메뉴 건너뛰기




Volumn 480, Issue 4, 2016, Pages 499-507

Current status of potential applications of repurposed Cas9 for structural and functional genomics of plants

Author keywords

CRISPR; Crop improvement; dCas9; Epigenetics; Gene editing; Gene regulation

Indexed keywords

ACYLTRANSFERASE; FLUORESCENT DYE; GUIDE RNA; LONG UNTRANSLATED RNA; METHYLTRANSFERASE;

EID: 84994633260     PISSN: 0006291X     EISSN: 10902104     Source Type: Journal    
DOI: 10.1016/j.bbrc.2016.10.130     Document Type: Short Survey
Times cited : (28)

References (79)
  • 1
    • 0023600057 scopus 로고
    • Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
    • [1] Ishino, Y., Shinagawa, H., Makino, K., et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169 (1987), 5429–5433.
    • (1987) J. Bacteriol. , vol.169 , pp. 5429-5433
    • Ishino, Y.1    Shinagawa, H.2    Makino, K.3
  • 2
    • 84944449180 scopus 로고    scopus 로고
    • An updated evolutionary classification of CRISPR-Cas systems
    • [2] Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13 (2015), 722–736.
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 722-736
    • Makarova, K.S.1    Wolf, Y.I.2    Alkhnbashi, O.S.3
  • 3
    • 84913594397 scopus 로고    scopus 로고
    • The new frontier of genome engineering with CRISPR-Cas9
    • [3] Doudna, J.A., Charpentier, E., The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 2014, 1258096, 10.1126/science.1258096.
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 4
    • 33747889217 scopus 로고    scopus 로고
    • Differential usage of non-homologous end-joining and homologous recombination in double strand break repair
    • [4] Sonoda, E., Hochegger, H., Saberi, A., et al. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair 5 (2006), 1021–1029.
    • (2006) DNA Repair , vol.5 , pp. 1021-1029
    • Sonoda, E.1    Hochegger, H.2    Saberi, A.3
  • 5
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • [5] Sander, J.D., Joung, J.K., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32 (2014), 347–355.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 6
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • [6] DiCarlo, J.E., Norville, J.E., Mali, P., et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucl. Acids Res. 41 (2013), 4336–4343.
    • (2013) Nucl. Acids Res. , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1    Norville, J.E.2    Mali, P.3
  • 7
    • 84923050777 scopus 로고    scopus 로고
    • Implementation of the CRISPR-Cas9 system in fission yeast
    • [7] Jacobs, J.Z., Ciccaglione, K.M., Tournier, V., et al. Implementation of the CRISPR-Cas9 system in fission yeast. Nat. Commun., 5, 2014, 5344, 10.1038/ncomms6344.
    • (2014) Nat. Commun. , vol.5 , pp. 5344
    • Jacobs, J.Z.1    Ciccaglione, K.M.2    Tournier, V.3
  • 8
    • 84935513637 scopus 로고    scopus 로고
    • Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
    • [8] Horwitz, A.A., Walter, J.M., Schubert, M.G., et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 1 (2015), 88–96.
    • (2015) Cell Syst. , vol.1 , pp. 88-96
    • Horwitz, A.A.1    Walter, J.M.2    Schubert, M.G.3
  • 9
    • 84963593243 scopus 로고    scopus 로고
    • Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris
    • [9] Weninger, A., Hatzl, A.M., Schmid, C., et al. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J. Biotechnol. 235 (2016), 139–149.
    • (2016) J. Biotechnol. , vol.235 , pp. 139-149
    • Weninger, A.1    Hatzl, A.M.2    Schmid, C.3
  • 10
    • 84964659819 scopus 로고    scopus 로고
    • A CRISPR/Cas9 system adapted for gene editing in marine algae
    • [10] Nymark, M., Sharma, A.K., Sparstad, T., et al. A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci. Rep., 6, 2016, 24951, 10.1038/srep24951.
