-
1
-
-
0023600057
-
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
-
[1] Ishino, Y., Shinagawa, H., Makino, K., et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169 (1987), 5429–5433.
-
(1987)
J. Bacteriol.
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
Shinagawa, H.2
Makino, K.3
-
2
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
[2] Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13 (2015), 722–736.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
-
3
-
-
84913594397
-
The new frontier of genome engineering with CRISPR-Cas9
-
[3] Doudna, J.A., Charpentier, E., The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 2014, 1258096, 10.1126/science.1258096.
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
4
-
-
33747889217
-
Differential usage of non-homologous end-joining and homologous recombination in double strand break repair
-
[4] Sonoda, E., Hochegger, H., Saberi, A., et al. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair 5 (2006), 1021–1029.
-
(2006)
DNA Repair
, vol.5
, pp. 1021-1029
-
-
Sonoda, E.1
Hochegger, H.2
Saberi, A.3
-
5
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
[5] Sander, J.D., Joung, J.K., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32 (2014), 347–355.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
6
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
[6] DiCarlo, J.E., Norville, J.E., Mali, P., et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucl. Acids Res. 41 (2013), 4336–4343.
-
(2013)
Nucl. Acids Res.
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
-
7
-
-
84923050777
-
Implementation of the CRISPR-Cas9 system in fission yeast
-
[7] Jacobs, J.Z., Ciccaglione, K.M., Tournier, V., et al. Implementation of the CRISPR-Cas9 system in fission yeast. Nat. Commun., 5, 2014, 5344, 10.1038/ncomms6344.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5344
-
-
Jacobs, J.Z.1
Ciccaglione, K.M.2
Tournier, V.3
-
8
-
-
84935513637
-
Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
-
[8] Horwitz, A.A., Walter, J.M., Schubert, M.G., et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 1 (2015), 88–96.
-
(2015)
Cell Syst.
, vol.1
, pp. 88-96
-
-
Horwitz, A.A.1
Walter, J.M.2
Schubert, M.G.3
-
9
-
-
84963593243
-
Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris
-
[9] Weninger, A., Hatzl, A.M., Schmid, C., et al. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J. Biotechnol. 235 (2016), 139–149.
-
(2016)
J. Biotechnol.
, vol.235
, pp. 139-149
-
-
Weninger, A.1
Hatzl, A.M.2
Schmid, C.3
-
10
-
-
84964659819
-
A CRISPR/Cas9 system adapted for gene editing in marine algae
-
[10] Nymark, M., Sharma, A.K., Sparstad, T., et al. A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci. Rep., 6, 2016, 24951, 10.1038/srep24951.
-
(2016)
Sci. Rep.
, vol.6
, pp. 24951
-
-
Nymark, M.1
Sharma, A.K.2
Sparstad, T.3
-
11
-
-
84974659966
-
CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii
-
[11] Shin, S.E., Lim, J.M., Koh, H.G., et al. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep., 6, 2016, 27810, 10.1038/srep27810.
-
(2016)
Sci. Rep.
, vol.6
, pp. 27810
-
-
Shin, S.E.1
Lim, J.M.2
Koh, H.G.3
-
12
-
-
84980318089
-
Prospects for application of breakthrough technologies in breeding: the CRISPR/Cas9 system for plant genome editing
-
[12] Khlestkina, E.K., Shumny, V.K., Prospects for application of breakthrough technologies in breeding: the CRISPR/Cas9 system for plant genome editing. Russ. J. Genet. 52 (2016), 676–687.
-
(2016)
Russ. J. Genet.
, vol.52
, pp. 676-687
-
-
Khlestkina, E.K.1
Shumny, V.K.2
-
13
-
-
84964228092
-
Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 System
-
[13] Li, M., Li, X., Zhou, Z., et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 System. Front. Plant Sci., 7, 2016, 377, 10.3389/fpls.2016.00377.
-
(2016)
Front. Plant Sci.
, vol.7
, pp. 377
-
-
Li, M.1
Li, X.2
Zhou, Z.3
-
14
-
-
84944937432
-
CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening
-
[14] Ito, Y., Nishizawa-Yokoi, A., Endo, M., et al. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun. 467 (2015), 76–82.
-
(2015)
Biochem. Biophys. Res. Commun.
