of interaction for diverse unfolded polypeptide ligands. Protein Sci. 18, 1860-1868 (2009).
-
(2009)
Protein Sci.
, vol.18
, pp. 1860-1868
-
-
Lilly, A.A.1
Crane, J.M.2
Randall, L.L.3
-
91
-
-
0041154140
-
Substrate specificity of the SecB chaperone
-
Knoblauch, N. T. et al. Substrate specificity of the SecB chaperone. J. Biol. Chem. 274, 34219-34225 (1999).
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 34219-34225
-
-
Knoblauch, N.T.1
-
92
-
-
0028883731
-
High-affinity binding of Escherichia coli SecB to the signal sequence region of a presecretory protein
-
Watanabe, M. & Blobel, G. High-affinity binding of Escherichia coli SecB to the signal sequence region of a presecretory protein. Proc. Natl Acad. Sci. USA 92, 10133-10136 (1995).
-
(1995)
Proc. Natl Acad. Sci. USA
, vol.92
, pp. 10133-10136
-
-
Watanabe, M.1
Blobel, G.2
-
93
-
-
0030703175
-
The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation
-
Fekkes, P., van der Does, C. & Driessen, A. J. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J. 16, 6105-6113 (1997).
-
(1997)
EMBO J.
, vol.16
, pp. 6105-6113
-
-
Fekkes, P.1
Van Der Does, C.2
Driessen, A.J.3
-
94
-
-
84922345092
-
The basis of asymmetry in the SecA-SecB complex
-
Suo, Y., Hardy, S. J. & Randall, L. L. The basis of asymmetry in the SecA-SecB complex. J. Mol. Biol. 427, 887-900 (2015).
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 887-900
-
-
Suo, Y.1
Hardy, S.J.2
Randall, L.L.3
-
95
-
-
0242407175
-
Structural determinants of SecB recognition by SecA in bacterial protein translocation
-
Zhou, J. & Xu, Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nat. Struct. Biol. 10, 942-947 (2003).
-
(2003)
Nat. Struct. Biol.
, vol.10
, pp. 942-947
-
-
Zhou, J.1
Xu, Z.2
-
96
-
-
78650095172
-
Orientation of SecA and SecB in complex, derived from disulfide cross-linking
-
Suo, Y., Hardy, S. J. & Randall, L. L. Orientation of SecA and SecB in complex, derived from disulfide cross-linking. J. Bacteriol. 193, 190-196 (2011).
-
(2011)
J. Bacteriol.
, vol.193
, pp. 190-196
-
-
Suo, Y.1
Hardy, S.J.2
Randall, L.L.3
-
97
-
-
79551533114
-
Dimeric SecA couples the preprotein translocation in an asymmetric manner
-
Tang, Y., Pan, X., Chen, Y., Tai, P. C. & Sui, S. F. Dimeric SecA couples the preprotein translocation in an asymmetric manner. PLoS ONE 6, e16498 (2011).
-
(2011)
PLoS ONE
, vol.6
, pp. e16498
-
-
Tang, Y.1
Pan, X.2
Chen, Y.3
Tai, P.C.4
Sui, S.F.5
-
98
-
-
0037144467
-
Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA
-
Hunt, J. F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018-2026 (2002).
-
(2002)
Science
, vol.297
, pp. 2018-2026
-
-
Hunt, J.F.1
-
99
-
-
70449534599
-
Conformational flexibility and peptide interaction of the translocation ATPase SecA
-
Zimmer, J. & Rapoport, T. A. Conformational flexibility and peptide interaction of the translocation ATPase SecA. J. Mol. Biol. 394, 606-612 (2009).
-
(2009)
J. Mol. Biol.
, vol.394
, pp. 606-612
-
-
Zimmer, J.1
Rapoport, T.A.2
-
100
-
-
30044431592
-
Identification of the preprotein binding domain of SecA
-
Papanikou, E. et al. Identification of the preprotein binding domain of SecA. J. Biol. Chem. 280, 43209-43217 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 43209-43217
-
-
Papanikou, E.1
-
101
-
-
0033428711
-
A molecular switch in SecA protein couples ATP hydrolysis to protein translocation
-
Karamanou, S. et al. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. 34, 1133-1145 (1999).
-
(1999)
Mol. Microbiol.