    • (2016) Sci. Rep. , vol.6 , pp. 24951
    • Nymark, M.1    Sharma, A.K.2    Sparstad, T.3
  • 11
    • 84974659966 scopus 로고    scopus 로고
    • CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii
    • [11] Shin, S.E., Lim, J.M., Koh, H.G., et al. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep., 6, 2016, 27810, 10.1038/srep27810.
    • (2016) Sci. Rep. , vol.6 , pp. 27810
    • Shin, S.E.1    Lim, J.M.2    Koh, H.G.3
  • 12
    • 84980318089 scopus 로고    scopus 로고
    • Prospects for application of breakthrough technologies in breeding: the CRISPR/Cas9 system for plant genome editing
    • [12] Khlestkina, E.K., Shumny, V.K., Prospects for application of breakthrough technologies in breeding: the CRISPR/Cas9 system for plant genome editing. Russ. J. Genet. 52 (2016), 676–687.
    • (2016) Russ. J. Genet. , vol.52 , pp. 676-687
    • Khlestkina, E.K.1    Shumny, V.K.2
  • 13
    • 84964228092 scopus 로고    scopus 로고
    • Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 System
    • [13] Li, M., Li, X., Zhou, Z., et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 System. Front. Plant Sci., 7, 2016, 377, 10.3389/fpls.2016.00377.
    • (2016) Front. Plant Sci. , vol.7 , pp. 377
    • Li, M.1    Li, X.2    Zhou, Z.3
  • 14
    • 84944937432 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening
    • [14] Ito, Y., Nishizawa-Yokoi, A., Endo, M., et al. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun. 467 (2015), 76–82.
    • (2015) Biochem. Biophys. Res. Commun. , vol.467 , pp. 76-82
    • Ito, Y.1    Nishizawa-Yokoi, A.2    Endo, M.3
  • 15
    • 84964414181 scopus 로고    scopus 로고
    • Gene-edited CRISPR mushroom escapes US regulation
    • [15] Waltz, E., Gene-edited CRISPR mushroom escapes US regulation. Nature, 532, 2016, 293, 10.1038/nature.2016.19754.
    • (2016) Nature , vol.532 , pp. 293
    • Waltz, E.1
  • 16
    • 84961574790 scopus 로고    scopus 로고
    • CRISPR/Cas9: an advanced tool for editing plant genomes
    • [16] Samanta, M.K., Dey, A., Gayen, S., CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res. 25 (2016), 561–573.
    • (2016) Transgenic Res. , vol.25 , pp. 561-573
    • Samanta, M.K.1    Dey, A.2    Gayen, S.3
  • 17
    • 84991102842 scopus 로고    scopus 로고
    • Patterns of CRISPR/Cas9 activity in plants, animals and microbes
    • [17] Bortesi, L., Zhu, C., Zischewski, J., et al. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol. J., 2016, 10.1111/pbi.12634.
    • (2016) Plant Biotechnol. J.
    • Bortesi, L.1    Zhu, C.2    Zischewski, J.3
  • 18
    • 11444267813 scopus 로고    scopus 로고
    • The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution
    • [18] Puchta, H., The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56 (2005), 1–14.
    • (2005) J. Exp. Bot. , vol.56 , pp. 1-14
    • Puchta, H.1
  • 19
    • 84883785822 scopus 로고    scopus 로고
    • Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
    • [19] Li, J.F., Norville, J.E., Aach, J., et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31 (2013), 688–691.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 688-691
    • Li, J.F.1    Norville, J.E.2    Aach, J.3
  • 20
    • 84942901283 scopus 로고    scopus 로고
    • Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA
    • [20] Svitashev, S., Young, J.K., Schwartz, C., et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169 (2015), 931–945.
    • (2015) Plant Physiol. , vol.169 , pp. 931-945
    • Svitashev, S.1    Young, J.K.2    Schwartz, C.3
  • 21
    • 84962091068 scopus 로고    scopus 로고
    • Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants
    • [21] Sauer, N.J., Narváez-Vásquez, J., Mozoruk, J., et al. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol. 170 (2016), 1917–1928.