, vol.467
, pp. 76-82
-
-
Ito, Y.1
Nishizawa-Yokoi, A.2
Endo, M.3
-
15
-
-
84964414181
-
Gene-edited CRISPR mushroom escapes US regulation
-
[15] Waltz, E., Gene-edited CRISPR mushroom escapes US regulation. Nature, 532, 2016, 293, 10.1038/nature.2016.19754.
-
(2016)
Nature
, vol.532
, pp. 293
-
-
Waltz, E.1
-
16
-
-
84961574790
-
CRISPR/Cas9: an advanced tool for editing plant genomes
-
[16] Samanta, M.K., Dey, A., Gayen, S., CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res. 25 (2016), 561–573.
-
(2016)
Transgenic Res.
, vol.25
, pp. 561-573
-
-
Samanta, M.K.1
Dey, A.2
Gayen, S.3
-
17
-
-
84991102842
-
Patterns of CRISPR/Cas9 activity in plants, animals and microbes
-
[17] Bortesi, L., Zhu, C., Zischewski, J., et al. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol. J., 2016, 10.1111/pbi.12634.
-
(2016)
Plant Biotechnol. J.
-
-
Bortesi, L.1
Zhu, C.2
Zischewski, J.3
-
18
-
-
11444267813
-
The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution
-
[18] Puchta, H., The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56 (2005), 1–14.
-
(2005)
J. Exp. Bot.
, vol.56
, pp. 1-14
-
-
Puchta, H.1
-
19
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
[19] Li, J.F., Norville, J.E., Aach, J., et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31 (2013), 688–691.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 688-691
-
-
Li, J.F.1
Norville, J.E.2
Aach, J.3
-
20
-
-
84942901283
-
Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA
-
[20] Svitashev, S., Young, J.K., Schwartz, C., et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169 (2015), 931–945.
-
(2015)
Plant Physiol.
, vol.169
, pp. 931-945
-
-
Svitashev, S.1
Young, J.K.2
Schwartz, C.3
-
21
-
-
84962091068
-
Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants
-
[21] Sauer, N.J., Narváez-Vásquez, J., Mozoruk, J., et al. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol. 170 (2016), 1917–1928.
-
(2016)
Plant Physiol.
, vol.170
, pp. 1917-1928
-
-
Sauer, N.J.1
Narváez-Vásquez, J.2
Mozoruk, J.3
-
22
-
-
84962909415
-
An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design
-
[22] Zhao, Y., Zhang, C., Liu, W., et al. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci. Rep., 6, 2016, 23890, 10.1038/srep23890.
-
(2016)
Sci. Rep.
, vol.6
, pp. 23890
-
-
Zhao, Y.1
Zhang, C.2
Liu, W.3
-
23
-
-
84962407106
-
Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase
-
[23] Sun, Y., Zhang, X., Wu, C., et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol. Plant 9 (2016), 628–631.
-
(2016)
Mol. Plant
, vol.9
, pp. 628-631
-
-
Sun, Y.1
Zhang, X.2
Wu, C.3
-
24
-
-
84947255513
-
DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
-
[24] Woo, J.W., Kim, J., Kwon, S.I., et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33 (2015), 1162–1164.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1162-1164
-
-
Woo, J.W.1
Kim, J.2
Kwon, S.I.3
-
25
-
-
84942931752
-
A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
-
[25] Lowder, L., Zhang, Y., Baltes, N., et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169 (2015), 971–985.
-
(2015)
Plant Physiol.
, vol.169
, pp. 971-985
-
-
Lowder, L.1
Zhang, Y.2
Baltes, N.3
-
26
-
-
84925262435
-
Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system
-
[26] Xie, K., Minkenberg, B., Yang, Y., Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 3570–3575.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 3570-3575
-
-
Xie, K.1
Minkenberg, B.2
Yang, Y.3
-
27
-
-
84938748218
-
A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants
-
[27] Ma, X., Zhang, Q., Zhu, Q., et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8 (2015), 1274–1284.
-
(2015)
Mol. Plant
, vol.8
, pp. 1274-1284
-
-
Ma, X.1
Zhang, Q.2
Zhu, Q.3
-
28
-
-
84896924524
-
Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis
-
[28] Feng, Z., Mao, Y., Xu, N., et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 4632–4637.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 4632-4637
-
-
Feng, Z.1
Mao, Y.2
Xu, N.3
-
29
-
-
84964688883
-
CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations
-
[29] Pan, C., Ye, L., Qin, L., et al. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci. Rep., 6, 2016, 24765, 10.1038/srep24765.
