-
1
-
-
71549167617
-
Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome
-
Becker, T., S. Bhushan, A. Jarasch, J.P. Armache, S. Funes, F. Jossinet, J. Gumbart, T. Mielke, O. Berninghausen, K. Schulten, et al. 2009. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science. 326: 1369-1373. http://dx.doi.org/10.1126/science.1178535
-
(2009)
Science
, vol.326
, pp. 1369-1373
-
-
Becker, T.1
Bhushan, S.2
Jarasch, A.3
Armache, J.P.4
Funes, S.5
Jossinet, F.6
Gumbart, J.7
Mielke, T.8
Berninghausen, O.9
Schulten, K.10
-
2
-
-
0036500974
-
The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure
-
Bessonneau, P., V. Besson, I. Collinson, and F. Duong. 2002. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J. 21: 995-1003. http://dx.doi.org/10.1093/ emboj/21.5.995
-
(2002)
EMBO J
, vol.21
, pp. 995-1003
-
-
Bessonneau, P.1
Besson, V.2
Collinson, I.3
Duong, F.4
-
3
-
-
0037043724
-
Three-dimensional structure of the bacterial protein-translocation complex SecYEG
-
Breyton, C., W. Haase, T.A. Rapoport, W. Kühlbrandt, and I. Collinson. 2002. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature. 418: 662-665. http://dx.doi.org/10.1038/nature00827
-
(2002)
Nature
, vol.418
, pp. 662-665
-
-
Breyton, C.1
Haase, W.2
Rapoport, T.A.3
Kühlbrandt, W.4
Collinson, I.5
-
4
-
-
18544380083
-
Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
-
Cannon, K.S., E. Or, W.M. Clemons Jr., Y. Shibata, and T.A. Rapoport. 2005. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169: 219-225. http://dx.doi.org/10.1083/jcb.200412019
-
(2005)
J. Cell Biol
, vol.169
, pp. 219-225
-
-
Cannon, K.S.1
Or, E.2
Clemons Jr., W.M.3
Shibata, Y.4
Rapoport, T.A.5
-
5
-
-
84858238365
-
Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase
-
Dalal, K., C.S. Chan, S.G. Sligar, and F. Duong. 2012. Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase. Proc. Natl. Acad. Sci. USA. 109:4104-4109.
-
(2012)
Proc. Natl. Acad. Sci. USA.
, vol.109
, pp. 4104-4109
-
-
Dalal, K.1
Chan, C.S.2
Sligar, S.G.3
Duong, F.4
-
6
-
-
79953302604
-
Mapping of the SecA.SecY and SecA.SecG interfaces by site-directed in vivo photocross-linking
-
Das, S., and D.B. Oliver. 2011. Mapping of the SecA.SecY and SecA.SecG interfaces by site-directed in vivo photocross-linking. J. Biol. Chem. 286: 12371-12380. http://dx.doi.org/10.1074/jbc.M110.182931
-
(2011)
J. Biol. Chem
, vol.286
, pp. 12371-12380
-
-
Das, S.1
Oliver, D.B.2
-
7
-
-
0034612342
-
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
-
Datsenko, K.A., and B.L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97: 6640-6645. http://dx.doi.org/10.1073/pnas.120163297
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 6640-6645
-
-
Datsenko, K.A.1
Wanner, B.L.2
-
8
-
-
79953022888
-
The oligomeric state and arrangement of the active bacterial translocon
-
Deville, K., V.A. Gold, A. Robson, S. Whitehouse, R.B. Sessions, S.A. Baldwin, S.E. Radford, and I. Collinson. 2011. The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 286: 4659-4669. http://dx.doi.org/10.1074/jbc.M110.175638
-
(2011)
J. Biol. Chem
, vol.286
, pp. 4659-4669
-
-
Deville, K.1
Gold, V.A.2
Robson, A.3
Whitehouse, S.4
Sessions, R.B.5
Baldwin, S.A.6
Radford, S.E.7
Collinson, I.8
-
9
-
-
84857132094
-
Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels
-
