메뉴 건너뛰기




Volumn 20, Issue 19, 2009, Pages 4256-4266

Bacterial Sec protein transport is rate-limited by precursor length: A single turnover study

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ADENOSINE TRIPHOSPHATE; BACTERIAL PROTEIN; OUTER MEMBRANE PROTEIN A; PROTEIN SEC; PROTEIN YEG; UNCLASSIFIED DRUG;

EID: 70350148599     PISSN: 10591524     EISSN: None     Source Type: Journal    
DOI: 10.1091/mbc.E09-01-0075     Document Type: Article
Times cited : (25)

References (43)
  • 1
    • 0028364507 scopus 로고
    • + on the translocation of charged residues explain the 'positive inside' rule
    • + on the translocation of charged residues explain the 'positive inside' rule. EMBO J. 13, 2267-2272.
    • (1994) EMBO J. , vol.13 , pp. 2267-2272
    • Andersson, H.1    Von Heijne, G.2
  • 2
    • 35348963630 scopus 로고    scopus 로고
    • Two electrical potential dependent steps are required for transport by the Escherichia coli Tat machinery
    • Bageshwar, U. K., and Musser, S. M. (2007). Two electrical potential dependent steps are required for transport by the Escherichia coli Tat machinery. J. Cell Biol. 179, 87-99.
    • (2007) J. Cell Biol. , vol.179 , pp. 87-99
    • Bageshwar, U.K.1    Musser, S.M.2
  • 3
    • 0004232671 scopus 로고
    • Princeton, NJ: Princeton University Press
    • Berg, H. C. (1993). Random Walks in Biology, Princeton, NJ: Princeton University Press.
    • (1993) Random Walks in Biology
    • Berg, H.C.1
  • 4
    • 0028935007 scopus 로고
    • The translocation of negatively charged residues across the membrane is driven by the electrochemical potential: Evidence for an electrophoresis-like membrane transfer mechanism
    • Cao, G., Kuhn, A., and Dalbey, R. E. (1995). The translocation of negatively charged residues across the membrane is driven by the electrochemical potential: evidence for an electrophoresis-like membrane transfer mechanism. EMBO J. 14, 866-875.
    • (1995) EMBO J. , vol.14 , pp. 866-875
    • Cao, G.1    Kuhn, A.2    Dalbey, R.E.3
  • 5
    • 0031918163 scopus 로고    scopus 로고
    • Strong precursor-pore interactions constrain models for mitochondrial protein import
    • Chauwin, J. F., Oster, G., and Glick, B. S. (1998). Strong precursor-pore interactions constrain models for mitochondrial protein import. Biophys. J. 74, 1732-1743. (Pubitemid 28157912)
    • (1998) Biophysical Journal , vol.74 , Issue.4 , pp. 1732-1743
    • Chauwin, J.-F.1    Oster, G.2    Glick, B.S.3
  • 6
    • 0024295389 scopus 로고
    • ProOmpA is stabilized for membrane translocation by either purified E. coli trigger factor or canine signal recognition particle
    • Crooke, E., Guthrie, B., Lecker, S., Lill, R., and Wickner, W. (1988). ProOmpA is stabilized for membrane translocation by either purified E. coli trigger factor or canine signal recognition particle. Cell 54, 1003-1011.
    • (1988) Cell , vol.54 , pp. 1003-1011
    • Crooke, E.1    Guthrie, B.2    Lecker, S.3    Lill, R.4    Wickner, W.5
  • 7
    • 8844261812 scopus 로고    scopus 로고
    • Sec-translocase mediated membrane protein biogenesis
    • Dalbey, R. E., and Chen, M. (2004). Sec-translocase mediated membrane protein biogenesis. Biochim. Biophys. Acta 1694, 37-53.
    • (2004) Biochim. Biophys. Acta , vol.1694 , pp. 37-53
    • Dalbey, R.E.1    Chen, M.2
  • 8
    • 0242320522 scopus 로고    scopus 로고
    • The bacterial translocase: A dynamic protein channel complex
    • de Keyzer, J., van der Does, C., and Driessen, A. (2003). The bacterial translocase: a dynamic protein channel complex. Cell. Mol. Life Sci. 60, 2034-2052.