-
(2016)
Sci. Rep.
, vol.6
, pp. 24765
-
-
Pan, C.1
Ye, L.2
Qin, L.3
-
30
-
-
84904639258
-
The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
-
[30] Zhang, H., Zhang, J., Wei, P., et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12 (2014), 797–807.
-
(2014)
Plant Biotechnol. J.
, vol.12
, pp. 797-807
-
-
Zhang, H.1
Zhang, J.2
Wei, P.3
-
31
-
-
84922664019
-
Multi-gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice
-
[31] Endo, M., Mikami, M., Toki, S., Multi-gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 56 (2015), 41–47.
-
(2015)
Plant Cell Physiol.
, vol.56
, pp. 41-47
-
-
Endo, M.1
Mikami, M.2
Toki, S.3
-
32
-
-
84884962826
-
RNA-guided genome editing in plants using a CRISPR–Cas system
-
[32] Xie, K., Yang, Y., RNA-guided genome editing in plants using a CRISPR–Cas system. Mol. Plant 6 (2013), 1975–1983.
-
(2013)
Mol. Plant
, vol.6
, pp. 1975-1983
-
-
Xie, K.1
Yang, Y.2
-
33
-
-
84899895901
-
Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops
-
[33] Xie, K., Zhang, J., Yang, Y., Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol. Plant 7 (2014), 923–926.
-
(2014)
Mol. Plant
, vol.7
, pp. 923-926
-
-
Xie, K.1
Zhang, J.2
Yang, Y.3
-
34
-
-
84934878723
-
Function genomics of abiotic stress tolerance in plants: a CRISPR approach
-
[34] Jain, M., Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front. Plant Sci., 6, 2015, 375, 10.3389/fpls.2015.00375.
-
(2015)
Front. Plant Sci.
, vol.6
, pp. 375
-
-
Jain, M.1
-
35
-
-
84981744893
-
ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions
-
[35] Shi, J., Gao, H., Wang, H., et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J., 2016, 10.1111/pbi.12603.
-
(2016)
Plant Biotechnol. J.
-
-
Shi, J.1
Gao, H.2
Wang, H.3
-
36
-
-
84971280492
-
Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants
-
[36] Osakabe, Y., Watanabe, T., Sugano, S.S., et al. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci. Rep., 6, 2016, 26685, 10.1038/srep26685.
-
(2016)
Sci. Rep.
, vol.6
, pp. 26685
-
-
Osakabe, Y.1
Watanabe, T.2
Sugano, S.S.3
-
37
-
-
84981731420
-
Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology
-
[37] Alagoz, Y., Gurkok, T., Zhang, B., et al. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci. Rep., 2016, 10.1038/srep30910.
-
(2016)
Sci. Rep.
-
-
Alagoz, Y.1
Gurkok, T.2
Zhang, B.3
-
38
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
[38] Bikard, D., Jiang, W., Samai, P., et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucl. Acids Res. 41 (2013), 7429–7437.
-
(2013)
Nucl. Acids Res.
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
-
39
-
-
84908328232
-
A protein-tagging system for signal amplification in gene expression and fluorescence imaging
-
[39] Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159 (2014), 635–646.
-
(2014)
Cell
, vol.159
, pp. 635-646
-
-
Tanenbaum, M.E.1
Gilbert, L.A.2
Qi, L.S.3
-
40
-
-
84923096541
-
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
-
[40] Konermann, S., Brigham, M.D., Trevino, A.E., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517 (2015), 583–588.
-
(2015)
Nature
, vol.517
, pp. 583-588
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
-
41
-
-
84926521955
-
Highly efficient Cas9-mediated transcriptional programming
-
[41] Chavez, A., Scheiman, J., Vora, S., et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12 (2015), 326–328.
-
(2015)
Nat. Methods
, vol.12
, pp. 326-328
-
-
Chavez, A.1
Scheiman, J.2
Vora, S.3
-
42
-
-
84886488970
-
Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas
-
[42] Farzadfard, F., Perli, S.D., Lu, T.K., Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2 (2013), 604–613.
