-
1
-
-
0023003380
-
In vivo half-life of a protein is a function of its amino-terminal residue
-
Bachmair, A., Finley, D., and Varshavsky, A. (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179-186
-
(1986)
Science
, vol.234
, pp. 179-186
-
-
Bachmair, A.1
Finley, D.2
Varshavsky, A.3
-
2
-
-
0024562943
-
The degradation signal in a short-lived protein
-
Bachmair, A., and Varshavsky, A. (1989) The degradation signal in a short-lived protein. Cell 56, 1019-1032
-
(1989)
Cell
, vol.56
, pp. 1019-1032
-
-
Bachmair, A.1
Varshavsky, A.2
-
3
-
-
0037025163
-
An essential role of N-terminal arginylation in cardiovascular development
-
Kwon, Y. T., Kashina, A. S., Davydov, I. V., Hu, R.-G., An, J. Y., Seo, J. W., Du, F., and Varshavsky, A. (2002) An essential role of N-terminal arginylation in cardiovascular development. Science 297, 96-99
-
(2002)
Science
, vol.297
, pp. 96-99
-
-
Kwon, Y.T.1
Kashina, A.S.2
Davydov, I.V.3
Hu, R.-G.4
An, J.Y.5
Seo, J.W.6
Du, F.7
Varshavsky, A.8
-
4
-
-
27144557281
-
The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators
-
Hu, R.-G., Sheng, J., Qi, X., Xu, Z., Takahashi, T. T., and Varshavsky, A. (2005) The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 437, 981-986
-
(2005)
Nature
, vol.437
, pp. 981-986
-
-
Hu, R.-G.1
Sheng, J.2
Qi, X.3
Xu, Z.4
Takahashi, T.T.5
Varshavsky, A.6
-
5
-
-
77149120798
-
N-terminal acetylation of cellular proteins creates specific degradation signals
-
Hwang, C. S., Shemorry, A., and Varshavsky, A. (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973-977
-
(2010)
Science
, vol.327
, pp. 973-977
-
-
Hwang, C.S.1
Shemorry, A.2
Varshavsky, A.3
-
6
-
-
84892802083
-
The N-terminal methionine of cellular proteins as a degradation signal
-
Kim, H. K., Kim, R. R., Oh, J. H., Cho, H., Varshavsky, A., and Hwang, C. S. (2014) The N-terminal methionine of cellular proteins as a degradation signal. Cell 156, 158-169
-
(2014)
Cell
, vol.156
, pp. 158-169
-
-
Kim, H.K.1
Kim, R.R.2
Oh, J.H.3
Cho, H.4
Varshavsky, A.5
Hwang, C.S.6
-
7
-
-
84908478523
-
The eukaryotic N-end rule pathway: Conserved mechanisms and diverse functions
-
Gibbs, D. J., Bacardit, J., Bachmair, A., and Holdsworth, M. J. (2014) The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol. 24, 603-611
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 603-611
-
-
Gibbs, D.J.1
Bacardit, J.2
Bachmair, A.3
Holdsworth, M.J.4
-
8
-
-
84861210856
-
The N-end rule pathway
-
Tasaki, T., Sriram, S. M., Park, K. S., and Kwon, Y. T. (2012) The N-end rule pathway. Annu. Rev. Biochem. 81, 261-289
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 261-289
-
-
Tasaki, T.1
Sriram, S.M.2
Park, K.S.3
Kwon, Y.T.4
-
9
-
-
79960683356
-
The N-end rule pathway and regulation by proteolysis
-
Varshavsky, A. (2011) The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298-1345
-
(2011)
Protein Sci.
, vol.20
, pp. 1298-1345
-
-
Varshavsky, A.1
-
10
-
-
84961757512
-
The N-End rule: The beginning determines the end
-
Eldeeb, M., and Fahlman, R. (2016) The N-End rule: the beginning determines the end. Protein Pept. Lett. 23, 343-348
-
(2016)
Protein Pept. Lett.