Dixon, R.E., C. Yuan, E.P. Cheng, M.F. Navedo, and L.F. Santana. 2012. Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels. Proc. Natl. Acad. Sci. USA. 109: 1749-1754. http://dx.doi.org/ 10.1073/pnas.1116731109
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 1749-1754
-
-
Dixon, R.E.1
Yuan, C.2
Cheng, E.P.3
Navedo, M.F.4
Santana, L.F.5
-
10
-
-
50649104037
-
Protein translocation across the bacterial cytoplasmic membrane
-
Driessen, A.J., and N. Nouwen. 2008. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77: 643-667. http://dx.doi .org/10.1146/annurev.biochem.77.061606.160747
-
(2008)
Annu. Rev. Biochem
, vol.77
, pp. 643-667
-
-
Driessen, A.J.1
Nouwen, N.2
-
11
-
-
0037327607
-
Involvement of helices at the dimer interface in ClC-1 common gating
-
Duffield, M., G. Rychkov, A. Bretag, and M. Roberts. 2003. Involvement of helices at the dimer interface in ClC-1 common gating. J. Gen. Physiol. 121: 149-161. http://dx.doi.org/10.1085/jgp.20028741
-
(2003)
J. Gen. Physiol
, vol.121
, pp. 149-161
-
-
Duffield, M.1
Rychkov, G.2
Bretag, A.3
Roberts, M.4
-
12
-
-
78049253482
-
Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes
-
Egea, P.F., and R.M. Stroud. 2010. Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc. Natl. Acad. Sci. USA. 107: 17182-17187. http://dx.doi.org/10.1073/ pnas.1012556107
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 17182-17187
-
-
Egea, P.F.1
Stroud, R.M.2
-
13
-
-
85027919032
-
Cryo-EM structure of the ribosome-SecYE complex in the membrane environment
-
Frauenfeld, J., J. Gumbart, E.O. Sluis, S. Funes, M. Gartmann, B. Beatrix, T. Mielke, O. Berninghausen, T. Becker, K. Schulten, and R. Beckmann. 2011. Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat. Struct. Mol. Biol. 18: 614-621. http://dx.doi.org/10.1038/nsmb.2026
-
(2011)
Nat. Struct. Mol. Biol
, vol.18
, pp. 614-621
-
-
Frauenfeld, J.1
Gumbart, J.2
Sluis, E.O.3
Funes, S.4
Gartmann, M.5
Beatrix, B.6
Mielke, T.7
Berninghausen, O.8
Becker, T.9
Schulten, K.10
Beckmann, R.11
-
14
-
-
79953857432
-
Bilayer-mediated clustering and functional interaction of MscL channels
-
Grage, S.L., A.M. Keleshian, T. Turdzeladze, A.R. Battle, W.C. Tay, R.P. May, S.A. Holt, S.A. Contera, M. Haertlein, M. Moulin, et al. 2011. Bilayer-mediated clustering and functional interaction of MscL channels. Biophys. J. 100: 1252-1260. http://dx.doi.org/10.1016/j.bpj.2011 .01.023
-
(2011)
Biophys. J
, vol.100
, pp. 1252-1260
-
-
Grage, S.L.1
Keleshian, A.M.2
Turdzeladze, T.3
Battle, A.R.4
Tay, W.C.5
May, R.P.6
Holt, S.A.7
Contera, S.A.8
Haertlein, M.9
Moulin, M.10
-
15
-
-
70350738240
-
Regulation of the protein-conducting channel by a bound ribosome
-
Gumbart, J., L.G. Trabuco, E. Schreiner, E. Villa, and K. Schulten. 2009. Regulation of the protein-conducting channel by a bound ribosome. Structure. 17: 1453-1464. http://dx.doi.org/10.1016/j.str.2009.09.010
-
(2009)
Structure
, vol.17
, pp. 1453-1464
-
-
Gumbart, J.1
Trabuco, L.G.2
Schreiner, E.3
Villa, E.4
Schulten, K.5
-
16
-
-
0030611388
-
The aqueous pore through the translocon has a diameter of 40-60 A during cotranslational protein translocation at the ER membrane
-
Hamman, B.D., J.C. Chen, E.E. Johnson, and A.E. Johnson. 1997. The aqueous pore through the translocon has a diameter of 40-60 A during cotranslational protein translocation at the ER membrane. Cell. 89: 535-544. http://dx.doi.org/10.1016/S0092-8674(00)80235-4