, vol.34
, pp. 1133-1145
-
-
Karamanou, S.1
-
102
-
-
73949146135
-
Mapping polypeptide interactions of the SecA ATPase during translocation
-
Bauer, B. W. & Rapoport, T. A. Mapping polypeptide interactions of the SecA ATPase during translocation. Proc. Natl Acad. Sci. USA 106, 20800-20805 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 20800-20805
-
-
Bauer, B.W.1
Rapoport, T.A.2
-
103
-
-
79955901001
-
Preserving the membrane barrier for small molecules during bacterial protein translocation
-
Park, E. & Rapoport, T. A. Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature 473, 239-242 (2011).
-
(2011)
Nature
, vol.473
, pp. 239-242
-
-
Park, E.1
Rapoport, T.A.2
-
104
-
-
27144525002
-
Investigating the SecY plug movement at the SecYEG translocation channel
-
Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380-3388 (2005).
-
(2005)
EMBO J.
, vol.24
, pp. 3380-3388
-
-
Tam, P.C.1
Maillard, A.P.2
Chan, K.K.3
Duong, F.4
-
105
-
-
84952873695
-
Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state
-
Tanaka, Y. et al. Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state. Cell Rep. 13, 1561-1568 (2015).
-
(2015)
Cell Rep.
, vol.13
, pp. 1561-1568
-
-
Tanaka, Y.1
-
106
-
-
84861167327
-
Structure of the SecY complex unlocked by a preprotein mimic
-
Hizlan, D. et al. Structure of the SecY complex unlocked by a preprotein mimic. Cell Rep. 1, 21-28 (2012).
-
(2012)
Cell Rep.
, vol.1
, pp. 21-28
-
-
Hizlan, D.1
-
107
-
-
0037043724
-
Three-dimensional structure of the bacterial protein-translocation complex SecYEG
-
Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662-665 (2002).
-
(2002)
Nature
, vol.418
, pp. 662-665
-
-
Breyton, C.1
Haase, W.2
Rapoport, T.A.3
Kuhlbrandt, W.4
Collinson, I.5
-
108
-
-
27844444793
-
Structure of the E. Coli protein-conducting channel bound to a translating ribosome
-
Mitra, K. et al. Structure of the E. Coli protein-conducting channel bound to a translating ribosome. Nature 438, 318-324 (2005).
-
(2005)
Nature
, vol.438
, pp. 318-324
-
-
Mitra, K.1
-
109
-
-
84866388574
-
Bacterial protein translocation requires only one copy of the SecY complex in vivo
-
Park, E. & Rapoport, T. A. Bacterial protein translocation requires only one copy of the SecY complex in vivo. J. Cell Biol. 198, 881-893 (2012).
-
(2012)
J. Cell Biol.
, vol.198
, pp. 881-893
-
-
Park, E.1
Rapoport, T.A.2
-
110
-
-
79953022888
-
The oligomeric state and arrangement of the active bacterial translocon
-
Deville, K. et al. The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 286, 4659-4669 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 4659-4669
-
-
Deville, K.1
-
111
-
-
84858238365
-
Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase
-
Dalal, K., Chan, C. S., Sligar, S. G. & Duong, F. Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase. Proc. Natl Acad. Sci. USA 109, 4104-4109 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 4104-4109
-
-
Dalal, K.1
Chan, C.S.2
Sligar, S.G.3
Duong, F.4
-
112
-
-
80455155003
-
A single copy of SecYEG is sufficient for preprotein translocation
-
Kedrov, A., Kusters, I., Krasnikov, V. V. & Driessen, A. J. A single copy of SecYEG is sufficient for preprotein translocation. EMBO J. 30, 4387-4397 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 4387-4397
-
-
Kedrov, A.1
Kusters, I.2
Krasnikov, V.V.3
Driessen, A.J.4
-
113
-
-
33947717366
-
Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel
-
Osborne, A. R. & Rapoport, T. A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97-110 (2007).
-
(2007)
Cell
, vol.129
, pp. 97-110
-
-
Osborne, A.R.1
Rapoport, T.A.2
-
114
-
-
54049151196
-
Conformational transition of Sec machinery inferred from bacterial SecYE structures
-
Tsukazaki, T. et al. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988-991 (2008).