    • (2003) Cell. Mol. Life Sci. , vol.60 , pp. 2034-2052
    • De Keyzer, J.1    Van Der Does, C.2    Driessen, A.3
  • 9
    • 0037195803 scopus 로고    scopus 로고
    • Kinetic analysis of the translocation of fluorescent precursor proteins into Escherichia coli membrane vesicles
    • de Keyzer, J., van der Does, C., and Driessen, A.J.M. (2002). Kinetic analysis of the translocation of fluorescent precursor proteins into Escherichia coli membrane vesicles. J. Biol. Chem. 277, 46059-46065.
    • (2002) J. Biol. Chem. , vol.277 , pp. 46059-46065
    • De Keyzer, J.1    Van Der Does, C.2    Driessen, A.J.M.3
  • 10
    • 0032540320 scopus 로고    scopus 로고
    • The proton motive force, acting on acidic residues, promotes translocation of amino-terminal domains of membrane proteins when the hydrophobicity of the translocation signal is low
    • Delgado-Partin, V. M., and Dalbey, R. E. (1998). The proton motive force, acting on acidic residues, promotes translocation of amino-terminal domains of membrane proteins when the hydrophobicity of the translocation signal is low. J. Biol. Chem. 273, 9927-9934.
    • (1998) J. Biol. Chem. , vol.273 , pp. 9927-9934
    • Delgado-Partin, V.M.1    Dalbey, R.E.2
  • 11
    • 33748990156 scopus 로고    scopus 로고
    • Protein export in bacteria
    • ed. R. Dalbey and G. von Heijne, San Diego: Academic Press
    • Driessen, A. J., and van der Does, C. (2002). Protein export in bacteria. In: Protein Targeting, Transport & Translocation, ed. R. Dalbey and G. von Heijne, San Diego: Academic Press, 47-73.
    • (2002) Protein Targeting, Transport & Translocation , pp. 47-73
    • Driessen, A.J.1    Van Der Does, C.2
  • 12
    • 0029561762 scopus 로고
    • SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF
    • DOI 10.1016/0092-8674(95)90143-4
    • Economou, A., Pogliano, J. A., Beckwith, J., Oliver, D. B., and Wickner, W. (1995). SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83, 1171-1181. (Pubitemid 26007808)
    • (1995) Cell , vol.83 , Issue.7 , pp. 1171-1181
    • Economou, A.1    Pogliano, J.A.2    Beckwith, J.3    Oliver, D.B.4    Wickner, W.5
  • 13
    • 0028064967 scopus 로고
    • SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion
    • DOI 10.1016/S0092-8674(94)90582-7
    • Economou, A., and Wickner, W. (1994). SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835-843. (Pubitemid 24294458)
    • (1994) Cell , vol.78 , Issue.5 , pp. 835-843
    • Economou, A.1    Wickner, W.2
  • 14
    • 0030903689 scopus 로고    scopus 로고
    • Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation
    • Eichler, J., and Wickner, W. (1997). Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation. Proc. Natl. Acad. Sci. USA 94, 5574-5581.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 5574-5581
    • Eichler, J.1    Wickner, W.2
  • 15
    • 54049142467 scopus 로고    scopus 로고
    • A role for the two-helix finger of the SecA ATPase in protein translocation
    • Erlandson, K. J., Miller, S.B.M., Nam, Y., Osborne, A. R., Zimmer, J., and Rapoport, T. (2008a). A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455, 984-988.
    • (2008) Nature , vol.455 , pp. 984-988
    • Erlandson, K.J.1    Miller, S.B.M.2    Nam, Y.3    Osborne, A.R.4    Zimmer, J.5    Rapoport, T.6
  • 16
    • 47049095095 scopus 로고    scopus 로고
    • Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation
    • Erlandson, K. J., Or, E., Osborne, A. R., and Rapoport, T. (2008b). Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation. J. Biol. Chem. 283, 15700-15715.
    • (2008) J. Biol. Chem. , vol.283 , pp. 15700-15715
    • Erlandson, K.J.1    Or, E.2    Osborne, A.R.3    Rapoport, T.4
  • 17
    • 0031656854 scopus 로고    scopus 로고
    • Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA
    • Fekkes, P., de Wit, J. G., van der Wolk, J.P.W., Kimsey, H. H., Kumamoto, C. A., and Driessen, A.J.M. (1998). Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA. Mol. Microbiol. 29, 1179-1190.
    • (1998) Mol. Microbiol. , vol.29 , pp. 1179-1190
    • Fekkes, P.1    De Wit, J.G.2    Van Der Wolk, J.P.W.3    Kimsey, H.H.4    Kumamoto, C.A.5    Driessen, A.J.M.6
  • 18
    • 34548064837 scopus 로고    scopus 로고
    • Structure and function of the bacterial Sec translocon
    • Gold, V.A.M., Duong, F., and Collinson, I. (2007). Structure and function of the bacterial Sec translocon. Mol. Membr. Biol. 24, 387-394.
