-
1
-
-
2942679778
-
The early history of the biochemistry of muscle contraction
-
1 Szent-Gyorgyi, A.G., The early history of the biochemistry of muscle contraction. J. Gen. Physiol. 123 (2004), 631–641.
-
(2004)
J. Gen. Physiol.
, vol.123
, pp. 631-641
-
-
Szent-Gyorgyi, A.G.1
-
2
-
-
70449310821
-
The structural basis of the contraction mechanism in striated muscle
-
2 Huxley, H.E., Hanson, J., The structural basis of the contraction mechanism in striated muscle. Ann. N. Y. Acad. Sci. 81 (1959), 403–408.
-
(1959)
Ann. N. Y. Acad. Sci.
, vol.81
, pp. 403-408
-
-
Huxley, H.E.1
Hanson, J.2
-
3
-
-
0022601205
-
Exercise-induced skeletal muscle growth. Hypertrophy or hyperplasia?
-
3 Taylor, N.A., Wilkinson, J.G., Exercise-induced skeletal muscle growth. Hypertrophy or hyperplasia?. Sports Med. 3 (1986), 190–200.
-
(1986)
Sports Med.
, vol.3
, pp. 190-200
-
-
Taylor, N.A.1
Wilkinson, J.G.2
-
4
-
-
0023010537
-
Exercise-induced ultrastructural changes in skeletal muscle
-
4 Hoppeler, H., Exercise-induced ultrastructural changes in skeletal muscle. Int. J. Sports Med. 7 (1986), 187–204.
-
(1986)
Int. J. Sports Med.
, vol.7
, pp. 187-204
-
-
Hoppeler, H.1
-
5
-
-
84873378527
-
Exercise metabolism and the molecular regulation of skeletal muscle adaptation
-
5 Egan, B., Zierath, J.R., Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17 (2013), 162–184.
-
(2013)
Cell Metab.
, vol.17
, pp. 162-184
-
-
Egan, B.1
Zierath, J.R.2
-
6
-
-
0025047553
-
Skeletal muscle metabolism is a major determinant of resting energy expenditure
-
6 Zurlo, F., et al. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J. Clin. Invest. 86 (1990), 1423–1427.
-
(1990)
J. Clin. Invest.
, vol.86
, pp. 1423-1427
-
-
Zurlo, F.1
-
7
-
-
0028314350
-
Thermogenesis in muscle
-
7 Block, B.A., Thermogenesis in muscle. Annu. Rev. Physiol. 56 (1994), 535–577.
-
(1994)
Annu. Rev. Physiol.
, vol.56
, pp. 535-577
-
-
Block, B.A.1
-
8
-
-
84870265848
-
Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals
-
8 Bal, N.C., et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18 (2012), 1575–1579.
-
(2012)
Nat. Med.
, vol.18
, pp. 1575-1579
-
-
Bal, N.C.1
-
9
-
-
0032524664
-
2+-ATPase
-
2+-ATPase. J. Biol. Chem. 273 (1998), 12360–12369.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 12360-12369
-
-
Odermatt, A.1
-
10
-
-
0026450976
-
Sarcolipin, the ‘proteolipid’ of skeletal muscle sarcoplasmic reticulum, is a unique, amphipathic, 31-residue peptide
-
10 Wawrzynow, A., et al. Sarcolipin, the ‘proteolipid’ of skeletal muscle sarcoplasmic reticulum, is a unique, amphipathic, 31-residue peptide. Arch. Biochem. Biophys. 298 (1992), 620–623.
-
(1992)
Arch. Biochem. Biophys.
, vol.298
, pp. 620-623
-
-
Wawrzynow, A.1
-
11
-
-
0000787574
-
Isolation of sarcoplasmic reticulum proteins
-
11 MacLennan, D.H., et al. Isolation of sarcoplasmic reticulum proteins. Cold Spring Harb. Symp. Quant. Biol. 37 (1973), 469–477.
-
(1973)
Cold Spring Harb. Symp. Quant. Biol.