-
(2008)
Nature
, vol.455
, pp. 988-991
-
-
Tsukazaki, T.1
-
115
-
-
77950448361
-
Hydrophobically stabilized open state for the lateral gate of the Sec translocon
-
Zhang, B. & Miller, T. F. Hydrophobically stabilized open state for the lateral gate of the Sec translocon. Proc. Natl Acad. Sci. USA 107, 5399-5404 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 5399-5404
-
-
Zhang, B.1
Miller, T.F.2
-
116
-
-
84878768073
-
Dynamic structure of the translocon SecYEG in membrane: Direct single molecule observations
-
Sanganna Gari, R. R., Frey, N. C., Mao, C., Randall, L. L. & King, G. M. Dynamic structure of the translocon SecYEG in membrane: direct single molecule observations. J. Biol. Chem. 288, 16848-16854 (2013).
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 16848-16854
-
-
Sanganna Gari, R.R.1
Frey, N.C.2
Mao, C.3
Randall, L.L.4
King, G.M.5
-
117
-
-
84903310310
-
Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution
-
Voorhees, R. M., Fernandez, I. S., Scheres, S. H. & Hegde, R. S. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157, 1632-1643 (2014).
-
(2014)
Cell
, vol.157
, pp. 1632-1643
-
-
Voorhees, R.M.1
Fernandez, I.S.2
Scheres, S.H.3
Hegde, R.S.4
-
118
-
-
70350738240
-
Regulation of the protein-conducting channel by a bound ribosome
-
Gumbart, J., Trabuco, L. G., Schreiner, E., Villa, E. & Schulten, K. Regulation of the protein-conducting channel by a bound ribosome. Structure 17, 1453-1464 (2009).
-
(2009)
Structure
, vol.17
, pp. 1453-1464
-
-
Gumbart, J.1
Trabuco, L.G.2
Schreiner, E.3
Villa, E.4
Schulten, K.5
-
119
-
-
0025317011
-
The sec and prl genes of Escherichia coli
-
Bieker, K. L., Phillips, G. J. & Silhavy, T. J. The sec and prl genes of Escherichia coli. J. Bioenerg. Biomembr. 22, 291-310 (1990).
-
(1990)
J. Bioenerg. Biomembr.
, vol.22
, pp. 291-310
-
-
Bieker, K.L.1
Phillips, G.J.2
Silhavy, T.J.3
-
120
-
-
24944465005
-
Modeling the effects of prl mutations on the Escherichia coli SecY complex
-
Smith, M. A., Clemons, W. M. Jr., DeMars, C. J. & Flower, A. M. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 187, 6454-6465 (2005).
-
(2005)
J. Bacteriol.
, vol.187
, pp. 6454-6465
-
-
Smith, M.A.1
Clemons, W.M.2
DeMars, C.J.3
Flower, A.M.4
-
121
-
-
0033564538
-
The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits
-
Duong, F. & Wickner, W. The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits. EMBO J. 18, 3263-3270 (1999).
-
(1999)
EMBO J.
, vol.18
, pp. 3263-3270
-
-
Duong, F.1
Wickner, W.2
-
122
-
-
84893726448
-
Structure of the SecY channel during initiation of protein translocation
-
Park, E. et al. Structure of the SecY channel during initiation of protein translocation. Nature 506, 102-106 (2014).
-
(2014)
Nature
, vol.506
, pp. 102-106
-
-
Park, E.1
-
123
-
-
36349034451
-
Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology
-
Junne, T., Schwede, T., Goder, V. & Spiess, M. Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology. J. Biol. Chem. 282, 33201-33209 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 33201-33209
-
-
Junne, T.1
Schwede, T.2
Goder, V.3
Spiess, M.4
-
124
-
-
84874621061
-
ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase
-
Kim, D. M., Zheng, H., Huang, Y. J., Montelione, G. T. & Hunt, J. F. ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase. J. Am. Chem. Soc. 135, 2999-3010 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 2999-3010
-
-
Kim, D.M.1
Zheng, H.2
Huang, Y.J.3
Montelione, G.T.4
Hunt, J.F.5
-
125
-
-
84872460710
-
The dynamic action of SecA during the initiation of protein translocation
-
Gold, V. A., Whitehouse, S., Robson, A. & Collinson, I. The dynamic action of SecA during the initiation of protein translocation. Biochem. J. 449, 695-705 (2013).