    • (2007) Mol. Membr. Biol. , vol.24 , pp. 387-394
    • Gold, V.A.M.1    Duong, F.2    Collinson, I.3
  • 19
    • 33947512486 scopus 로고    scopus 로고
    • In vivo membrane topology of Escherichia coli SecA ATPase reveals extensive periplasmic exposure of multiple functionally important domains clustering on one face of SecA
    • Jilaveanu, L. B., and Oliver, D. B. (2007). In vivo membrane topology of Escherichia coli SecA ATPase reveals extensive periplasmic exposure of multiple functionally important domains clustering on one face of SecA. J. Biol. Chem. 282, 4661-4668.
    • (2007) J. Biol. Chem. , vol.282 , pp. 4661-4668
    • Jilaveanu, L.B.1    Oliver, D.B.2
  • 21
    • 0033551435 scopus 로고    scopus 로고
    • Cysteine-directed cross-linking demonstrates that helix 3 of sece is close to helix 2 of secY and helix 3 of a neighboring secE
    • Kaufmann, A., Manting, E. H., Veenendaal, A.K.J., Driessen, A.J.M., and van der Does, C. (1999). Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry 38, 9115-9125. (Pubitemid 129515246)
    • (1999) Biochemistry , vol.38 , Issue.28 , pp. 9115-9125
    • Kaufmann, A.1    Manting, E.H.2    Veenendaal, A.K.J.3    Driessen, A.J.M.4    Van Der Does, C.5
  • 22
    • 0027483324 scopus 로고
    • Membrane vesicles containing overproduced SecY and SecE exhibit high translocation ATPase activity and countermovement of protons in a SecA- and presecretory protein-dependent manner
    • Kawasaki, S., Mizushima, S., and Tokuda, H. (1993). Membrane vesicles containing overproduced SecY and SecE exhibit high translocation ATPase activity and countermovement of protons in a SecA- and presecretory protein-dependent manner. J. Biol. Chem. 268, 8193-8198.
    • (1993) J. Biol. Chem. , vol.268 , pp. 8193-8198
    • Kawasaki, S.1    Mizushima, S.2    Tokuda, H.3
  • 23
    • 0027956170 scopus 로고
    • SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state
    • Kim, Y. J., Rajapandi, T., and Oliver, D. (1994). SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state. Cell 78, 845-853.
    • (1994) Cell , vol.78 , pp. 845-853
    • Kim, Y.J.1    Rajapandi, T.2    Oliver, D.3
  • 25
    • 0027488666 scopus 로고
    • Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase
    • Mitchell, C., and Oliver, D. (1993). Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol. Microbiol. 10, 483-497.
    • (1993) Mol. Microbiol. , vol.10 , pp. 483-497
    • Mitchell, C.1    Oliver, D.2
  • 26
    • 0037687309 scopus 로고    scopus 로고
    • Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes
    • Mori, H., Tsukazaki, T., Masui, R., Kuramitsu, S., Yokoyama, S., Johnson, A. E., Kimura, Y., Akiyama, Y., and Ito, K. (2003). Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J. Biol. Chem. 278, 14257-14264.
    • (2003) J. Biol. Chem. , vol.278 , pp. 14257-14264
    • Mori, H.1    Tsukazaki, T.2    Masui, R.3    Kuramitsu, S.4    Yokoyama, S.5    Johnson, A.E.6    Kimura, Y.7    Akiyama, Y.8    Ito, K.9
  • 27
    • 0033557759 scopus 로고    scopus 로고
    • Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation
    • DOI 10.1093/emboj/18.4.1049
    • Nishiyama, K., Fukuda, A., Morita, K., and Tokuda, H. (1999). Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation. EMBO J. 18, 1049-1058. (Pubitemid 29082283)
    • (1999) EMBO Journal , vol.18 , Issue.4 , pp. 1049-1058
    • Nishiyama, K.-I.1    Fukuda, A.2    Morita, K.3    Tokuda, H.4
  • 28
    • 33947717366 scopus 로고    scopus 로고
    • Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel
    • Osborne, A. R., and Rapoport, T. (2007). Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97-110.