, vol.23
, pp. 343-348
-
-
Eldeeb, M.1
Fahlman, R.2
-
11
-
-
84855198546
-
The N-end rule pathway: From recognition by N-recognins to destruction by AAA+ proteases
-
Dougan, D. A., Micevski, D., and Truscott, K. N. (2012) The N-end rule pathway: from recognition by N-recognins to destruction by AAA+ proteases. Biochim. Biophys. Acta 1823, 83-91
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 83-91
-
-
Dougan, D.A.1
Micevski, D.2
Truscott, K.N.3
-
12
-
-
57149115173
-
Discovery of cellular regulation by protein degradation
-
Varshavsky, A. (2008) Discovery of cellular regulation by protein degradation. J. Biol. Chem. 283, 34469-34489
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 34469-34489
-
-
Varshavsky, A.1
-
13
-
-
84964929936
-
N-terminal acetylation-targeted N-end rule proteolytic system: The Ac/N-end rule pathway
-
Lee, K. E., Heo, J. E., Kim, J. M., and Hwang, C. S. (2016) N-terminal acetylation-targeted N-end rule proteolytic system: the Ac/N-end rule pathway. Mol. Cells 39, 169-178
-
(2016)
Mol. Cells
, vol.39
, pp. 169-178
-
-
Lee, K.E.1
Heo, J.E.2
Kim, J.M.3
Hwang, C.S.4
-
14
-
-
0034213352
-
Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway
-
Turner, G. C., Du, F., and Varshavsky, A. (2000) Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405, 579-583
-
(2000)
Nature
, vol.405
, pp. 579-583
-
-
Turner, G.C.1
Du, F.2
Varshavsky, A.3
-
15
-
-
0037195103
-
Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain
-
Du, F., Navarro-Garcia, F., Xia, Z., Tasaki, T., and Varshavsky, A. (2002) Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc. Natl. Acad. Sci. U.S.A. 99, 14110-14115
-
(2002)
Proc. Natl. Acad. Sci. U.S.A
, vol.99
, pp. 14110-14115
-
-
Du, F.1
Navarro-Garcia, F.2
Xia, Z.3
Tasaki, T.4
Varshavsky, A.5
-
16
-
-
60549096291
-
Two proteolytic pathways regulate DNA repair by cotargeting the Mgt1 alkylguanine transferase
-
Hwang, C. S., Shemorry, A., and Varshavsky, A. (2009) Two proteolytic pathways regulate DNA repair by cotargeting the Mgt1 alkylguanine transferase. Proc. Natl. Acad. Sci. U.S.A. 106, 2142-2147
-
(2009)
Proc. Natl. Acad. Sci. U.S.A
, vol.106
, pp. 2142-2147
-
-
Hwang, C.S.1
Shemorry, A.2
Varshavsky, A.3
-
17
-
-
75749101057
-
Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1
-
Heck, J. W., Cheung, S. K., and Hampton, R. Y. (2010) Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl. Acad. Sci. U.S.A. 107, 1106-1111
-
(2010)
Proc. Natl. Acad. Sci. U.S.A
, vol.107
, pp. 1106-1111
-
-
Heck, J.W.1
Cheung, S.K.2
Hampton, R.Y.3
-
18
-
-
57049182407
-
Degradation of misfolded proteins in the cytoplasm by the ubiquitin ligase Ubr1
-
Eisele, F., and Wolf, D. H. (2008) Degradation of misfolded proteins in the cytoplasm by the ubiquitin ligase Ubr1. FEBS Lett. 582, 4143-4146
-
(2008)
FEBS Lett.
, vol.582
, pp. 4143-4146
-
-
Eisele, F.1
Wolf, D.H.2
-
19
-
-
0033231281
-
Degradation signals in the lysine-asparagine sequence space
-
Suzuki, T., and Varshavsky, A. (1999) Degradation signals in the lysine-asparagine sequence space. EMBO J. 18, 6017-6026
-
(1999)
EMBO J
, vol.18
, pp. 6017-6026
-
-
Suzuki, T.1
Varshavsky, A.2
-
20
-
-
84896032345
-
Paradigms of protein degradation by the proteasome
-
Inobe, T., and Matouschek, A. (2014) Paradigms of protein degradation by the proteasome. Curr. Opin. Struct. Biol. 24, 156-164
-
(2014)
Curr. Opin. Struct. Biol.
, vol.24
, pp. 156-164
-
-
Inobe, T.1
Matouschek, A.2
-
21
-
-
0026316101
-
The N-end rule in bacteria
-
Tobias, J. W., Shrader, T. E., Rocap, G., and Varshavsky, A. (1991) The N-end rule in bacteria. Science 254, 1374-1377
-
(1991)
Science
, vol.254
, pp. 1374-1377
-
-
Tobias, J.W.1
Shrader, T.E.2
Rocap, G.3
Varshavsky, A.4
-
22
-
-
33947713897
-
The N-end rule pathway of regulated proteolysis: Prokaryotic and eukaryotic strategies
-
Mogk, A., Schmidt, R., and Bukau, B. (2007) The N-end rule pathway of regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 17, 165-172
-
(2007)
Trends Cell Biol.
, vol.17
, pp. 165-172
-
-
Mogk, A.1
Schmidt, R.2
Bukau, B.3
-
23
-
-
84907220044
-
Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates
-
Rivera-Rivera, I., Román-Hernández, G., Sauer, R. T., and Baker, T. A. (2014) Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates. Proc. Natl. Acad. Sci. U.S.A. 111, E3853-E3859
-
(2014)
Proc. Natl. Acad. Sci. U.S.A
, vol.111
, pp. E3853-E3859
-
-
Rivera-Rivera, I.1
Román-Hernández, G.2
Sauer, R.T.3
Baker, T.A.4
-
24
-
-
84964938224
-
Formylmethionine as a degradation signal at the N-termini of bacterial proteins
-
Piatkov, K. I., Vu, T. T., Hwang, C.-S., and Varshavsky, A. (2015) Formylmethionine as a degradation signal at the N-termini of bacterial proteins. Microbial Cell 2, 376-393
-
(2015)
Microbial Cell
, vol.2
, pp. 376-393
-
-
Piatkov, K.I.1
Vu, T.T.2
Hwang, C.-S.3
Varshavsky, A.4
-
25
-
-
84885123033
-
The N-degradome of Escherichia coli: Limited proteolysis in vivo generates a large pool of proteins bearing N-degrons
-
Humbard, M. A., Surkov, S., De Donatis, G. M., Jenkins, L. M., and Maurizi, M. R. (2013) The N-degradome of Escherichia coli: limited proteolysis in vivo generates a large pool of proteins bearing N-degrons. J. Biol. Chem. 288, 28913-28924
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 28913-28924
-
-
Humbard, M.A.1