-
(2013)
Biochem. J.
, vol.449
, pp. 695-705
-
-
Gold, V.A.1
Whitehouse, S.2
Robson, A.3
Collinson, I.4
-
126
-
-
84934914155
-
Conformational changes of the clamp of the protein translocation ATPase SecA
-
Chen, Y., Bauer, B. W., Rapoport, T. A. & Gumbart, J. C. Conformational changes of the clamp of the protein translocation ATPase SecA. J. Mol. Biol. 427, 2348-2359 (2015).
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 2348-2359
-
-
Chen, Y.1
Bauer, B.W.2
Rapoport, T.A.3
Gumbart, J.C.4
-
127
-
-
4444316122
-
Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase
-
Papanikou, E. et al. Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase. EMBO Rep. 5, 807-811 (2004).
-
(2004)
EMBO Rep.
, vol.5
, pp. 807-811
-
-
Papanikou, E.1
-
128
-
-
33750821188
-
A novel dimer interface and conformational changes revealed by an X-ray structure of B. Subtilis SecA
-
Zimmer, J., Li, W. & Rapoport, T. A. A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA. J. Mol. Biol. 364, 259-265 (2006).
-
(2006)
J. Mol. Biol.
, vol.364
, pp. 259-265
-
-
Zimmer, J.1
Li, W.2
Rapoport, T.A.3
-
129
-
-
0345184333
-
Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase
-
Sharma, V. et al. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc. Natl Acad. Sci. USA 100, 2243-2248 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 2243-2248
-
-
Sharma, V.1
-
130
-
-
36048929458
-
A large conformational change couples the ATP binding site of SecA to the SecY protein channel
-
Robson, A., Booth, A. E., Gold, V. A., Clarke, A. R. & Collinson, I. A large conformational change couples the ATP binding site of SecA to the SecY protein channel. J. Mol. Biol. 374, 965-976 (2007).
-
(2007)
J. Mol. Biol.
, vol.374
, pp. 965-976
-
-
Robson, A.1
Booth, A.E.2
Gold, V.A.3
Clarke, A.R.4
Collinson, I.5
-
131
-
-
0035282958
-
Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function
-
Sianidis, G. et al. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J. 20, 961-970 (2001).
-
(2001)
EMBO J.
, vol.20
, pp. 961-970
-
-
Sianidis, G.1
-
132
-
-
34247214427
-
Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA
-
Alami, M., Dalal, K., Lelj-Garolla, B., Sligar, S. G. & Duong, F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 26, 1995-2004 (2007).
-
(2007)
EMBO J.
, vol.26
, pp. 1995-2004
-
-
Alami, M.1
Dalal, K.2
Lelj-Garolla, B.3
Sligar, S.G.4
Duong, F.5
-
133
-
-
77952850206
-
SecA: A tale of two protomers
-
Sardis, M. F. & Economou, A. SecA: a tale of two protomers. Mol. Microbiol. 76, 1070-1081 (2010).
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 1070-1081
-
-
Sardis, M.F.1
Economou, A.2
-
134
-
-
83755168976
-
Conformational dynamics of the plug domain of the SecYEG protein-conducting channel
-
Lycklama a, Nijeholt, J. A., Wu, Z. C. & Driessen, A. J. Conformational dynamics of the plug domain of the SecYEG protein-conducting channel. J. Biol. Chem. 286, 43881-43890 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 43881-43890
-
-
Lycklama, A.1
Nijeholt, J.A.2
Wu, Z.C.3
Driessen, A.J.4
-
135
-
-
84975225082
-
Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation
-
Allen, W. J. et al. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife 5, e15598 (2016).
-
(2016)
ELife
, vol.5
, pp. e15598
-
-
Allen, W.J.1
-
136
-
-
0034697967
-
The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
-
Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233-244 (2000).
-
(2000)
Cell
, vol.102
, pp. 233-244
-
-
Heinrich, S.U.1
Mothes, W.2
Brunner, J.3
Rapoport, T.A.4
-
137
-
-
37249037182
-
Molecular code for transmembrane-helix recognition by the Sec61 translocon
-
Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026-1030 (2007).