, vol.37
, pp. 469-477
-
-
MacLennan, D.H.1
-
12
-
-
33746895178
-
Shivering in the cold: from mechanisms of fuel selection to survival
-
12 Haman, F., Shivering in the cold: from mechanisms of fuel selection to survival. J. Appl. Physiol. (1985) 100 (2006), 1702–1708.
-
(2006)
J. Appl. Physiol. (1985)
, vol.100
, pp. 1702-1708
-
-
Haman, F.1
-
13
-
-
84884877389
-
Quantitative calculation of the role of the Na(+),K(+)-ATPase in thermogenesis
-
13 Clarke, R.J., et al. Quantitative calculation of the role of the Na(+),K(+)-ATPase in thermogenesis. Biochim. Biophys. Acta 1827 (2013), 1205–1212.
-
(2013)
Biochim. Biophys. Acta
, vol.1827
, pp. 1205-1212
-
-
Clarke, R.J.1
-
14
-
-
84943386435
-
The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy
-
14 Rowland, L.A., et al. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol. Rev. Camb. Philos. Soc. 90 (2015), 1279–1297.
-
(2015)
Biol. Rev. Camb. Philos. Soc.
, vol.90
, pp. 1279-1297
-
-
Rowland, L.A.1
-
15
-
-
84979748697
-
Oxidative fuel selection and shivering thermogenesis during a 12- and 24-h cold-survival simulation
-
15 Haman, F., et al. Oxidative fuel selection and shivering thermogenesis during a 12- and 24-h cold-survival simulation. J. Appl. Physiol. (1985) 120 (2016), 640–648.
-
(2016)
J. Appl. Physiol. (1985)
, vol.120
, pp. 640-648
-
-
Haman, F.1
-
16
-
-
55549091722
-
Nonshivering thermogenesis protects against defective calcium handling in muscle
-
16 Aydin, J., et al. Nonshivering thermogenesis protects against defective calcium handling in muscle. FASEB J. 22 (2008), 3919–3924.
-
(2008)
FASEB J.
, vol.22
, pp. 3919-3924
-
-
Aydin, J.1
-
17
-
-
78149480633
-
Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice
-
17 Meyer, C.W., et al. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299 (2010), R1396–R1406.
-
(2010)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.299
, pp. R1396-R1406
-
-
Meyer, C.W.1
-
18
-
-
64349105205
-
Identification and importance of brown adipose tissue in adult humans
-
18 Cypess, A.M., et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360 (2009), 1509–1517.
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 1509-1517
-
-
Cypess, A.M.1
-
19
-
-
33845969892
-
-/- mice
-
-/- mice. J. Biol. Chem. 281 (2006), 31894–31908.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 31894-31908
-
-
Ukropec, J.1
-
20
-
-
34548251464
-
Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle
-
20 She, P., et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 6 (2007), 181–194.
-
(2007)
Cell Metab.
, vol.6
, pp. 181-194
-
-
She, P.1
-
21
-
-
84975757439
-
A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat
-
21 Kazak, L., et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163 (2015), 643–655.
-
(2015)
Cell
, vol.163
, pp. 643-655
-
-
Kazak, L.1
-
22
-
-
84874846595
-
2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump
-
2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump. J. Biol. Chem. 288 (2013), 6881–6889.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 6881-6889
-
-
Sahoo, S.K.1
-
23
-
-
84982179465
-
Increased reliance on muscle based thermogenesis upon acute minimization of brown adipose tissue function
-
23 Bal, N.C., et al. Increased reliance on muscle based thermogenesis upon acute minimization of brown adipose tissue function. J. Biol. Chem. 291 (2016), 17247–17257.
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 17247-17257
-
-
Bal, N.C.1
-
24
-
-
0035170324
-
Thermogenesis in birds
-
24 Bicudo, J.E., et al. Thermogenesis in birds. Biosci. Rep. 21 (2001), 181–188.
-
(2001)
Biosci. Rep.
, vol.21
, pp. 181-188
-
-
Bicudo, J.E.1
-
25
-
-
33748078476
-
The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets
-
25 Berg, F., et al. The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets. PLoS Genet., 2, 2006, e129.
-
(2006)
PLoS Genet.