Surkov, S.2
De Donatis, G.M.3
Jenkins, L.M.4
Maurizi, M.R.5
-
26
-
-
33644786997
-
Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen
-
Graciet, E., Hu, R. G., Piatkov, K., Rhee, J. H., Schwarz, E. M., and Varshavsky, A. (2006) Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen. Proc. Natl. Acad. Sci. U.S.A. 103, 3078-3083
-
(2006)
Proc. Natl. Acad. Sci. U.S.A
, vol.103
, pp. 3078-3083
-
-
Graciet, E.1
Hu, R.G.2
Piatkov, K.3
Rhee, J.H.4
Schwarz, E.M.5
Varshavsky, A.6
-
27
-
-
38349098190
-
The N-end rule pathway is a sensor of heme
-
Hu, R.-G., Wang, H., Xia, Z., and Varshavsky, A. (2008) The N-end rule pathway is a sensor of heme. Proc. Natl. Acad. Sci. U.S.A. 105, 76-81
-
(2008)
Proc. Natl. Acad. Sci. U.S.A
, vol.105
, pp. 76-81
-
-
Hu, R.-G.1
Wang, H.2
Xia, Z.3
Varshavsky, A.4
-
29
-
-
27244444724
-
RGS4 and RGS5 are in vivo substrates of the N-end rule pathway
-
Lee, M. J., Tasaki, T., Moroi, K., An, J. Y., Kimura, S., Davydov, I. V., and Kwon, Y. T. (2005) RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 102, 15030-15035
-
(2005)
Proc. Natl. Acad. Sci. U.S.A
, vol.102
, pp. 15030-15035
-
-
Lee, M.J.1
Tasaki, T.2
Moroi, K.3
An, J.Y.4
Kimura, S.5
Davydov, I.V.6
Kwon, Y.T.7
-
30
-
-
0028964284
-
A recognition component of the ubiquitin system is required for peptide transport in Saccharomyces cerevisiae
-
Alagramam, K., Naider, F., and Becker, J. M. (1995) A recognition component of the ubiquitin system is required for peptide transport in Saccharomyces cerevisiae. Mol. Microbiol. 15, 225-234
-
(1995)
Mol. Microbiol.
, vol.15
, pp. 225-234
-
-
Alagramam, K.1
Naider, F.2
Becker, J.M.3
-
31
-
-
0032472322
-
The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor
-
Byrd, C., Turner, G. C., and Varshavsky, A. (1998) The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J. 17, 269-277
-
(1998)
EMBO J
, vol.17
, pp. 269-277
-
-
Byrd, C.1
Turner, G.C.2
Varshavsky, A.3
-
32
-
-
58049196794
-
Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway
-
Hwang, C. S., and Varshavsky, A. (2008) Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 105, 19188-19193
-
(2008)
Proc. Natl. Acad. Sci. U.S.A
, vol.105
, pp. 19188-19193
-
-
Hwang, C.S.1
Varshavsky, A.2
-
33
-
-
84872105177
-
The type-2 N-end rule peptide recognition activity of Ubr11 ubiquitin ligase is required for the expression of peptide transporters
-
Kitamura, K., and Fujiwara, H. (2013) The type-2 N-end rule peptide recognition activity of Ubr11 ubiquitin ligase is required for the expression of peptide transporters. FEBS Lett. 587, 214-219
-
(2013)
FEBS Lett.
, vol.587
, pp. 214-219
-
-
Kitamura, K.1
Fujiwara, H.2
-
34
-
-
53049096418
-
Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway
-
Xia, Z., Webster, A., Du, F., Piatkov, K., Ghislain, M., and Varshavsky, A. (2008) Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J. Biol. Chem. 283, 24011-24028
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24011-24028
-
-
Xia, Z.1
Webster, A.2
Du, F.3
Piatkov, K.4
Ghislain, M.5
Varshavsky, A.6
-
35
-
-
57649223684
-
Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter
-
Xia, Z., Turner, G. C., Hwang, C.-S., Byrd, C., and Varshavsky, A. (2008) Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J. Biol. Chem. 283, 28958-28968
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 28958-28968
-
-
Xia, Z.1
Turner, G.C.2
Hwang, C.-S.3
Byrd, C.4
Varshavsky, A.5
-
36
-
-
84878195272
-
Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway
-
Shemorry, A., Hwang, C. S., and Varshavsky, A. (2013) Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540-551
-
(2013)
Mol. Cell
, vol.50
, pp. 540-551
-
-
Shemorry, A.1
Hwang, C.S.2
Varshavsky, A.3
-
37
-
-
84863615329
-
A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast
-
Theodoraki, M. A., Nillegoda, N. B., Saini, J., and Caplan, A. J. (2012) A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast. J. Biol. Chem. 287, 23911-23922
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 23911-23922
-
-
Theodoraki, M.A.1
Nillegoda, N.B.2
Saini, J.3
Caplan, A.J.4
-
38
-
-
84871313656
-
The yeast Ubr1 ubiquitin ligase participates in a prominent pathway that targets cytosolic thermosensitive mutants for degradation
-
Khosrow-Khavar, F., Fang, N. N., Ng, A. H. M., Winget, J. M., Comyn, S. A., and Mayor, T. (2012) The yeast Ubr1 ubiquitin ligase participates in a prominent pathway that targets cytosolic thermosensitive mutants for degradation. G3 Genes 2, 619-628
-
(2012)
G3 Genes
, vol.2
, pp. 619-628
-
-
Khosrow-Khavar, F.1
Fang, N.N.2
Ng, A.H.M.3
Winget, J.M.4
Comyn, S.A.5
Mayor, T.6
-
39
-
-
84865549121
-
Biosynthetic mode can determine the mechanism of protein quality control
-
Prasad, R., Kawaguchi, S., and Ng, D. T. (2012) Biosynthetic mode can determine the mechanism of protein quality control. Biochem. Biophys. Res. Commun. 425, 689-695
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.425
, pp. 689-695
-
-
Prasad, R.1
Kawaguchi, S.2
Ng, D.T.3
-
40
-
-
81355127301
-
UBR1 promotes protein kinase quality control and sensitizes cells to Hsp90 inhibition
-
Sultana, R., Theodoraki, M. A., and Caplan, A. J. (2012) UBR1 promotes protein kinase quality control and sensitizes cells to Hsp90 inhibition. Exp. Cell Res. 18, 53-60
-
(2012)
Exp. Cell Res.