    • (2007) Cell , vol.129 , pp. 97-110
    • Osborne, A.R.1    Rapoport, T.2
  • 29
    • 0030752693 scopus 로고    scopus 로고
    • Topology of the integral membrane form of Escherichia coli SecA protein reveals multiple periplasmic exposed regions and modulation by ATP binding
    • Ramamurthy, V., and Oliver, D. (1997). Topology of the integral membrane form of Escherichia coli SecA protein reveals multiple periplasmic exposed regions and modulation by ATP binding. J. Biol. Chem. 272, 23239-23246.
    • (1997) J. Biol. Chem. , vol.272 , pp. 23239-23246
    • Ramamurthy, V.1    Oliver, D.2
  • 31
    • 0031041247 scopus 로고    scopus 로고
    • Short hydrophobic segments in the mature domain of ProOmpA determine its stepwise movement during translocation across the cytoplasmic membrane of Escherichia coli
    • DOI 10.1074/jbc.272.9.5880
    • Sato, K., Mori, H., Yoshida, M., Tagaya, M., and Mizushima, S. (1997). Short hydrophobic segments in the mature domain of proOmpA determine its stepwise movement during translocation across the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 272, 5880-5886. (Pubitemid 27102422)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.9 , pp. 5880-5886
    • Sato, K.1    Mori, H.2    Yoshida, M.3    Tagaya, M.4    Mizushima, S.5
  • 33
    • 0026073817 scopus 로고
    • H+ and ATP function at different steps of the catalytic cycle of preprotein translocase
    • H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927-939.
    • (1991) Cell , vol.64 , pp. 927-939
    • Schiebel, E.1    Driessen, A.J.M.2    Hartl, F.-U.3    Wickner, W.4
  • 34
  • 36
    • 0029566085 scopus 로고
    • Stepwise movement of preproteins in the process of translocation across the cytoplasmic membrane of Escherichia coli
    • DOI 10.1074/jbc.270.52.30862
    • Uchida, K., Mori, H., and Mizushima, S. (1995). Stepwise movement of preproteins in the process of translocation across the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 270, 30862-30868. (Pubitemid 26012167)
    • (1995) Journal of Biological Chemistry , vol.270 , Issue.52 , pp. 30862-30868
    • Uchida, K.1    Mori, H.2    Mizushima, S.3
  • 38
    • 0031435335 scopus 로고    scopus 로고
    • The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events
    • van der Wolk, J.P.W., de Wit, J. G., and Driessen, A.J.M. (1997). The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J. 16, 7297-7304.
    • (1997) EMBO J. , vol.16 , pp. 7297-7304
    • Van Der Wolk, J.P.W.1    De Wit, J.G.2    Driessen, A.J.M.3
  • 39
    • 4444290475 scopus 로고    scopus 로고
    • Structure and function of SecA, the preprotein translocase motor
    • Vrontou, E., and Economou, A. (2004). Structure and function of SecA, the preprotein translocase motor. Biochim. Biophys. Acta 1694, 67-80.
    • (2004) Biochim. Biophys. Acta , vol.1694 , pp. 67-80
    • Vrontou, E.1    Economou, A.2
  • 40
    • 0029909480 scopus 로고    scopus 로고
    • Escherichia coli preprotein translocase
    • Wickner, W., and Leonard, M. R. (1996). Escherichia coli preprotein translocase. J. Biol. Chem. 271, 29514-29516.
    • (1996) J. Biol. Chem. , vol.271 , pp. 29514-29516
    • Wickner, W.1    Leonard, M.R.2
  • 41
    • 39149133696 scopus 로고    scopus 로고
    • Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases
    • Xie, K., and Dalbey, R. E. (2008). Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat. Rev. Microbiol. 6, 234-244.
    • (2008) Nat. Rev. Microbiol. , vol.6 , pp. 234-244
    • Xie, K.1    Dalbey, R.E.2
  • 42
    • 33749023069 scopus 로고    scopus 로고
    • Nuclear import time and transport efficiency depend on importin β concentration
    • DOI 10.1083/jcb.200605053
    • Yang, W., and Musser, S. M. (2006). Nuclear import time and transport efficiency depend on importin β concentration. J. Cell Biol. 174, 951-961. (Pubitemid 44455184)
    • (2006) Journal of Cell Biology , vol.174 , Issue.7 , pp. 951-961
    • Yang, W.1    Musser, S.M.2
  • 43
    • 54049111011 scopus 로고    scopus 로고
    • Structure of a complex of the ATPase SecA and the protein-translocation channel
    • Zimmer, J., Nam, Y., and Rapoport, T. (2008). Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455, 936-945.
    • (2008) Nature , vol.455 , pp. 936-945
    • Zimmer, J.1    Nam, Y.2    Rapoport, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.