-
(1997)
Cell
, vol.89
, pp. 535-544
-
-
Hamman, B.D.1
Chen, J.C.2
Johnson, E.E.3
Johnson, A.E.4
-
17
-
-
0032549767
-
BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation
-
Hamman, B.D., L.M. Hendershot, and A.E. Johnson. 1998. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell. 92: 747-758. http://dx.doi.org/10.1016/S0092-8674(00)81403-8
-
(1998)
Cell
, vol.92
, pp. 747-758
-
-
Hamman, B.D.1
Hendershot, L.M.2
Johnson, A.E.3
-
18
-
-
77249150932
-
Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules
-
Hern, J.A., A.H. Baig, G.I. Mashanov, B. Birdsall, J.E. Corrie, S. Lazareno, J.E. Molloy, and N.J. Birdsall. 2010. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. USA. 107: 2693-2698. http://dx.doi.org/10.1073/pnas.0907915107
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 2693-2698
-
-
Hern, J.A.1
Baig, A.H.2
Mashanov, G.I.3
Birdsall, B.4
Corrie, J.E.5
Lazareno, S.6
Molloy, J.E.7
Birdsall, N.J.8
-
19
-
-
84861167327
-
Structure of the SecY complex unlocked by a preprotein mimic
-
Hizlan, D., A. Robson, S. Whitehouse, V.A. Gold, J. Vonck, D. Mills, W. Kühlbrandt, and I. Collinson. 2012. Structure of the SecY complex unlocked by a preprotein mimic. Cell Rep. 1: 21-28. http://dx.doi.org/ 10.1016/j.celrep.2011.11.003
-
(2012)
Cell Rep
, vol.1
, pp. 21-28
-
-
Hizlan, D.1
Robson, A.2
Whitehouse, S.3
Gold, V.A.4
Vonck, J.5
Mills, D.6
Kühlbrandt, W.7
Collinson, I.8
-
20
-
-
79551711208
-
Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging
-
Kasai, R.S., K.G. Suzuki, E.R. Prossnitz, I. Koyama-Honda, C. Nakada, T.K. Fujiwara, and A. Kusumi. 2011. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192: 463-480. http://dx.doi.org/10.1083/jcb.201009128
-
(2011)
J. Cell Biol
, vol.192
, pp. 463-480
-
-
Kasai, R.S.1
Suzuki, K.G.2
Prossnitz, E.R.3
Koyama-Honda, I.4
Nakada, C.5
Fujiwara, T.K.6
Kusumi, A.7
-
21
-
-
0033551435
-
Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE
-
Kaufmann, A., E.H. Manting, A.K. Veenendaal, A.J. Driessen, and C. van der Does. 1999. Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry. 38: 9115-9125. http://dx.doi.org/10.1021/bi990539d
-
(1999)
Biochemistry
, vol.38
, pp. 9115-9125
-
-
Kaufmann, A.1
Manting, E.H.2
Veenendaal, A.K.3
Driessen, A.J.4
van der Does, C.5
-
22
-
-
80455155003
-
A single copy of SecYEG is sufficient for preprotein translocation
-
Kedrov, A., I. Kusters, V.V. Krasnikov, and A.J. Driessen. 2011. A single copy of SecYEG is sufficient for preprotein translocation. EMBO J. 30: 4387-4397. http://dx.doi.org/10.1038/emboj.2011.314
-
(2011)
EMBO J
, vol.30
, pp. 4387-4397
-
-
Kedrov, A.1
Kusters, I.2
Krasnikov, V.V.3
Driessen, A.J.4
-
23
-
-
80053971494
-
Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration
-
Lin, P.J., C.G. Jongsma, S. Liao, and A.E. Johnson. 2011. Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration. J. Cell Biol. 195: 41-54. http:// dx.doi.org/10.1083/jcb.201103117
-
(2011)
J. Cell Biol
, vol.195
, pp. 41-54
-
-
Lin, P.J.1
Jongsma, C.G.2
Liao, S.3
Johnson, A.E.4
-
24
-
-
37349107850
-
Ribosome binding of a single copy of the SecY complex: implications for protein translocation
-