, vol.2
, pp. e129
-
-
Berg, F.1
-
26
-
-
0027296683
-
2+-ATPase and ryanodine receptor in cold-acclimated ducklings and thermogenesis
-
C507-13
-
2+-ATPase and ryanodine receptor in cold-acclimated ducklings and thermogenesis. Am. J. Physiol., 265, 1993 C507-13.
-
(1993)
Am. J. Physiol.
, vol.265
-
-
Dumonteil, E.1
-
27
-
-
0027448937
-
Skeletal muscle as the major site of nonshivering thermogenesis in cold-acclimated ducklings
-
R1076-83
-
27 Duchamp, C., Barre, H., Skeletal muscle as the major site of nonshivering thermogenesis in cold-acclimated ducklings. Am. J. Physiol., 265, 1993 R1076-83.
-
(1993)
Am. J. Physiol.
, vol.265
-
-
Duchamp, C.1
Barre, H.2
-
28
-
-
84929223175
-
Uncoupling protein 1 and sarcolipin are required to maintain optimal thermogenesis, and loss of both systems compromises survival of mice under cold stress
-
28 Rowland, L.A., et al. Uncoupling protein 1 and sarcolipin are required to maintain optimal thermogenesis, and loss of both systems compromises survival of mice under cold stress. J. Biol. Chem. 290 (2015), 12282–12289.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 12282-12289
-
-
Rowland, L.A.1
-
29
-
-
84953301221
-
Cold adaptation overrides developmental regulation of sarcolipin expression in mice skeletal muscle: SOS for muscle-based thermogenesis?
-
29 Pant, M., et al. Cold adaptation overrides developmental regulation of sarcolipin expression in mice skeletal muscle: SOS for muscle-based thermogenesis?. J. Exp. Biol. 218 (2015), 2321–2325.
-
(2015)
J. Exp. Biol.
, vol.218
, pp. 2321-2325
-
-
Pant, M.1
-
30
-
-
65949100374
-
Nonshivering thermogenesis without interscapular brown adipose tissue involvement during conditioned fear in the rat
-
30 Marks, A., et al. Nonshivering thermogenesis without interscapular brown adipose tissue involvement during conditioned fear in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296 (2009), R1239–R1247.
-
(2009)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.296
, pp. R1239-R1247
-
-
Marks, A.1
-
31
-
-
84882279247
-
Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight
-
31 Tremblay, A., et al. Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight. Int. J. Obes. (Lond). 37 (2013), 759–764.
-
(2013)
Int. J. Obes. (Lond).
, vol.37
, pp. 759-764
-
-
Tremblay, A.1
-
32
-
-
0028228711
-
Non-shivering thermogenesis during prostaglandin E1 fever in rats: role of the cerebral cortex
-
32 Monda, M., et al. Non-shivering thermogenesis during prostaglandin E1 fever in rats: role of the cerebral cortex. Brain Res. 651 (1994), 148–154.
-
(1994)
Brain Res.
, vol.651
, pp. 148-154
-
-
Monda, M.1
-
33
-
-
0034093987
-
Excitation–contraction coupling in skeletal muscle: comparisons with cardiac muscle
-
33 Lamb, G.D., Excitation–contraction coupling in skeletal muscle: comparisons with cardiac muscle. Clin. Exp. Pharmacol. Physiol. 27 (2000), 216–224.
-
(2000)
Clin. Exp. Pharmacol. Physiol.
, vol.27
, pp. 216-224
-
-
Lamb, G.D.1
-
34
-
-
0016803961
-
Calcium regulation of muscle contraction
-
34 Szent-Gyorgyi, A.G., Calcium regulation of muscle contraction. Biophys. J. 15 (1975), 707–723.
-
(1975)
Biophys. J.
, vol.15
, pp. 707-723
-
-
Szent-Gyorgyi, A.G.1
-
35
-
-
84953256049
-
Phospholamban and sarcolipin: are they functionally redundant or distinct regulators of the sarco(endo)plasmic reticulum calcium ATPase?