-
(2013)
ACS Synth. Biol.
, vol.2
, pp. 604-613
-
-
Farzadfard, F.1
Perli, S.D.2
Lu, T.K.3
-
43
-
-
84928212884
-
RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors
-
[43] Piatek, A., Ali, Z., Baazim, H., et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13 (2015), 578–589.
-
(2015)
Plant Biotechnol. J.
, vol.13
, pp. 578-589
-
-
Piatek, A.1
Ali, Z.2
Baazim, H.3
-
44
-
-
84969791285
-
Comparison of Cas9 activators in multiple species
-
[44] Chavez, A., Tuttle, M., Pruitt, B.W., et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13 (2016), 563–567.
-
(2016)
Nat. Methods
, vol.13
, pp. 563-567
-
-
Chavez, A.1
Tuttle, M.2
Pruitt, B.W.3
-
45
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
[45] Qi, L.S., Larson, M.H., Gilbert, L.A., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 (2013), 1173–1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
-
46
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
[46] Gilbert, L.A., Larson, M.H., Morsut, L., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 442–451.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
-
47
-
-
84944632276
-
The new state of the art: cas9 for gene activation and repression
-
[47] La Russa, M.F., Qi, L.S., The new state of the art: cas9 for gene activation and repression. Mol. Cell. Biol. 35 (2015), 3800–3809.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 3800-3809
-
-
La Russa, M.F.1
Qi, L.S.2
-
48
-
-
84958580581
-
Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells
-
[48] Mercx, S., Tollet, J., Magy, B., et al. Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells. Front. Plant Sci., 7, 2016, 40, 10.3389/fpls.2016.00040.
-
(2016)
Front. Plant Sci.
, vol.7
, pp. 40
-
-
Mercx, S.1
Tollet, J.2
Magy, B.3
-
49
-
-
84979034770
-
Repurposing the CRISPR-Cas9 system for targeted DNA methylation
-
[49] Vojta, A., Dobrinić, P., Tadić, V., et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucl. Acids Res. 44 (2016), 5615–5628.
-
(2016)
Nucl. Acids Res.
, vol.44
, pp. 5615-5628
-
-
Vojta, A.1
Dobrinić, P.2
Tadić, V.3
-
50
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
[50] Hilton, I.B., D'Ippolito, A.M., Vockley, C.M., et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33 (2015), 510–517.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
D'Ippolito, A.M.2
Vockley, C.M.3
-
51
-
-
84928924333
-
Functional annotation of native enhancers with a Cas9-histone demethylase fusion
-
[51] Kearns, N.A., Pham, H., Tabak, B., et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12 (2015), 401–403.
-
(2015)
Nat. Methods
, vol.12
, pp. 401-403
-
-
Kearns, N.A.1
Pham, H.2
Tabak, B.3
-
52
-
-
84922620312
-
Controlled activation of retrotransposition for plant breeding
-
[52] Paszkowshi, J., Controlled activation of retrotransposition for plant breeding. Curr. Opin. Biotechnol. 32 (2015), 200–206.
-
(2015)
Curr. Opin. Biotechnol.
, vol.32
, pp. 200-206
-
-
Paszkowshi, J.1
-
53
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
[53] Chen, B., Gilbert, L.A., Cimini, B.A., et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155 (2013), 1479–1491.
-
(2013)
Cell
, vol.155
, pp. 1479-1491
-
-
Chen, B.1
Gilbert, L.A.2
Cimini, B.A.3
-
54
-
-
84924347318
-
Multicolor CRISPR labeling of chromosomal loci in human cells
-
[54] Ma, H., Naseri, A., Reyes-Gutierrez, P., et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 3002–3007.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 3002-3007
-
-
Ma, H.1
Naseri, A.2
Reyes-Gutierrez, P.3
-
55
-
-
84965054211
-
The expanding footprint of CRISPR/Cas9 in the plant sciences
-
[55] Schaeffer, S.C., Nakata, P.A., The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Rep. 35 (2016), 1451–1468.
-
(2016)
Plant Cell Rep.
, vol.35
, pp. 1451-1468
-
-
Schaeffer, S.C.1
Nakata, P.A.2
-
56
-
-
84930618439
-
CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
-
[56] Liang, P., Xu, Y., Zhang, X., et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6 (2015), 363–372.