    • (2016) Plant Physiol. , vol.170 , pp. 1917-1928
    • Sauer, N.J.1    Narváez-Vásquez, J.2    Mozoruk, J.3
  • 22
    • 84962909415 scopus 로고    scopus 로고
    • An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design
    • [22] Zhao, Y., Zhang, C., Liu, W., et al. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci. Rep., 6, 2016, 23890, 10.1038/srep23890.
    • (2016) Sci. Rep. , vol.6 , pp. 23890
    • Zhao, Y.1    Zhang, C.2    Liu, W.3
  • 23
    • 84962407106 scopus 로고    scopus 로고
    • Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase
    • [23] Sun, Y., Zhang, X., Wu, C., et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol. Plant 9 (2016), 628–631.
    • (2016) Mol. Plant , vol.9 , pp. 628-631
    • Sun, Y.1    Zhang, X.2    Wu, C.3
  • 24
    • 84947255513 scopus 로고    scopus 로고
    • DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
    • [24] Woo, J.W., Kim, J., Kwon, S.I., et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33 (2015), 1162–1164.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1162-1164
    • Woo, J.W.1    Kim, J.2    Kwon, S.I.3
  • 25
    • 84942931752 scopus 로고    scopus 로고
    • A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
    • [25] Lowder, L., Zhang, Y., Baltes, N., et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169 (2015), 971–985.
    • (2015) Plant Physiol. , vol.169 , pp. 971-985
    • Lowder, L.1    Zhang, Y.2    Baltes, N.3
  • 26
    • 84925262435 scopus 로고    scopus 로고
    • Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system
    • [26] Xie, K., Minkenberg, B., Yang, Y., Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 3570–3575.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 3570-3575
    • Xie, K.1    Minkenberg, B.2    Yang, Y.3
  • 27
    • 84938748218 scopus 로고    scopus 로고
    • A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants
    • [27] Ma, X., Zhang, Q., Zhu, Q., et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8 (2015), 1274–1284.
    • (2015) Mol. Plant , vol.8 , pp. 1274-1284
    • Ma, X.1    Zhang, Q.2    Zhu, Q.3
  • 28
    • 84896924524 scopus 로고    scopus 로고
    • Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis
    • [28] Feng, Z., Mao, Y., Xu, N., et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 4632–4637.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 4632-4637
    • Feng, Z.1    Mao, Y.2    Xu, N.3
  • 29
    • 84964688883 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations
    • [29] Pan, C., Ye, L., Qin, L., et al. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci. Rep., 6, 2016, 24765, 10.1038/srep24765.
    • (2016) Sci. Rep. , vol.6 , pp. 24765
    • Pan, C.1    Ye, L.2    Qin, L.3
  • 30
    • 84904639258 scopus 로고    scopus 로고
    • The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
    • [30] Zhang, H., Zhang, J., Wei, P., et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12 (2014), 797–807.
    • (2014) Plant Biotechnol. J. , vol.12 , pp. 797-807
    • Zhang, H.1    Zhang, J.2    Wei, P.3
  • 31
    • 84922664019 scopus 로고    scopus 로고
    • Multi-gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice
    • [31] Endo, M., Mikami, M., Toki, S., Multi-gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 56 (2015), 41–47.
    • (2015) Plant Cell Physiol. , vol.56 , pp. 41-47
    • Endo, M.1    Mikami, M.2    Toki, S.3
  • 32
    • 84884962826 scopus 로고    scopus 로고
    • RNA-guided genome editing in plants using a CRISPR–Cas system
    • [32] Xie, K., Yang, Y., RNA-guided genome editing in plants using a CRISPR–Cas system. Mol. Plant 6 (2013), 1975–1983.
    • (2013) Mol. Plant , vol.6 , pp. 1975-1983
    • Xie, K.1    Yang, Y.2
  • 33
    • 84899895901 scopus 로고    scopus 로고
    • Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops
    • [33] Xie, K., Zhang, J., Yang, Y., Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol. Plant 7 (2014), 923–926.
    • (2014) Mol. Plant , vol.7 , pp. 923-926
    • Xie, K.1    Zhang, J.2    Yang, Y.3
  • 34
    • 84934878723 scopus 로고    scopus 로고
    • Function genomics of abiotic stress tolerance in plants: a CRISPR approach
    • [34] Jain, M., Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front. Plant Sci., 6, 2015, 375, 10.3389/fpls.2015.00375.