-
35 Shaikh, S.A., et al. Phospholamban and sarcolipin: are they functionally redundant or distinct regulators of the sarco(endo)plasmic reticulum calcium ATPase?. J. Mol. Cell Cardiol. 91 (2016), 81–91.
-
(2016)
J. Mol. Cell Cardiol.
, vol.91
, pp. 81-91
-
-
Shaikh, S.A.1
-
36
-
-
84922708088
-
A micropeptide encoded by a putative long noncoding RNA regulates muscle performance
-
36 Anderson, D.M., et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160 (2015), 595–606.
-
(2015)
Cell
, vol.160
, pp. 595-606
-
-
Anderson, D.M.1
-
38
-
-
0028089697
-
Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish
-
38 Block, B.A., et al. Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish. J. Cell Biol. 127 (1994), 1275–1287.
-
(1994)
J. Cell Biol.
, vol.127
, pp. 1275-1287
-
-
Block, B.A.1
-
39
-
-
33748997392
-
Mutations in RYR1 in malignant hyperthermia and central core disease
-
39 Robinson, R., et al. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum. Mutat. 27 (2006), 977–989.
-
(2006)
Hum. Mutat.
, vol.27
, pp. 977-989
-
-
Robinson, R.1
-
40
-
-
57349198716
-
2+ ATPase isoform 1 heat production
-
2+ ATPase isoform 1 heat production. Endocrinology 149 (2008), 6262–6271.
-
(2008)
Endocrinology
, vol.149
, pp. 6262-6271
-
-
Arruda, A.P.1
-
41
-
-
0024429640
-
2+ pump of sarcoplasmic reticulum
-
2+ pump of sarcoplasmic reticulum. Nature 342 (1989), 90–92.
-
(1989)
Nature
, vol.342
, pp. 90-92
-
-
James, P.1
-
42
-
-
0029830352
-
Phospholamban: a prominent regulator of myocardial contractility
-
42 Koss, K.L., Kranias, E.G., Phospholamban: a prominent regulator of myocardial contractility. Circ. Res. 79 (1996), 1059–1063.
-
(1996)
Circ. Res.
, vol.79
, pp. 1059-1063
-
-
Koss, K.L.1
Kranias, E.G.2
-
43
-
-
84930226879
-
2+ transport
-
2+ transport. J. Biol. Chem. 290 (2015), 14057–14067.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 14057-14067
-
-
Sahoo, S.K.1
-
44
-
-
0031281867
-
Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease
-
44 Odermatt, A., et al. Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease. Genomics 45 (1997), 541–553.
-
(1997)
Genomics
, vol.45
, pp. 541-553
-
-
Odermatt, A.1
-
45
-
-
84874994481
-
The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm
-
45 Winther, A.M., et al. The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495 (2013), 265–269.
-
(2013)
Nature
, vol.495
, pp. 265-269
-
-
Winther, A.M.1
-
46
-
-
0037081851
-
2+-ATPase of skeletal-muscle sarcoplasmic reticulum
-
2+-ATPase of skeletal-muscle sarcoplasmic reticulum. Biochem. J. 361 (2002), 277–286.
-
(2002)
Biochem. J.
, vol.361
, pp. 277-286
-
-
Smith, W.S.1
-
47
-
-
0034267851
-
2+ transport, ATP synthesis and heat production
-
2+ transport, ATP synthesis and heat production. An. Acad. Bras. Cienc. 72 (2000), 365–379.
-
(2000)
An. Acad. Bras. Cienc.
, vol.72
, pp. 365-379
-
-
Meis, L.D.1
-
48
-
-
33846026367
-
2+-ATPase
-
2+-ATPase. J. Biol. Chem. 281 (2006), 36597–36602.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 36597-36602
-
-
Mall, S.1
-
49
-
-
36749060047
-
Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility
-
49 Babu, G.J., et al. Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 17867–17872.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 17867-17872
-
-
Babu, G.J.1
-
51
-
-
77953169046
-
Cellular bioenergetics as a target for obesity therapy
-
51 Tseng, Y.H., et al. Cellular bioenergetics as a target for obesity therapy. Nat. Rev. Drug Discov. 9 (2010), 465–482.
-
(2010)
Nat. Rev. Drug Discov.