-
(2015)
Protein Cell
, vol.6
, pp. 363-372
-
-
Liang, P.1
Xu, Y.2
Zhang, X.3
-
57
-
-
85008868643
-
Plant–pathogen interactions: toward development of next-generation disease-resistant plants
-
[57] Nejat, N., Rookes, J., Mantri, N.L., et al. Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Crit. Rev. Biotechnol. 22 (2016), 1–9.
-
(2016)
Crit. Rev. Biotechnol.
, vol.22
, pp. 1-9
-
-
Nejat, N.1
Rookes, J.2
Mantri, N.L.3
-
58
-
-
84931846154
-
Editing plant genomes with CRISPR/Cas9
-
[58] Belhaj, K., Chaparro-Garcia, A., Kamoun, S., et al. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32 (2015), 76–84.
-
(2015)
Curr. Opin. Biotechnol.
, vol.32
, pp. 76-84
-
-
Belhaj, K.1
Chaparro-Garcia, A.2
Kamoun, S.3
-
59
-
-
85020153731
-
Harvest time for CRISPR-Cas?
-
[59] Gross, M., Harvest time for CRISPR-Cas?. Curr. Biol. 26 (2016), R903–R905.
-
(2016)
Curr. Biol.
, vol.26
, pp. R903-R905
-
-
Gross, M.1
-
60
-
-
84886926151
-
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
[60] Jiang, W., Zhou, H., Bi, H., et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucl. Acids Res., 41, 2013, 10.1093/nar/gkt780.
-
(2013)
Nucl. Acids Res.
, vol.41
-
-
Jiang, W.1
Zhou, H.2
Bi, H.3
-
61
-
-
84890831873
-
RNA-guided Genome Editing for Target Gene Mutations in Wheat
-
G3 (Bethesda) 3
-
[61] Upadhyay, S.K., Kumar, J., Alok, A., et al. RNA-guided Genome Editing for Target Gene Mutations in Wheat. 2013, 2233–2238 G3 (Bethesda) 3.
-
(2013)
, pp. 2233-2238
-
-
Upadhyay, S.K.1
Kumar, J.2
Alok, A.3
-
62
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
[62] Shan, Q., Wang, Y., Li, J., et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31 (2013), 686–688.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 686-688
-
-
Shan, Q.1
Wang, Y.2
Li, J.3
-
63
-
-
84921934205
-
Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
-
[63] Wang, Y., Cheng, X., Shan, Q., et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32 (2014), 947–951.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 947-951
-
-
Wang, Y.1
Cheng, X.2
Shan, Q.3
-
64
-
-
84921915687
-
Proposal of a genome editing system for genetic resistance to tomato spotted wilt virus
-
[64] Martinelli, F., Grillone, G., Sgroi, F., Proposal of a genome editing system for genetic resistance to tomato spotted wilt virus. Am. J. Appl. Sci. 11 (2014), 1904–1913.
-
(2014)
Am. J. Appl. Sci.
, vol.11
, pp. 1904-1913
-
-
Martinelli, F.1
Grillone, G.2
Sgroi, F.3
-
65
-
-
84908584019
-
Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system
-
[65] Brooks, C., Nekrasov, V., Lippman, Z.B., et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166 (2014), 1292–1297.
-
(2014)
Plant Physiol.
, vol.166
, pp. 1292-1297
-
-
Brooks, C.1
Nekrasov, V.2
Lippman, Z.B.3
-
66
-
-
84899556051
-
Targeted genome editing of sweet orange using Cas9/sgRNA
-
[66] Jia, H., Wang, N., Targeted genome editing of sweet orange using Cas9/sgRNA. PloS One, 9, 2014, e93806, 10.1371/journal.pone.0093806.
-
(2014)
PloS One
, vol.9
, pp. e93806
-
-
Jia, H.1
Wang, N.2
-
67
-
-
84894321885
-
Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system
-
[67] Liang, Z., Zhang, K., Chen, K., et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics 41 (2014), 63–68.
-
(2014)
J. Genet. Genomics
, vol.41
, pp. 63-68
-
-
Liang, Z.1
Zhang, K.2
Chen, K.3
-
68
-
-
84938551842
-
Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice
-
[68] Xu, R., Li, H., Qin, R., et al. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice, 7, 2014, 5, 10.1186/s12284-014-0005-6.