, vol.18
, pp. 53-60
-
-
Sultana, R.1
Theodoraki, M.A.2
Caplan, A.J.3
-
41
-
-
77954196466
-
Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins
-
Nillegoda, N. B., Theodoraki, M. A., Mandal, A. K., Mayo, K. J., Ren, H. Y., Sultana, R., Wu, K., Johnson, J., Cyr, D. M., and Caplan, A. J. (2010) Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol. Biol. Cell 21, 2102-2116
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2102-2116
-
-
Nillegoda, N.B.1
Theodoraki, M.A.2
Mandal, A.K.3
Mayo, K.J.4
Ren, H.Y.5
Sultana, R.6
Wu, K.7
Johnson, J.8
Cyr, D.M.9
Caplan, A.J.10
-
42
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathway
-
Yamano, K., and Youle, R. J. (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758-1769
-
(2013)
Autophagy
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R.J.2
-
43
-
-
84863571174
-
The N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments
-
Piatkov, K. I., Brower, C. S., and Varshavsky, A. (2012) The N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments. Proc. Natl. Acad. Sci. U.S.A. 109, E1839-E1847
-
(2012)
Proc. Natl. Acad. Sci. U.S.A
, vol.109
, pp. E1839-E1847
-
-
Piatkov, K.I.1
Brower, C.S.2
Varshavsky, A.3
-
44
-
-
84876832401
-
Neurodegeneration-associated protein fragments as short-lived substrates of the N-end rule pathway
-
Brower, C. S., Piatkov, K. I., and Varshavsky, A. (2013) Neurodegeneration-associated protein fragments as short-lived substrates of the N-end rule pathway. Mol. Cell 50, 161-171
-
(2013)
Mol. Cell
, vol.50
, pp. 161-171
-
-
Brower, C.S.1
Piatkov, K.I.2
Varshavsky, A.3
-
45
-
-
84863249152
-
The C-terminal proteolytic fragment of the breast cancer susceptibility type 1 protein (BRCA1) is degraded by the N-end rule pathway
-
Xu, Z., Payoe, R., and Fahlman, R. P. (2012) The C-terminal proteolytic fragment of the breast cancer susceptibility type 1 protein (BRCA1) is degraded by the N-end rule pathway. J. Biol. Chem. 287, 7495-7502
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 7495-7502
-
-
Xu, Z.1
Payoe, R.2
Fahlman, R.P.3
-
46
-
-
84901218392
-
The anti-apoptotic form of tyrosine kinase Lyn that is generated by proteolysis is degraded by the N-end rule pathway
-
Eldeeb, M. A., and Fahlman, R. P. (2014) The anti-apoptotic form of tyrosine kinase Lyn that is generated by proteolysis is degraded by the N-end rule pathway. Oncotarget 5, 2714-2722
-
(2014)
Oncotarget
, vol.5
, pp. 2714-2722
-
-
Eldeeb, M.A.1
Fahlman, R.P.2
-
47
-
-
0023236126
-
The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme
-
Jentsch, S., McGrath, J. P., and Varshavsky, A. (1987) The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329, 131-134
-
(1987)
Nature
, vol.329
, pp. 131-134
-
-
Jentsch, S.1
McGrath, J.P.2
Varshavsky, A.3
-
48
-
-
0035912183
-
Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability
-
Rao, H., Uhlmann, F., Nasmyth, K., and Varshavsky, A. (2001) Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955-959
-
(2001)
Nature
, vol.410
, pp. 955-959
-
-
Rao, H.1
Uhlmann, F.2
Nasmyth, K.3
Varshavsky, A.4
-
49
-
-
84871675699
-
The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway
-
Piatkov, K. I., Colnaghi, L., Békés, M., Varshavsky, A., and Huang, T. T. (2012) The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway. Mol. Cell 48, 926-933
-
(2012)
Mol. Cell
, vol.48
, pp. 926-933
-
-
Piatkov, K.I.1
Colnaghi, L.2
Békés, M.3
Varshavsky, A.4
Huang, T.T.5
-
50
-
-
84965111277
-
Degradation of the separase-cleaved Rec8, a meiotic cohesin subunit, by the N-end rule pathway
-
Liu, Y. J., Liu, C., Chang, Z., Wadas, B., Brower, C. S., Song, Z. H., Xu, Z. L., Shang, Y. L., Liu, W. X., Wang, L. N., Dong, W., Varshavsky, A., Hu, R. G., and Li, W. (2016) Degradation of the separase-cleaved Rec8, a meiotic cohesin subunit, by the N-end rule pathway. J. Biol. Chem. 291, 7426-7438
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 7426-7438
-
-
Liu, Y.J.1
Liu, C.2
Chang, Z.3
Wadas, B.4
Brower, C.S.5
Song, Z.H.6
Xu, Z.L.7
Shang, Y.L.8
Liu, W.X.9
Wang, L.N.10
Dong, W.11
Varshavsky, A.12
Hu, R.G.13
Li, W.14
-
51
-
-
33646007680
-
Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair
-
Ouyang, Y., Kwon, Y. T., An, J. Y., Eller, D., Tsai, S.-C., Diaz-Perez, S., Troke, J. J., Teitell, M. A., and Marahrens, Y. (2006) Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair. Mutat. Res. 596, 64-75
-
(2006)
Mutat. Res.