    • (2015) Front. Plant Sci. , vol.6 , pp. 375
    • Jain, M.1
  • 35
    • 84981744893 scopus 로고    scopus 로고
    • ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions
    • [35] Shi, J., Gao, H., Wang, H., et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J., 2016, 10.1111/pbi.12603.
    • (2016) Plant Biotechnol. J.
    • Shi, J.1    Gao, H.2    Wang, H.3
  • 36
    • 84971280492 scopus 로고    scopus 로고
    • Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants
    • [36] Osakabe, Y., Watanabe, T., Sugano, S.S., et al. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci. Rep., 6, 2016, 26685, 10.1038/srep26685.
    • (2016) Sci. Rep. , vol.6 , pp. 26685
    • Osakabe, Y.1    Watanabe, T.2    Sugano, S.S.3
  • 37
    • 84981731420 scopus 로고    scopus 로고
    • Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology
    • [37] Alagoz, Y., Gurkok, T., Zhang, B., et al. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci. Rep., 2016, 10.1038/srep30910.
    • (2016) Sci. Rep.
    • Alagoz, Y.1    Gurkok, T.2    Zhang, B.3
  • 38
    • 84882986957 scopus 로고    scopus 로고
    • Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
    • [38] Bikard, D., Jiang, W., Samai, P., et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucl. Acids Res. 41 (2013), 7429–7437.
    • (2013) Nucl. Acids Res. , vol.41 , pp. 7429-7437
    • Bikard, D.1    Jiang, W.2    Samai, P.3
  • 39
    • 84908328232 scopus 로고    scopus 로고
    • A protein-tagging system for signal amplification in gene expression and fluorescence imaging
    • [39] Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159 (2014), 635–646.
    • (2014) Cell , vol.159 , pp. 635-646
    • Tanenbaum, M.E.1    Gilbert, L.A.2    Qi, L.S.3
  • 40
    • 84923096541 scopus 로고    scopus 로고
    • Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
    • [40] Konermann, S., Brigham, M.D., Trevino, A.E., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517 (2015), 583–588.
    • (2015) Nature , vol.517 , pp. 583-588
    • Konermann, S.1    Brigham, M.D.2    Trevino, A.E.3
  • 41
    • 84926521955 scopus 로고    scopus 로고
    • Highly efficient Cas9-mediated transcriptional programming
    • [41] Chavez, A., Scheiman, J., Vora, S., et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12 (2015), 326–328.
    • (2015) Nat. Methods , vol.12 , pp. 326-328
    • Chavez, A.1    Scheiman, J.2    Vora, S.3
  • 42
    • 84886488970 scopus 로고    scopus 로고
    • Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas
    • [42] Farzadfard, F., Perli, S.D., Lu, T.K., Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2 (2013), 604–613.
    • (2013) ACS Synth. Biol. , vol.2 , pp. 604-613
    • Farzadfard, F.1    Perli, S.D.2    Lu, T.K.3
  • 43
    • 84928212884 scopus 로고    scopus 로고
    • RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors
    • [43] Piatek, A., Ali, Z., Baazim, H., et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13 (2015), 578–589.
    • (2015) Plant Biotechnol. J. , vol.13 , pp. 578-589
    • Piatek, A.1    Ali, Z.2    Baazim, H.3
  • 44
    • 84969791285 scopus 로고    scopus 로고
    • Comparison of Cas9 activators in multiple species
    • [44] Chavez, A., Tuttle, M., Pruitt, B.W., et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13 (2016), 563–567.
    • (2016) Nat. Methods , vol.13 , pp. 563-567
    • Chavez, A.1    Tuttle, M.2    Pruitt, B.W.3
  • 45
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • [45] Qi, L.S., Larson, M.H., Gilbert, L.A., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 (2013), 1173–1183.
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1    Larson, M.H.2    Gilbert, L.A.3
  • 46
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    • [46] Gilbert, L.A., Larson, M.H., Morsut, L., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 442–451.