, vol.9
, pp. 465-482
-
-
Tseng, Y.H.1
-
52
-
-
0018646453
-
A role for brown adipose tissue in diet-induced thermogenesis
-
52 Rothwell, N.J., Stock, M.J., A role for brown adipose tissue in diet-induced thermogenesis. Nature 281 (1979), 31–35.
-
(1979)
Nature
, vol.281
, pp. 31-35
-
-
Rothwell, N.J.1
Stock, M.J.2
-
53
-
-
84928406067
-
Sarcolipin is a key determinant of the basal metabolic rate, and its overexpression enhances energy expenditure and resistance against diet-induced obesity
-
53 Maurya, S.K., et al. Sarcolipin is a key determinant of the basal metabolic rate, and its overexpression enhances energy expenditure and resistance against diet-induced obesity. J. Biol. Chem. 290 (2015), 10840–10849.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 10840-10849
-
-
Maurya, S.K.1
-
54
-
-
84928310000
-
Sarcolipin overexpression improves muscle energetics and reduces fatigue
-
54 Sopariwala, D.H., et al. Sarcolipin overexpression improves muscle energetics and reduces fatigue. J. Appl. Physiol. (1985) 118 (2015), 1050–1058.
-
(2015)
J. Appl. Physiol. (1985)
, vol.118
, pp. 1050-1058
-
-
Sopariwala, D.H.1
-
55
-
-
34447501977
-
Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology
-
55 Babu, G.J., et al. Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology. J. Mol. Cell Cardiol. 43 (2007), 215–222.
-
(2007)
J. Mol. Cell Cardiol.
, vol.43
, pp. 215-222
-
-
Babu, G.J.1
-
56
-
-
12444314062
-
Fetal and neonatal thermoregulation
-
56 Asakura, H., Fetal and neonatal thermoregulation. J. Nippon Med. Sch. 71 (2004), 360–370.
-
(2004)
J. Nippon Med. Sch.
, vol.71
, pp. 360-370
-
-
Asakura, H.1
-
57
-
-
34047219171
-
SERCA pump isoforms: their role in calcium transport and disease
-
57 Periasamy, M., Kalyanasundaram, A., SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35 (2007), 430–442.
-
(2007)
Muscle Nerve
, vol.35
, pp. 430-442
-
-
Periasamy, M.1
Kalyanasundaram, A.2
-
58
-
-
84862201030
-
Calcium pumps: why so many?
-
58 Brini, M., et al. Calcium pumps: why so many?. Compr. Physiol. 2 (2012), 1045–1060.
-
(2012)
Compr. Physiol.
, vol.2
, pp. 1045-1060
-
-
Brini, M.1
-
59
-
-
16644402070
-
Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment
-
59 Nowak, K.J., Davies, K.E., Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep. 5 (2004), 872–876.
-
(2004)
EMBO Rep.
, vol.5
, pp. 872-876
-
-
Nowak, K.J.1
Davies, K.E.2
-
60
-
-
0034702025
-
Dystrophin and utrophin influence fiber type composition and post-synaptic membrane structure
-
60 Rafael, J.A., et al. Dystrophin and utrophin influence fiber type composition and post-synaptic membrane structure. Hum. Mol. Genet. 9 (2000), 1357–1367.
-
(2000)
Hum. Mol. Genet.
, vol.9
, pp. 1357-1367
-
-
Rafael, J.A.1
-
61
-
-
84890031164
-
2+ uptake in skeletal muscles of mouse models of Duchenne muscular dystrophy
-
2+ uptake in skeletal muscles of mouse models of Duchenne muscular dystrophy. J. Muscle Res. Cell Motil. 34 (2013), 349–356.