-
(2014)
Rice
, vol.7
, pp. 5
-
-
Xu, R.1
Li, H.2
Qin, R.3
-
69
-
-
84904068340
-
Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana
-
[69] Fauser, F., Schiml, S., Puchta, H., Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79 (2014), 348–359.
-
(2014)
Plant J
, vol.79
, pp. 348-359
-
-
Fauser, F.1
Schiml, S.2
Puchta, H.3
-
70
-
-
84899120939
-
CRISPR/Cas9 mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.
-
[70] Sugano, S.S., Shirakawa, M., Takagi, J., et al. CRISPR/Cas9 mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol. 55 (2014), 475–481.
-
(2014)
Plant Cell Physiol.
, vol.55
, pp. 475-481
-
-
Sugano, S.S.1
Shirakawa, M.2
Takagi, J.3
-
71
-
-
84946745735
-
CRISPR/Cas9-mediated viral interference in plants
-
[71] Ali, Z., Abulfaraj, A., Idris, A., et al. CRISPR/Cas9-mediated viral interference in plants. Genome Biol., 16, 2015, 238, 10.1186/s13059-015-0799-6.
-
(2015)
Genome Biol.
, vol.16
, pp. 238
-
-
Ali, Z.1
Abulfaraj, A.2
Idris, A.3
-
72
-
-
84947775797
-
Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants
-
[72] Ji, X., Zhang, H., Zhang, Y., et al. Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants, 1, 2015, 15144, 10.1038/nplants.2015.144.
-
(2015)
Nat. Plants
, vol.1
, pp. 15144
-
-
Ji, X.1
Zhang, H.2
Zhang, Y.3
-
73
-
-
85009919974
-
Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system
-
[73] Baltes, N.J., Hummel, A.W., Konecna, E., et al. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat. Plants, 1, 2015, 15145, 10.1038/nplants.2015.145.
-
(2015)
Nat. Plants
, vol.1
, pp. 15145
-
-
Baltes, N.J.1
Hummel, A.W.2
Konecna, E.3
-
74
-
-
84919838986
-
CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum
-
[74] Gao, J., Wang, G., Ma, S., et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol. Biol. 87 (2015), 99–110.
-
(2015)
Plant Mol. Biol.
, vol.87
, pp. 99-110
-
-
Gao, J.1
Wang, G.2
Ma, S.3
-
75
-
-
84937702694
-
Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation
-
[75] Fan, D., Liu, T., Li, C., et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci. Rep., 5, 2015, 12217, 10.1038/srep12217.
-
(2015)
Sci. Rep.
, vol.5
, pp. 12217
-
-
Fan, D.1
Liu, T.2
Li, C.3
-
76
-
-
85027950047
-
Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology
-
[76] Chandrasekaran, J., Brumin, M., Wolf, D., et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17 (2016), 1140–1153.
-
(2016)
Mol. Plant Pathol.
, vol.17
, pp. 1140-1153
-
-
Chandrasekaran, J.1
Brumin, M.2
Wolf, D.3
-
77
-
-
84977500985
-
Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922
-
[77] Wang, F., Wang, C., Liu, P., et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS One, 11, 2016, e0154027, 10.1371/journal.pone.0154027.
-
(2016)
PloS One
, vol.11
, pp. e0154027
-
-
Wang, F.1
Wang, C.2
Liu, P.3
-
78
-
-
84982166210
-
Efficient genome editing in apple using a CRISPR/Cas9 system
-
[78] Nishitani, C., Hirai, N., Komori, S., et al. Efficient genome editing in apple using a CRISPR/Cas9 system. Sci. Rep., 6, 2016, 31481, 10.1038/srep31481.
-
(2016)
Sci. Rep.
, vol.6
, pp. 31481
-
-
Nishitani, C.1
Hirai, N.2
Komori, S.3
-
79
-
-
84985018861
-
CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.)
-
[79] Ren, C., Liu, X., Zhang, Z., et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci. Rep., 6, 2016, 32289, 10.1038/srep32289.
-
(2016)
Sci. Rep.
, vol.6
, pp. 32289
-
-
Ren, C.1
Liu, X.2
Zhang, Z.3
|