, vol.596
, pp. 64-75
-
-
Ouyang, Y.1
Kwon, Y.T.2
An, J.Y.3
Eller, D.4
Tsai, S.-C.5
Diaz-Perez, S.6
Troke, J.J.7
Teitell, M.A.8
Marahrens, Y.9
-
52
-
-
84861214946
-
UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells
-
An, J. Y., Kim, E., Zakrzewska, A., Yoo, Y. D., Jang, J. M., Han, D. H., Lee, M. J., Seo, J. W., Lee, Y. J., Kim, T. Y., de Rooij, D. G., Kim, B. Y., and Kwon, Y. T. (2012) UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells. PLoS One 7, e37414
-
(2012)
PLoS One
, vol.7
-
-
An, J.Y.1
Kim, E.2
Zakrzewska, A.3
Yoo, Y.D.4
Jang, J.M.5
Han, D.H.6
Lee, M.J.7
Seo, J.W.8
Lee, Y.J.9
Kim, T.Y.10
De Rooij, D.G.11
Kim, B.Y.12
Kwon, Y.T.13
-
53
-
-
84880867507
-
The N-end rule proteolytic system in autophagy
-
Kim, S. T., Tasaki, T., Zakrzewska, A., Yoo, Y. D., Sa Sung, K., Kim, S. H., Cha-Molstad, H., Hwang, J., Kim, K. A., Kim, B. Y., and Kwon, Y. T. (2013) The N-end rule proteolytic system in autophagy. Autophagy 9, 1100-1103
-
(2013)
Autophagy
, vol.9
, pp. 1100-1103
-
-
Kim, S.T.1
Tasaki, T.2
Zakrzewska, A.3
Yoo, Y.D.4
Sa Sung, K.5
Kim, S.H.6
Cha-Molstad, H.7
Hwang, J.8
Kim, K.A.9
Kim, B.Y.10
Kwon, Y.T.11
-
54
-
-
84934298725
-
Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding
-
Cha-Molstad, H., Sung, K. S., Hwang, J., Kim, K. A., Yu, J. E., Yoo, Y. D., Jang, J. M., Han, D. H., Molstad, M., Kim, J. G., Lee, Y. J., Zakrzewska, A., Kim, S. H., Kim, S. T., Kim, S. Y., Lee, H. G., Soung, N. K., Ahn, J. S., Ciechanover, A., Kim, B. Y., and Kwon, Y. T. (2015) Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17, 917-929
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 917-929
-
-
Cha-Molstad, H.1
Sung, K.S.2
Hwang, J.3
Kim, K.A.4
Yu, J.E.5
Yoo, Y.D.6
Jang, J.M.7
Han, D.H.8
Molstad, M.9
Kim, J.G.10
Lee, Y.J.11
Zakrzewska, A.12
Kim, S.H.13
Kim, S.T.14
Kim, S.Y.15
Lee, H.G.16
Soung, N.K.17
Ahn, J.S.18
Ciechanover, A.19
Kim, B.Y.20
Kwon, Y.T.21
more..
-
55
-
-
84874610790
-
UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy
-
Tasaki, T., Kim, S. T., Zakrzewska, A., Lee, B. E., Kang, M. J., Yoo, Y. D., Cha-Molstad, H. J., Hwang, J., Soung, N. K., Sung, K. S., Kim, S. H., Nguyen, M. D., Sun, M., Yi, E. C., Kim, B. Y., and Kwon, Y. T. (2013) UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy. Proc. Natl. Acad. Sci. U.S.A. 110, 3800-3805
-
(2013)
Proc. Natl. Acad. Sci. U.S.A
, vol.110
, pp. 3800-3805
-
-
Tasaki, T.1
Kim, S.T.2
Zakrzewska, A.3
Lee, B.E.4
Kang, M.J.5
Yoo, Y.D.6
Cha-Molstad, H.J.7
Hwang, J.8
Soung, N.K.9
Sung, K.S.10
Kim, S.H.11
Nguyen, M.D.12
Sun, M.13
Yi, E.C.14
Kim, B.Y.15
Kwon, Y.T.16
-
56
-
-
84924769665
-
Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway
-
Park, S. E., Kim, J. M., Seok, O. H., Cho, H., Wadas, B., Kim, S. Y., Varshavsky, A., and Hwang, C. S. (2015) Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 347, 1249-1252
-
(2015)
Science
, vol.347
, pp. 1249-1252
-
-
Park, S.E.1
Kim, J.M.2
Seok, O.H.3
Cho, H.4
Wadas, B.5
Kim, S.Y.6
Varshavsky, A.7
Hwang, C.S.8
-
57
-
-
76649112438
-
UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination
-
An, J. Y., Kim, E.-A., Jiang, Y., Zakrzewska, A., Kim, D. E., Lee, M. J., Mook-Jung, I., Zhang, Y., and Kwon, Y. T. (2010) UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc. Natl. Acad. Sci. U.S.A. 107, 1912-1917
-
(2010)
Proc. Natl. Acad. Sci. U.S.A
, vol.107
, pp. 1912-1917
-
-
An, J.Y.1
Kim, E.-A.2
Jiang, Y.3
Zakrzewska, A.4
Kim, D.E.5
Lee, M.J.6
Mook-Jung, I.7
Zhang, Y.8
Kwon, Y.T.9
-
58
-
-
77950374827
-
Arginylation-dependent neural crest cell migration is essential for mouse development
-
Kurosaka, S., Leu, N. A., Zhang, F., Bunte, R., Saha, S., Wang, J., Guo, C., He, W., and Kashina, A. (2010) Arginylation-dependent neural crest cell migration is essential for mouse development. PLoS Genet. 6, e1000878
-
(2010)
PLoS Genet.