-
(2013)
J. Muscle Res. Cell Motil.
, vol.34
, pp. 349-356
-
-
Schneider, J.S.1
-
62
-
-
84928889829
-
Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of Duchenne muscular dystrophy
-
62 Pant, M., et al. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of Duchenne muscular dystrophy. PLoS One, 10, 2015, e0123875.
-
(2015)
PLoS One
, vol.10
, pp. e0123875
-
-
Pant, M.1
-
63
-
-
84871200918
-
Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition
-
63 Percival, J.M., et al. Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition. Hum. Mol. Genet. 22 (2013), 153–167.
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 153-167
-
-
Percival, J.M.1
-
64
-
-
60349094485
-
Sarcolipin and ubiquitin carboxy-terminal hydrolase 1 mRNAs are over-expressed in skeletal muscles of α-tocopherol deficient mice
-
64 Vasu, V.T., et al. Sarcolipin and ubiquitin carboxy-terminal hydrolase 1 mRNAs are over-expressed in skeletal muscles of α-tocopherol deficient mice. Free Radic. Res. 43 (2009), 106–116.
-
(2009)
Free Radic. Res.
, vol.43
, pp. 106-116
-
-
Vasu, V.T.1
-
65
-
-
12244291885
-
Gene expression profiling in dysferlinopathies using a dedicated muscle microarray
-
65 Campanaro, S., et al. Gene expression profiling in dysferlinopathies using a dedicated muscle microarray. Hum. Mol. Genet. 11 (2002), 3283–3298.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 3283-3298
-
-
Campanaro, S.1
-
66
-
-
79960981578
-
Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy
-
66 Liu, N., et al. Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J. Clin. Invest. 121 (2011), 3258–3268.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 3258-3268
-
-
Liu, N.1
-
67
-
-
64549120650
-
Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy
-
67 Osborne, R.J., et al. Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy. Hum. Mol. Genet. 18 (2009), 1471–1481.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 1471-1481
-
-
Osborne, R.J.1
-
68
-
-
84876414410
-
Mechanisms for fiber-type specificity of skeletal muscle atrophy
-
68 Wang, Y., Pessin, J.E., Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 16 (2013), 243–250.
-
(2013)
Curr. Opin. Clin. Nutr. Metab. Care
, vol.16
, pp. 243-250
-
-
Wang, Y.1
Pessin, J.E.2
-
69
-
-
0036142565
-
Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle
-
69 Weber, K., et al. Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology 143 (2002), 177–184.
-
(2002)
Endocrinology
, vol.143
, pp. 177-184
-
-
Weber, K.1
-
70
-
-
0034656175
-
Corticosteroids decrease mRNA levels of SERCA pumps, whereas they increase sarcolipin mRNA in the rat diaphragm
-
70 Gayan-Ramirez, G., et al. Corticosteroids decrease mRNA levels of SERCA pumps, whereas they increase sarcolipin mRNA in the rat diaphragm. J. Physiol. 524 (2000), 387–397.
-
(2000)
J. Physiol.
, vol.524
, pp. 387-397
-
-
Gayan-Ramirez, G.1
-
71
-
-
0037066459
-
Regulation of mitochondrial biogenesis in skeletal muscle by CaMK
-
71 Wu, H., et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296 (2002), 349–352.
-
(2002)
Science
, vol.296
, pp. 349-352
-
-
Wu, H.1
-
72
-
-
34547092191
-
Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation
-
72 Wright, D.C., et al. Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J. Biol. Chem. 282 (2007), 18793–18799.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 18793-18799
-
-
Wright, D.C.1
-
73
-
-
33847265875
-
Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression
-
73 Long, Y.C., et al. Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression. J. Biol. Chem. 282 (2007), 1607–1614.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 1607-1614
-
-
Long, Y.C.1
-
74
-
-
84991833291
-
Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease
-
Published online June 17, 2016
-
74 Argiles, J.M., et al. Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J. Am. Med. Dir. Assoc., 2016, 10.1016/j.jamda.2016.04.019 Published online June 17, 2016.