    • (2013) Cell , vol.154 , pp. 442-451
    • Gilbert, L.A.1    Larson, M.H.2    Morsut, L.3
  • 47
    • 84944632276 scopus 로고    scopus 로고
    • The new state of the art: cas9 for gene activation and repression
    • [47] La Russa, M.F., Qi, L.S., The new state of the art: cas9 for gene activation and repression. Mol. Cell. Biol. 35 (2015), 3800–3809.
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 3800-3809
    • La Russa, M.F.1    Qi, L.S.2
  • 48
    • 84958580581 scopus 로고    scopus 로고
    • Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells
    • [48] Mercx, S., Tollet, J., Magy, B., et al. Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells. Front. Plant Sci., 7, 2016, 40, 10.3389/fpls.2016.00040.
    • (2016) Front. Plant Sci. , vol.7 , pp. 40
    • Mercx, S.1    Tollet, J.2    Magy, B.3
  • 49
    • 84979034770 scopus 로고    scopus 로고
    • Repurposing the CRISPR-Cas9 system for targeted DNA methylation
    • [49] Vojta, A., Dobrinić, P., Tadić, V., et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucl. Acids Res. 44 (2016), 5615–5628.
    • (2016) Nucl. Acids Res. , vol.44 , pp. 5615-5628
    • Vojta, A.1    Dobrinić, P.2    Tadić, V.3
  • 50
    • 84929135130 scopus 로고    scopus 로고
    • Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
    • [50] Hilton, I.B., D'Ippolito, A.M., Vockley, C.M., et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33 (2015), 510–517.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 510-517
    • Hilton, I.B.1    D'Ippolito, A.M.2    Vockley, C.M.3
  • 51
    • 84928924333 scopus 로고    scopus 로고
    • Functional annotation of native enhancers with a Cas9-histone demethylase fusion
    • [51] Kearns, N.A., Pham, H., Tabak, B., et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12 (2015), 401–403.
    • (2015) Nat. Methods , vol.12 , pp. 401-403
    • Kearns, N.A.1    Pham, H.2    Tabak, B.3
  • 52
    • 84922620312 scopus 로고    scopus 로고
    • Controlled activation of retrotransposition for plant breeding
    • [52] Paszkowshi, J., Controlled activation of retrotransposition for plant breeding. Curr. Opin. Biotechnol. 32 (2015), 200–206.
    • (2015) Curr. Opin. Biotechnol. , vol.32 , pp. 200-206
    • Paszkowshi, J.1
  • 53
    • 84894063115 scopus 로고    scopus 로고
    • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    • [53] Chen, B., Gilbert, L.A., Cimini, B.A., et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155 (2013), 1479–1491.
    • (2013) Cell , vol.155 , pp. 1479-1491
    • Chen, B.1    Gilbert, L.A.2    Cimini, B.A.3
  • 54
    • 84924347318 scopus 로고    scopus 로고
    • Multicolor CRISPR labeling of chromosomal loci in human cells
    • [54] Ma, H., Naseri, A., Reyes-Gutierrez, P., et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 3002–3007.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 3002-3007
    • Ma, H.1    Naseri, A.2    Reyes-Gutierrez, P.3
  • 55
    • 84965054211 scopus 로고    scopus 로고
    • The expanding footprint of CRISPR/Cas9 in the plant sciences
    • [55] Schaeffer, S.C., Nakata, P.A., The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Rep. 35 (2016), 1451–1468.
    • (2016) Plant Cell Rep. , vol.35 , pp. 1451-1468
    • Schaeffer, S.C.1    Nakata, P.A.2
  • 56
    • 84930618439 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
    • [56] Liang, P., Xu, Y., Zhang, X., et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6 (2015), 363–372.
    • (2015) Protein Cell , vol.6 , pp. 363-372
    • Liang, P.1    Xu, Y.2    Zhang, X.3
  • 57
    • 85008868643 scopus 로고    scopus 로고
    • Plant–pathogen interactions: toward development of next-generation disease-resistant plants
    • [57] Nejat, N., Rookes, J., Mantri, N.L., et al. Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Crit. Rev. Biotechnol. 22 (2016), 1–9.