-
(2007)
Nature
, vol.450
, pp. 1026-1030
-
-
Hessa, T.1
-
138
-
-
48249095616
-
How translocons select transmembrane helices
-
White, S. H. & von Heijne, G. How translocons select transmembrane helices. Annu. Rev. Biophys. 37, 23-42 (2008).
-
(2008)
Annu. Rev. Biophys.
, vol.37
, pp. 23-42
-
-
White, S.H.1
Von Heijne, G.2
-
139
-
-
33646191829
-
Motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes
-
Tian, P. & Andricioaei, I. Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes. Biophys. J. 90, 2718-2730 (2006).
-
(2006)
Biophys. J.
, vol.90
, pp. 2718-2730
-
-
Tian, P.1
Size, A.I.2
-
140
-
-
84867218476
-
A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration
-
Ismail, N., Hedman, R., Schiller, N. & von Heijne, G. A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat. Struct. Mol. Biol. 19, 1018-1022 (2012).
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1018-1022
-
-
Ismail, N.1
Hedman, R.2
Schiller, N.3
Von Heijne, G.4
-
141
-
-
84857439394
-
Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix
-
Ojemalm, K., Halling, K. K., Nilsson, I. & von Heijne, G. Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix. Mol. Cell 45, 529-540 (2012).
-
(2012)
Mol. Cell
, vol.45
, pp. 529-540
-
-
Ojemalm, K.1
Halling, K.K.2
Nilsson, I.3
Von Heijne, G.4
-
142
-
-
28244452583
-
A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli
-
Deitermann, S., Sprie, G. S. & Koch, H. G. A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli. J. Biol. Chem. 280, 39077-39085 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 39077-39085
-
-
Deitermann, S.1
Sprie, G.S.2
Koch, H.G.3
-
143
-
-
84902239988
-
Lipids and topological rules governing membrane protein assembly
-
Bogdanov, M., Dowhan, W. & Vitrac, H. Lipids and topological rules governing membrane protein assembly. Biochim. Biophys. Acta 1843, 1475-1488 (2014).
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 1475-1488
-
-
Bogdanov, M.1
Dowhan, W.2
Vitrac, H.3
-
144
-
-
0028064967
-
SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion
-
Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835-843 (1994).
-
(1994)
Cell
, vol.78
, pp. 835-843
-
-
Economou, A.1
Wickner, W.2
-
145
-
-
54049142467
-
A role for the two-helix finger of the SecA ATPase in protein translocation
-
Erlandson, K. J. et al. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455, 984-987 (2008).
-
(2008)
Nature
, vol.455
, pp. 984-987
-
-
Erlandson, K.J.1
-
146
-
-
84872008993
-
Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex
-
Whitehouse, S. et al. Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex. J. Cell Biol. 199, 919-929 (2012).
-
(2012)
J. Cell Biol.
, vol.199
, pp. 919-929
-
-
Whitehouse, S.1
-
147
-
-
79958281760
-
Structure and function of a membrane component SecDF that enhances protein export
-
Tsukazaki, T. et al. Structure and function of a membrane component SecDF that enhances protein export. Nature 474, 235-238 (2011).
-
(2011)
Nature
, vol.474
, pp. 235-238
-
-
Tsukazaki, T.1
-
148
-
-
0031435335
-
The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events
-
van der Wolk, J. P., de Wit, J. G. & Driessen, A. J. The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J. 16, 7297-7304 (1997).
-
(1997)
EMBO J.
, vol.16
, pp. 7297-7304
-
-
Van Der Wolk, J.P.1
De Wit, J.G.2
Driessen, A.J.3
-
149
-
-
70350148599
-
Bacterial Sec protein transport is rate-limited by precursor length: A single turnover study
-
Liang, F. C., Bageshwar, U. K. & Musser, S. M. Bacterial Sec protein transport is rate-limited by precursor length: a single turnover study. Mol. Biol. Cell 20, 4256-4266 (2009).
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4256-4266
-
-
Liang, F.C.1
Bageshwar, U.K.2
Musser, S.M.3
-
150
-
-
84953867922
-
Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization
-
Ting, Y. T. et al. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCrJ 3, 10-19 (2016).