, vol.6
-
-
Kurosaka, S.1
Leu, N.A.2
Zhang, F.3
Bunte, R.4
Saha, S.5
Wang, J.6
Guo, C.7
He, W.8
Kashina, A.9
-
59
-
-
84981350332
-
Degradation of serotonin N-acetyltransferase, a circadian regulator, by the N-end rule pathway
-
Wadas, B., Borjigin, J., Huang, Z., Oh, J.-H., Hwang, C.-S., and Varshavsky, A. (2016) Degradation of serotonin N-acetyltransferase, a circadian regulator, by the N-end rule pathway. J. Biol. Chem. 291, 17178-17196
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 17178-17196
-
-
Wadas, B.1
Borjigin, J.2
Huang, Z.3
Oh, J.-H.4
Hwang, C.-S.5
Varshavsky, A.6
-
60
-
-
28444458475
-
Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome)
-
Zenker, M., Mayerle, J., Lerch, M. M., Tagariello, A., Zerres, K., Durie, P. R., Beier, M., Hülskamp, G., Guzman, C., Rehder, H., Beemer, F. A., Hamel, B., Vanlieferinghen, P., Gershoni-Baruch, R., Vieira, M. W., et al. (2005) Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nat. Genet. 37, 1345-1350
-
(2005)
Nat. Genet.
, vol.37
, pp. 1345-1350
-
-
Zenker, M.1
Mayerle, J.2
Lerch, M.M.3
Tagariello, A.4
Zerres, K.5
Durie, P.R.6
Beier, M.7
Hülskamp, G.8
Guzman, C.9
Rehder, H.10
Beemer, F.A.11
Hamel, B.12
Vanlieferinghen, P.13
Gershoni-Baruch, R.14
Vieira, M.W.15
-
61
-
-
80052697848
-
Ubiquitin ligases of the N-end rule pathway: Assessment of mutations in UBR1 that cause the Johanson-Blizzard syndrome
-
Hwang, C. S., Sukalo, M., Batygin, O., Addor, M. C., Brunner, H., Aytes, A. P., Mayerle, J., Song, H. K., Varshavsky, A., and Zenker, M. (2011) Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 that cause the Johanson-Blizzard syndrome. PLoS One 6, e24925
-
(2011)
PLoS One
, vol.6
-
-
Hwang, C.S.1
Sukalo, M.2
Batygin, O.3
Addor, M.C.4
Brunner, H.5
Aytes, A.P.6
Mayerle, J.7
Song, H.K.8
Varshavsky, A.9
Zenker, M.10
-
62
-
-
78649496203
-
The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule pathway, stabilizes Tex.19.1 during spermatogenesis
-
Yang, F., Cheng, Y., An, J. Y., Kwon, Y. T., Eckardt, S., Leu, N. A., McLaughlin, K. J., and Wang, P. J. (2010) The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule pathway, stabilizes Tex.19.1 during spermatogenesis. PLoS One 5, e14017
-
(2010)
PLoS One
, vol.5
-
-
Yang, F.1
Cheng, Y.2
An, J.Y.3
Kwon, Y.T.4
Eckardt, S.5
Leu, N.A.6
McLaughlin, K.J.7
Wang, P.J.8
-
63
-
-
0242664014
-
Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway
-
Kwon, Y. T., Xia, Z., An, J. Y., Tasaki, T., Davydov, I. V., Seo, J. W., Sheng, J., Xie, Y., and Varshavsky, A. (2003) Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol. Cell. Biol. 23, 8255-8271
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 8255-8271
-
-
Kwon, Y.T.1
Xia, Z.2
An, J.Y.3
Tasaki, T.4
Davydov, I.V.5
Seo, J.W.6
Sheng, J.7
Xie, Y.8
Varshavsky, A.9
-
64
-
-
33646573377
-
Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway
-
An, J. Y., Seo, J. W., Tasaki, T., Lee, M. J., Varshavsky, A., and Kwon, Y. T. (2006) Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 103, 6212-6217
-
(2006)
Proc. Natl. Acad. Sci. U.S.A
, vol.103
, pp. 6212-6217
-
-
An, J.Y.1
Seo, J.W.2
Tasaki, T.3
Lee, M.J.4
Varshavsky, A.5
Kwon, Y.T.6
-
65
-
-
77955268037
-
The plant N-end rule pathway: Structure and functions
-
Graciet, E., and Wellmer, F. (2010) The plant N-end rule pathway: structure and functions. Trends Plant Sci. 15, 447-453
-
(2010)
Trends Plant Sci.