-
(2016)
J. Am. Med. Dir. Assoc.
-
-
Argiles, J.M.1
-
75
-
-
84933179243
-
Reduced efficiency of sarcolipin-dependent respiration in myocytes from humans with severe obesity
-
75 Paran, C.W., et al. Reduced efficiency of sarcolipin-dependent respiration in myocytes from humans with severe obesity. Obesity (Silver Spring) 23 (2015), 1440–1449.
-
(2015)
Obesity (Silver Spring)
, vol.23
, pp. 1440-1449
-
-
Paran, C.W.1
-
76
-
-
33746009957
-
Coordination of metabolic plasticity in skeletal muscle
-
76 Hood, D.A., et al. Coordination of metabolic plasticity in skeletal muscle. J. Exp. Biol. 209 (2006), 2265–2275.
-
(2006)
J. Exp. Biol.
, vol.209
, pp. 2265-2275
-
-
Hood, D.A.1
-
77
-
-
84882731713
-
Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword?
-
77 Munoz-Canoves, P., et al. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword?. FEBS J. 280 (2013), 4131–4148.
-
(2013)
FEBS J.
, vol.280
, pp. 4131-4148
-
-
Munoz-Canoves, P.1
-
78
-
-
78651379305
-
Muscles and their myokines
-
78 Pedersen, B.K., Muscles and their myokines. J. Exp. Biol. 214 (2011), 337–346.
-
(2011)
J. Exp. Biol.
, vol.214
, pp. 337-346
-
-
Pedersen, B.K.1
-
79
-
-
84946743484
-
Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21
-
79 Guridi, M., et al. Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21. Sci. Signal., 8, 2015, ra113.
-
(2015)
Sci. Signal.
, vol.8
, pp. ra113
-
-
Guridi, M.1
-
80
-
-
84939551519
-
Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype
-
80 Fajardo, V.A., et al. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis. Model. Mech. 8 (2015), 999–1009.
-
(2015)
Dis. Model. Mech.
, vol.8
, pp. 999-1009
-
-
Fajardo, V.A.1
-
81
-
-
9144271149
-
Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome
-
81 Tanaka, T., et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 15924–15929.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 15924-15929
-
-
Tanaka, T.1
-
82
-
-
22544462381
-
A potential link between muscle peroxisome proliferator- activated receptor-α signaling and obesity-related diabetes
-
82 Finck, B.N., et al. A potential link between muscle peroxisome proliferator- activated receptor-α signaling and obesity-related diabetes. Cell Metab. 1 (2005), 133–144.
-
(2005)
Cell Metab.
, vol.1
, pp. 133-144
-
-
Finck, B.N.1
-
83
-
-
45149108625
-
Muscle-specific expression of PPAR(coactivator-1α improves exercise performance and increases peak oxygen uptake
-
83 Calvo, J.A., et al. Muscle-specific expression of PPAR(coactivator-1α improves exercise performance and increases peak oxygen uptake. J. Appl. Physiol. (1985) 104 (2008), 1304–1312.
-
(2008)
J. Appl. Physiol. (1985)
, vol.104
, pp. 1304-1312
-
-
Calvo, J.A.1
-
84
-
-
0037102256
-
Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres
-
84 Lin, J., et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418 (2002), 797–801.
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
-
85
-
-
35648937073
-
Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals
-
85 Handschin, C., et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem. 282 (2007), 30014–30021.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30014-30021
-
-
Handschin, C.1
-
86
-
-
36048931015
-
Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk
-
86 Handschin, C., et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J. Clin. Invest. 117 (2007), 3463–3474.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 3463-3474
-
-
Handschin, C.1
-
87
-
-
33845674997
-
The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle
-
87 Arany, Z., et al. The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 5 (2007), 35–46.
-
(2007)
Cell Metab.
, vol.5
, pp. 35-46
-
-
Arany, Z.1
-
88
-
-
78649508058
-
Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity
-
88 Zechner, C., et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 12 (2010), 633–642.
-
(2010)
Cell Metab.