-
(2016)
IUCrJ
, vol.3
, pp. 10-19
-
-
Ting, Y.T.1
-
151
-
-
84905382347
-
Dynamic interaction of the Sec translocon with the chaperone PpiD
-
Sachelaru, I., Petriman, N. A., Kudva, R. & Koch, H. G. Dynamic interaction of the Sec translocon with the chaperone PpiD. J. Biol. Chem. 289, 21706-21715 (2014).
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 21706-21715
-
-
Sachelaru, I.1
Petriman, N.A.2
Kudva, R.3
Koch, H.G.4
-
152
-
-
43949125856
-
The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon
-
Antonoaea, R., Furst, M., Nishiyama, K. & Muller, M. The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. Biochemistry 47, 5649-5656 (2008).
-
(2008)
Biochemistry
, vol.47
, pp. 5649-5656
-
-
Antonoaea, R.1
Furst, M.2
Nishiyama, K.3
Muller, M.4
-
153
-
-
39149133696
-
Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases
-
Xie, K. & Dalbey, R. E. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat. Rev. Microbiol. 6, 234-244 (2008).
-
(2008)
Nat. Rev. Microbiol.
, vol.6
, pp. 234-244
-
-
Xie, K.1
Dalbey, R.E.2
-
154
-
-
84902267629
-
Protein transport by the bacterial Ta t pathway
-
Patel, R., Smith, S. M. & Robinson, C. Protein transport by the bacterial Ta t pathway. Biochim. Biophys. Acta 1843, 1620-1628 (2014).
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 1620-1628
-
-
Patel, R.1
Smith, S.M.2
Robinson, C.3
-
155
-
-
84929314375
-
Secretion systems in Gram-negative bacteria: Structural and mechanistic insights
-
Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343-359 (2015).
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 343-359
-
-
Costa, T.R.1
-
156
-
-
84959178728
-
Type III secretion: Building and operating a remarkable nanomachine
-
Portaliou, A. G., Tsolis, K. C., Loos, M. S., Zorzini, V. & Economou, A. Type III secretion: building and operating a remarkable nanomachine. Trends Biochem. Sci. 41, 175-189 (2016).
-
(2016)
Trends Biochem. Sci.
, vol.41
, pp. 175-189
-
-
Portaliou, A.G.1
Tsolis, K.C.2
Loos, M.S.3
Zorzini, V.4
Economou, A.5
-
158
-
-
84941730080
-
Outer membrane protein biogenesis in Gram-negative bacteria
-
Rollauer, S. E., Sooreshjani, M. A., Noinaj, N. & Buchanan, S. K. Outer membrane protein biogenesis in Gram-negative bacteria. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20150023 (2015).
-
(2015)
Philos. Trans. R. Soc. Lond. B. Biol. Sci.
, vol.370
, pp. 20150023
-
-
Rollauer, S.E.1
Sooreshjani, M.A.2
Noinaj, N.3
Buchanan, S.K.4
-
159
-
-
80053280679
-
Lipoprotein sorting in bacteria
-
Okuda, S. & Tokuda, H. Lipoprotein sorting in bacteria. Annu. Rev. Microbiol. 65, 239-259 (2011).
-
(2011)
Annu. Rev. Microbiol.
, vol.65
, pp. 239-259
-
-
Okuda, S.1
Tokuda, H.2
-
160
-
-
84863533501
-
A protein export pathway involving Escherichia coli porins
-
Prehna, G. et al. A protein export pathway involving Escherichia coli porins. Structure 20, 1154-1166 (2012).
-
(2012)
Structure
, vol.20
, pp. 1154-1166
-
-
Prehna, G.1
-
161
-
-
34748828756
-
Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli
-
Lee, E. Y. et al. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7, 3143-3153 (2007).
-
(2007)
Proteomics
, vol.7
, pp. 3143-3153
-
-
Lee, E.Y.1
-
162
-
-
84902345332
-
Visualization of a polytopic membrane protein during SecY-mediated membrane insertion
-
Bischoff, L., Wickles, S., Berninghausen, O., van der Sluis, E. O. & Beckmann, R. Visualization of a polytopic membrane protein during SecY-mediated membrane insertion. Nat. Commun. 5, 4103 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 4103
-
-
Bischoff, L.1
Wickles, S.2
Berninghausen, O.3
Van Der Sluis, E.O.4
Beckmann, R.5
|