, vol.15
, pp. 447-453
-
-
Graciet, E.1
Wellmer, F.2
-
66
-
-
81555214009
-
Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization
-
Licausi, F., Kosmacz, M., Weits, D. A., Giuntoli, B., Giorgi, F. M., Voesenek, L. A. C. J., Perata, P., and van Dongen, J. T. (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419-422
-
(2011)
Nature
, vol.479
, pp. 419-422
-
-
Licausi, F.1
Kosmacz, M.2
Weits, D.A.3
Giuntoli, B.4
Giorgi, F.M.5
Voesenek, L.A.C.J.6
Perata, P.7
Van Dongen, J.T.8
-
67
-
-
63149132055
-
The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis
-
Holman, T. J., Jones, P. D., Russell, L., Medhurst, A., Ubeda Tomás, S., Talloji, P., Marquez, J., Schmuths, H., Tung, S. A., Taylor, I., Footitt, S., Bachmair, A., Theodoulou, F. L., and Holdsworth, M. J. (2009) The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106, 4549-4554
-
(2009)
Proc. Natl. Acad. Sci. U.S.A
, vol.106
, pp. 4549-4554
-
-
Holman, T.J.1
Jones, P.D.2
Russell, L.3
Medhurst, A.4
Ubeda Tomás, S.5
Talloji, P.6
Marquez, J.7
Schmuths, H.8
Tung, S.A.9
Taylor, I.10
Footitt, S.11
Bachmair, A.12
Theodoulou, F.L.13
Holdsworth, M.J.14
-
68
-
-
84856452223
-
Plant oxygen sensing is mediated by the N-end rule pathway: A milestone in plant anaerobiosis
-
Sasidharan, R., and Mustroph, A. (2011) Plant oxygen sensing is mediated by the N-end rule pathway: a milestone in plant anaerobiosis. Plant Cell 23, 4173-4183
-
(2011)
Plant Cell
, vol.23
, pp. 4173-4183
-
-
Sasidharan, R.1
Mustroph, A.2
-
69
-
-
84879637332
-
Signaling mechanism of tumor cell-induced up-regulation of E3 ubiquitin ligase UBR2
-
Zhang, G., Lin, R. K., Kwon, Y. T., and Li, Y. P. (2013) Signaling mechanism of tumor cell-induced up-regulation of E3 ubiquitin ligase UBR2. FASEB J. 27, 2893-2901
-
(2013)
FASEB J
, vol.27
, pp. 2893-2901
-
-
Zhang, G.1
Lin, R.K.2
Kwon, Y.T.3
Li, Y.P.4
-
70
-
-
84925251881
-
Molecular, cellular, and physiological significance of N-terminal acetylation
-
Aksnes, H., Hole, K., and Arnesen, T. (2015) Molecular, cellular, and physiological significance of N-terminal acetylation. Int. Rev. Cell. Mol. Biol. 316, 267-305
-
(2015)
Int. Rev. Cell. Mol. Biol.
, vol.316
, pp. 267-305
-
-
Aksnes, H.1
Hole, K.2
Arnesen, T.3
-
71
-
-
84937635572
-
The biological functions of Naa10: From amino-terminal acetylation to human disease
-
Dörfel, M. J., and Lyon, G. J. (2015) The biological functions of Naa10: from amino-terminal acetylation to human disease. Gene 567, 103-131
-
(2015)
Gene
, vol.567
, pp. 103-131
-
-
Dörfel, M.J.1
Lyon, G.J.2
-
72
-
-
84859490749
-
Protein N-terminal acettyltransferases: When the start matters
-
Starheim, K. K., Gevaert, K., and Arnesen, T. (2012) Protein N-terminal acettyltransferases: when the start matters. Trends Biochem. Sci. 37, 152-161
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 152-161
-
-
Starheim, K.K.1
Gevaert, K.2
Arnesen, T.3
-
73
-
-
84895826235
-
Calpain-generated natural protein pragments as short-lived substrates of the N-end rule pathway
-
Piatkov, K. I., Oh, J.-H., Liu, Y., and Varshavsky, A. (2014) Calpain-generated natural protein pragments as short-lived substrates of the N-end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 111, E817-E826
-
(2014)
Proc. Natl. Acad. Sci. U.S.A
, vol.111
, pp. E817-E826
-
-
Piatkov, K.I.1
Oh, J.-H.2
Liu, Y.3
Varshavsky, A.4
-
74
-
-
77957805791
-
Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases
-
Choi, W. S., Jeong, B.-C., Joo, Y. J., Lee, M.-R., Kim, J., Eck, M. J., and Song, H. K. (2010) Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat. Struct. Mol. Biol. 17, 1175-1181
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1175-1181
-
-
Choi, W.S.1
Jeong, B.-C.2
Joo, Y.J.3
Lee, M.-R.4
Kim, J.5
Eck, M.J.6
Song, H.K.7
-
75
-
-
77957790301
-
Structural basis of substrate recognition and specificity in the N-end rule pathway
-
Matta-Camacho, E., Kozlov, G., Li, F. F., and Gehring, K. (2010) Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat. Struct. Mol. Biol. 17, 1182-1187
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1182-1187
-
-
Matta-Camacho, E.1
Kozlov, G.2
Li, F.F.3
Gehring, K.4
-
76
-
-
67449146916
-
Glutamine-specific N-terminal amidase, a component of the N-end rule pathway
-