    • (2016) Crit. Rev. Biotechnol. , vol.22 , pp. 1-9
    • Nejat, N.1    Rookes, J.2    Mantri, N.L.3
  • 59
    • 85020153731 scopus 로고    scopus 로고
    • Harvest time for CRISPR-Cas?
    • [59] Gross, M., Harvest time for CRISPR-Cas?. Curr. Biol. 26 (2016), R903–R905.
    • (2016) Curr. Biol. , vol.26 , pp. R903-R905
    • Gross, M.1
  • 60
    • 84886926151 scopus 로고    scopus 로고
    • Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
    • [60] Jiang, W., Zhou, H., Bi, H., et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucl. Acids Res., 41, 2013, 10.1093/nar/gkt780.
    • (2013) Nucl. Acids Res. , vol.41
    • Jiang, W.1    Zhou, H.2    Bi, H.3
  • 61
    • 84890831873 scopus 로고    scopus 로고
    • RNA-guided Genome Editing for Target Gene Mutations in Wheat
    • G3 (Bethesda) 3
    • [61] Upadhyay, S.K., Kumar, J., Alok, A., et al. RNA-guided Genome Editing for Target Gene Mutations in Wheat. 2013, 2233–2238 G3 (Bethesda) 3.
    • (2013) , pp. 2233-2238
    • Upadhyay, S.K.1    Kumar, J.2    Alok, A.3
  • 62
    • 85042815594 scopus 로고    scopus 로고
    • Targeted genome modification of crop plants using a CRISPR-Cas system
    • [62] Shan, Q., Wang, Y., Li, J., et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31 (2013), 686–688.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 686-688
    • Shan, Q.1    Wang, Y.2    Li, J.3
  • 63
    • 84921934205 scopus 로고    scopus 로고
    • Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
    • [63] Wang, Y., Cheng, X., Shan, Q., et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32 (2014), 947–951.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 947-951
    • Wang, Y.1    Cheng, X.2    Shan, Q.3
  • 64
    • 84921915687 scopus 로고    scopus 로고
    • Proposal of a genome editing system for genetic resistance to tomato spotted wilt virus
    • [64] Martinelli, F., Grillone, G., Sgroi, F., Proposal of a genome editing system for genetic resistance to tomato spotted wilt virus. Am. J. Appl. Sci. 11 (2014), 1904–1913.
    • (2014) Am. J. Appl. Sci. , vol.11 , pp. 1904-1913
    • Martinelli, F.1    Grillone, G.2    Sgroi, F.3
  • 65
    • 84908584019 scopus 로고    scopus 로고
    • Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system
    • [65] Brooks, C., Nekrasov, V., Lippman, Z.B., et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166 (2014), 1292–1297.
    • (2014) Plant Physiol. , vol.166 , pp. 1292-1297
    • Brooks, C.1    Nekrasov, V.2    Lippman, Z.B.3
  • 66
    • 84899556051 scopus 로고    scopus 로고
    • Targeted genome editing of sweet orange using Cas9/sgRNA
    • [66] Jia, H., Wang, N., Targeted genome editing of sweet orange using Cas9/sgRNA. PloS One, 9, 2014, e93806, 10.1371/journal.pone.0093806.
    • (2014) PloS One , vol.9 , pp. e93806
    • Jia, H.1    Wang, N.2
  • 67
    • 84894321885 scopus 로고    scopus 로고
    • Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system
    • [67] Liang, Z., Zhang, K., Chen, K., et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics 41 (2014), 63–68.
    • (2014) J. Genet. Genomics , vol.41 , pp. 63-68
    • Liang, Z.1    Zhang, K.2    Chen, K.3
  • 68
    • 84938551842 scopus 로고    scopus 로고
    • Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice
    • [68] Xu, R., Li, H., Qin, R., et al. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice, 7, 2014, 5, 10.1186/s12284-014-0005-6.
    • (2014) Rice , vol.7 , pp. 5
    • Xu, R.1    Li, H.2    Qin, R.3
  • 69
    • 84904068340 scopus 로고    scopus 로고
    • Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana
    • [69] Fauser, F., Schiml, S., Puchta, H., Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79 (2014), 348–359.