Ménétret, J.F., J. Schaletzky, W.M. Clemons Jr., A.R. Osborne, S.S. Skånland, C. Denison, S.P. Gygi, D.S. Kirkpatrick, E. Park, S.J. Ludtke, et al. 2007. Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol. Cell. 28: 1083-1092. http://dx.doi .org/10.1016/j.molcel.2007.10.034
-
(2007)
Mol. Cell
, vol.28
, pp. 1083-1092
-
-
Ménétret, J.F.1
Schaletzky, J.2
Clemons Jr., W.M.3
Osborne, A.R.4
Skånland, S.S.5
Denison, C.6
Gygi, S.P.7
Kirkpatrick, D.S.8
Park, E.9
Ludtke, S.J.10
-
25
-
-
46049116259
-
Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome
-
Ménétret, J.F., R.S. Hegde, M. Aguiar, S.P. Gygi, E. Park, T.A. Rapoport, and C.W. Akey. 2008. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure. 16: 1126-1137. http:// dx.doi.org/10.1016/j.str.2008.05.003
-
(2008)
Structure
, vol.16
, pp. 1126-1137
-
-
Ménétret, J.F.1
Hegde, R.S.2
Aguiar, M.3
Gygi, S.P.4
Park, E.5
Rapoport, T.A.6
Akey, C.W.7
-
26
-
-
0037687309
-
Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes
-
Mori, H., T. Tsukazaki, R. Masui, S. Kuramitsu, S. Yokoyama, A.E. Johnson, Y. Kimura, Y. Akiyama, and K. Ito. 2003. Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J. Biol. Chem. 278: 14257-14264. http://dx.doi.org/10.1074/jbc.M300230200
-
(2003)
J. Biol. Chem
, vol.278
, pp. 14257-14264
-
-
Mori, H.1
Tsukazaki, T.2
Masui, R.3
Kuramitsu, S.4
Yokoyama, S.5
Johnson, A.E.6
Kimura, Y.7
Akiyama, Y.8
Ito, K.9
-
27
-
-
0035105116
-
Secretion monitor, SecM, undergoes self- translation arrest in the cytosol
-
Nakatogawa, H., and K. Ito. 2001. Secretion monitor, SecM, undergoes self- translation arrest in the cytosol. Mol. Cell. 7: 185-192. http://dx.doi .org/10.1016/S1097-2765(01)00166-6
-
(2001)
Mol. Cell
, vol.7
, pp. 185-192
-
-
Nakatogawa, H.1
Ito, K.2
-
28
-
-
33947717366
-
Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel
-
Osborne, A.R., and T.A. Rapoport. 2007. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell. 129: 97-110. http://dx.doi.org/10.1016/j.cell.2007.02.036
-
(2007)
Cell
, vol.129
, pp. 97-110
-
-
Osborne, A.R.1
Rapoport, T.A.2
-
29
-
-
79955901001
-
Preserving the membrane barrier for small molecules during bacterial protein translocation
-
Park, E., and T.A. Rapoport. 2011. Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature. 473: 239-242. http://dx.doi.org/10.1038/nature10014
-
(2011)
Nature
, vol.473
, pp. 239-242
-
-
Park, E.1
Rapoport, T.A.2
-
30
-
-
84861361690
-
Mechanisms of Sec61/SecY-mediated protein translocation across membranes
-
Park, E., and T.A. Rapoport. 2012. Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys. 41: 21-40. http://dx.doi.org/10.1146/annurev-biophys-050511-102312
-
(2012)
Annu Rev Biophys
, vol.41
, pp. 21-40
-
-
Park, E.1
Rapoport, T.A.2
-
31
-
-
30544433196
-
Engineering and characterization of a superfolder green fluorescent protein
-
Pédelacq, J.D., S. Cabantous, T. Tran, T.C. Terwilliger, and G.S. Waldo. 2006. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24: 79-88. http://dx.doi.org/10.1038/nbt1172
-
(2006)
Nat. Biotechnol
, vol.24
, pp. 79-88
-
-
Pédelacq, J.D.1
Cabantous, S.2
Tran, T.3
Terwilliger, T.C.4
Waldo, G.S.5
-
32
-
-
33748297447
-
Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane
-
Schaletzky, J., and T.A. Rapoport. 2006. Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane. Mol. Biol. Cell. 17: 3860-3869. http://dx.doi.org/10.1091/mbc.E06-05-0439