, vol.12
, pp. 633-642
-
-
Zechner, C.1
-
89
-
-
77954576474
-
Estrogen-related receptor γ is a key regulator of muscle mitochondrial activity and oxidative capacity
-
89 Rangwala, S.M., et al. Estrogen-related receptor γ is a key regulator of muscle mitochondrial activity and oxidative capacity. J. Biol. Chem. 285 (2010), 22619–22629.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 22619-22629
-
-
Rangwala, S.M.1
-
90
-
-
8844255472
-
The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation
-
90 Solinas, G., et al. The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation. FEBS Lett. 577 (2004), 539–544.
-
(2004)
FEBS Lett.
, vol.577
, pp. 539-544
-
-
Solinas, G.1
-
91
-
-
84869068575
-
Skeletal muscle Nur77 expression enhances oxidative metabolism and substrate utilization
-
91 Chao, L.C., et al. Skeletal muscle Nur77 expression enhances oxidative metabolism and substrate utilization. J. Lipid. Res. 53 (2012), 2610–2619.
-
(2012)
J. Lipid. Res.
, vol.53
, pp. 2610-2619
-
-
Chao, L.C.1
-
92
-
-
44949221431
-
Increased thermoregulation in cold-exposed transgenic mice overexpressing lipoprotein lipase in skeletal muscle: an avian phenotype?
-
92 Jensen, D.R., et al. Increased thermoregulation in cold-exposed transgenic mice overexpressing lipoprotein lipase in skeletal muscle: an avian phenotype?. J. Lipid. Res. 49 (2008), 870–879.
-
(2008)
J. Lipid. Res.
, vol.49
, pp. 870-879
-
-
Jensen, D.R.1
-
93
-
-
0037593949
-
Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity
-
93 Bach, D., et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278 (2003), 17190–17197.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 17190-17197
-
-
Bach, D.1
-
94
-
-
84888419979
-
Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle
-
94 Smith, M.E., et al. Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochem. J. 456 (2013), 427–439.
-
(2013)
Biochem. J.
, vol.456
, pp. 427-439
-
-
Smith, M.E.1
-
95
-
-
0036152683
-
Interleukin-6-deficient mice develop mature-onset obesity
-
95 Wallenius, V., et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 8 (2002), 75–79.
-
(2002)
Nat. Med.
, vol.8
, pp. 75-79
-
-
Wallenius, V.1
-
96
-
-
84925018403
-
Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans
-
96 Huh, J.Y., et al. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int. J. Obes. (Lond). 38 (2014), 1538–1544.
-
(2014)
Int. J. Obes. (Lond).
, vol.38
, pp. 1538-1544
-
-
Huh, J.Y.1
-
97
-
-
57349178401
-
Mice lacking the thyroid hormone receptor-α gene spend more energy in thermogenesis, burn more fat, and are less sensitive to high-fat diet-induced obesity
-
97 Pelletier, P., et al. Mice lacking the thyroid hormone receptor-α gene spend more energy in thermogenesis, burn more fat, and are less sensitive to high-fat diet-induced obesity. Endocrinology 149 (2008), 6471–6486.
-
(2008)
Endocrinology
, vol.149
, pp. 6471-6486
-
-
Pelletier, P.1
-
98
-
-
33644701421
-
The lack of β-adrenoceptors results in enhanced insulin sensitivity in mice exhibiting increased adiposity and glucose intolerance
-
98 Asensio, C., et al. The lack of β-adrenoceptors results in enhanced insulin sensitivity in mice exhibiting increased adiposity and glucose intolerance. Diabetes 54 (2005), 3490–3495.
-
(2005)
Diabetes
, vol.54
, pp. 3490-3495
-
-
Asensio, C.1
-
99
-
-
84891797191
-
Constitutively active CaMKKα stimulates skeletal muscle glucose uptake in insulin-resistant mice in vivo
-
99 Hinkley, J.M., et al. Constitutively active CaMKKα stimulates skeletal muscle glucose uptake in insulin-resistant mice in vivo. Diabetes 63 (2014), 142–151.
-
(2014)
Diabetes
, vol.63
, pp. 142-151
-
-
Hinkley, J.M.1
|