    • (2014) Plant J , vol.79 , pp. 348-359
    • Fauser, F.1    Schiml, S.2    Puchta, H.3
  • 70
    • 84899120939 scopus 로고    scopus 로고
    • CRISPR/Cas9 mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.
    • [70] Sugano, S.S., Shirakawa, M., Takagi, J., et al. CRISPR/Cas9 mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol. 55 (2014), 475–481.
    • (2014) Plant Cell Physiol. , vol.55 , pp. 475-481
    • Sugano, S.S.1    Shirakawa, M.2    Takagi, J.3
  • 71
    • 84946745735 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated viral interference in plants
    • [71] Ali, Z., Abulfaraj, A., Idris, A., et al. CRISPR/Cas9-mediated viral interference in plants. Genome Biol., 16, 2015, 238, 10.1186/s13059-015-0799-6.
    • (2015) Genome Biol. , vol.16 , pp. 238
    • Ali, Z.1    Abulfaraj, A.2    Idris, A.3
  • 72
    • 84947775797 scopus 로고    scopus 로고
    • Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants
    • [72] Ji, X., Zhang, H., Zhang, Y., et al. Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants, 1, 2015, 15144, 10.1038/nplants.2015.144.
    • (2015) Nat. Plants , vol.1 , pp. 15144
    • Ji, X.1    Zhang, H.2    Zhang, Y.3
  • 73
    • 85009919974 scopus 로고    scopus 로고
    • Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system
    • [73] Baltes, N.J., Hummel, A.W., Konecna, E., et al. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat. Plants, 1, 2015, 15145, 10.1038/nplants.2015.145.
    • (2015) Nat. Plants , vol.1 , pp. 15145
    • Baltes, N.J.1    Hummel, A.W.2    Konecna, E.3
  • 74
    • 84919838986 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum
    • [74] Gao, J., Wang, G., Ma, S., et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol. Biol. 87 (2015), 99–110.
    • (2015) Plant Mol. Biol. , vol.87 , pp. 99-110
    • Gao, J.1    Wang, G.2    Ma, S.3
  • 75
    • 84937702694 scopus 로고    scopus 로고
    • Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation
    • [75] Fan, D., Liu, T., Li, C., et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci. Rep., 5, 2015, 12217, 10.1038/srep12217.
    • (2015) Sci. Rep. , vol.5 , pp. 12217
    • Fan, D.1    Liu, T.2    Li, C.3
  • 76
    • 85027950047 scopus 로고    scopus 로고
    • Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology
    • [76] Chandrasekaran, J., Brumin, M., Wolf, D., et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17 (2016), 1140–1153.
    • (2016) Mol. Plant Pathol. , vol.17 , pp. 1140-1153
    • Chandrasekaran, J.1    Brumin, M.2    Wolf, D.3
  • 77
    • 84977500985 scopus 로고    scopus 로고
    • Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922
    • [77] Wang, F., Wang, C., Liu, P., et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS One, 11, 2016, e0154027, 10.1371/journal.pone.0154027.
    • (2016) PloS One , vol.11 , pp. e0154027
    • Wang, F.1    Wang, C.2    Liu, P.3
  • 78
    • 84982166210 scopus 로고    scopus 로고
    • Efficient genome editing in apple using a CRISPR/Cas9 system
    • [78] Nishitani, C., Hirai, N., Komori, S., et al. Efficient genome editing in apple using a CRISPR/Cas9 system. Sci. Rep., 6, 2016, 31481, 10.1038/srep31481.
    • (2016) Sci. Rep. , vol.6 , pp. 31481
    • Nishitani, C.1    Hirai, N.2    Komori, S.3
  • 79
    • 84985018861 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.)
    • [79] Ren, C., Liu, X., Zhang, Z., et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci. Rep., 6, 2016, 32289, 10.1038/srep32289.
    • (2016) Sci. Rep. , vol.6 , pp. 32289
    • Ren, C.1    Liu, X.2    Zhang, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.