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 3860-3869
-
-
Schaletzky, J.1
Rapoport, T.A.2
-
33
-
-
27644518797
-
The oligomeric distribution of SecYEG is altered by SecA and translocation ligands
-
Scheuring, J., N. Braun, L. Nothdurft, M. Stumpf, A.K. Veenendaal, S. Kol, C. van der Does, A.J. Driessen, and S. Weinkauf. 2005. The oligomeric distribution of SecYEG is altered by SecA and translocation ligands. J. Mol. Biol. 354: 258-271. http://dx.doi.org/10.1016/j.jmb.2005.09.058
-
(2005)
J. Mol. Biol
, vol.354
, pp. 258-271
-
-
Scheuring, J.1
Braun, N.2
Nothdurft, L.3
Stumpf, M.4
Veenendaal, A.K.5
Kol, S.6
van der Does, C.7
Driessen, A.J.8
Weinkauf, S.9
-
34
-
-
0141727632
-
The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway
-
Schierle, C.F., M. Berkmen, D. Huber, C. Kumamoto, D. Boyd, and J. Beckwith. 2003. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J. Bacteriol. 185: 5706-5713. http://dx.doi .org/10.1128/JB.185.19.5706-5713.2003
-
(2003)
J. Bacteriol
, vol.185
, pp. 5706-5713
-
-
Schierle, C.F.1
Berkmen, M.2
Huber, D.3
Kumamoto, C.4
Boyd, D.5
Beckwith, J.6
-
35
-
-
1842561598
-
The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells
-
Snapp, E.L., G.A. Reinhart, B.A. Bogert, J. Lippincott-Schwartz, and R.S. Hegde. 2004. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. J. Cell Biol. 164: 997-1007. http://dx.doi.org/10.1083/jcb.200312079
-
(2004)
J. Cell Biol
, vol.164
, pp. 997-1007
-
-
Snapp, E.L.1
Reinhart, G.A.2
Bogert, B.A.3
Lippincott-Schwartz, J.4
Hegde, R.S.5
-
36
-
-
54049151196
-
Conformational transition of Sec machinery inferred from bacterial SecYE structures
-
Tsukazaki, T., H. Mori, S. Fukai, R. Ishitani, T. Mori, N. Dohmae, A. Perederina, Y. Sugita, D.G. Vassylyev, K. Ito, and O. Nureki. 2008. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature. 455: 988-991. http://dx.doi.org/10.1038/nature07421
-
(2008)
Nature
, vol.455
, pp. 988-991
-
-
Tsukazaki, T.1
Mori, H.2
Fukai, S.3
Ishitani, R.4
Mori, T.5
Dohmae, N.6
Perederina, A.7
Sugita, Y.8
Vassylyev, D.G.9
Ito, K.10
Nureki, O.11
-
37
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
Van den Berg, B., W.M. Clemons Jr., I. Collinson, Y. Modis, E. Hartmann, S.C. Harrison, and T.A. Rapoport. 2004. X-ray structure of a protein-conducting channel. Nature. 427: 36-44. http://dx.doi.org/10.1038/nature02218
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van den Berg, B.1
Clemons Jr., W.M.2
Collinson, I.3
Modis, Y.4
Hartmann, E.5
Harrison, S.C.6
Rapoport, T.A.7
-
38
-
-
0242361323
-
MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli
-
Zhang, Y., J. Zhang, K.P. Hoeflich, M. Ikura, G. Qing, and M. Inouye. 2003. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell. 12: 913-923. http://dx.doi .org/10.1016/S1097-2765(03)00402-7
-
(2003)
Mol. Cell
, vol.12
, pp. 913-923
-
-
Zhang, Y.1
Zhang, J.2
Hoeflich, K.P.3
Ikura, M.4
Qing, G.5
Inouye, M.6
-
39
-
-
54049111011
-
Structure of a complex of the ATPase SecA and the protein-translocation channel
-
Zimmer, J., Y. Nam, and T.A. Rapoport. 2008. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature. 455: 936-943. http://dx.doi.org/10.1038/nature07335
-
(2008)
Nature
, vol.455
, pp. 936-943
-
-
Zimmer, J.1
Nam, Y.2
Rapoport, T.A.3
|