Wang, H., Piatkov, K. I., Brower, C. S., and Varshavsky, A. (2009) Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol. Cell 34, 686-695
-
(2009)
Mol. Cell
, vol.34
, pp. 686-695
-
-
Wang, H.1
Piatkov, K.I.2
Brower, C.S.3
Varshavsky, A.4
-
77
-
-
78649894111
-
The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases
-
Hwang, C. S., Shemorry, A., Auerbach, D., and Varshavsky, A. (2010) The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nat. Cell Biol. 12, 1177-1185
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1177-1185
-
-
Hwang, C.S.1
Shemorry, A.2
Auerbach, D.3
Varshavsky, A.4
-
78
-
-
0001602527
-
Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway
-
Kwon, Y. T., Kashina, A. S., and Varshavsky, A. (1999) Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway. Mol. Cell. Biol. 19, 182-193
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 182-193
-
-
Kwon, Y.T.1
Kashina, A.S.2
Varshavsky, A.3
-
79
-
-
33845953070
-
Arginyl-transferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms
-
Hu, R.-G., Brower, C. S., Wang, H., Davydov, I. V., Sheng, J., Zhou, J., Kwon, Y. T., and Varshavsky, A. (2006) Arginyl-transferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. J. Biol. Chem. 281, 32559-32573
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 32559-32573
-
-
Hu, R.-G.1
Brower, C.S.2
Wang, H.3
Davydov, I.V.4
Sheng, J.5
Zhou, J.6
Kwon, Y.T.7
Varshavsky, A.8
-
80
-
-
70649088959
-
Ablation of arginylation in the mouse N-end rule pathway: Loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations
-
Brower, C. S., and Varshavsky, A. (2009) Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS One 4, e7757
-
(2009)
PLoS One
, vol.4
-
-
Brower, C.S.1
Varshavsky, A.2
-
81
-
-
84911922733
-
Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats
-
Brower, C. S., Rosen, C. E., Jones, R. H., Wadas, B. C., Piatkov, K. I., and Varshavsky, A. (2014) Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats. Proc. Natl. Acad. Sci. U.S.A. 111, E4936-E4945
-
(2014)
Proc. Natl. Acad. Sci. U.S.A
, vol.111
, pp. E4936-E4945
-
-
Brower, C.S.1
Rosen, C.E.2
Jones, R.H.3
Wadas, B.C.4
Piatkov, K.I.5
Varshavsky, A.6
-
82
-
-
84896795351
-
Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway
-
Weits, D. A., Giuntoli, B., Kosmacz, M., Parlanti, S., Hubberten, H. M., Riegler, H., Hoefgen, R., Perata, P., van Dongen, J. T., and Licausi, F. (2014) Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat. Commun. 5, 3425
-
(2014)
Nat. Commun.
, vol.5
, pp. 3425
-
-
Weits, D.A.1
Giuntoli, B.2
Kosmacz, M.3
Parlanti, S.4
Hubberten, H.M.5
Riegler, H.6
Hoefgen, R.7
Perata, P.8
Van Dongen, J.T.9
Licausi, F.10
-
83
-
-
84893797768
-
Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors
-
Gibbs, D. J., Md Isa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G. M., Berckhan, S., Marín-de la Rosa, N., Vicente Conde, J., Sousa Correia, C., Pearce, S. P., Bassel, G. W., Hamali, B., Talloji, P., Tomé, D. F., Coego, A., et al. (2014) Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53, 369-379
-
(2014)
Mol. Cell
, vol.53
, pp. 369-379
-
-
Gibbs, D.J.1
Md Isa, N.2
Movahedi, M.3
Lozano-Juste, J.4
Mendiondo, G.M.5
Berckhan, S.6
Marín-De La Rosa, N.7
Vicente Conde, J.8
Sousa Correia, C.9
Pearce, S.P.10
Bassel, G.W.11
Hamali, B.12
Talloji, P.13
Tomé, D.F.14
Coego, A.15
-
84
-
-
77956663124
-
Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation
-
Zhang, F., Saha, S., Shabalina, S. A., and Kashina, A. (2010) Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 329, 1534-1537
-
(2010)
Science
, vol.329
, pp. 1534-1537
-
-
Zhang, F.1
Saha, S.2
Shabalina, S.A.3
Kashina, A.4
-
85
-
-
84973338673
-
Identification of targets and interaction partners of arginyl-tRNA protein transferase in the moss Physcomitrella patens
-
Hoernstein, S. N., Mueller, S. J., Fiedler, K., Schuelke, M., Vanselow, J. T., Schuessele, C., Lang, D., Nitschke, R., Igloi, G. L., Schlosser, A., and Reski, R. (2016) Identification of targets and interaction partners of arginyl-tRNA protein transferase in the moss Physcomitrella patens. Mol. Cell. Proteomics 15, 1808-1822
-
(2016)
Mol. Cell. Proteomics
, vol.15
, pp. 1808-1822
-
-
Hoernstein, S.N.1
Mueller, S.J.2
Fiedler, K.3
Schuelke, M.4
Vanselow, J.T.5
Schuessele, C.6
Lang, D.7
Nitschke, R.8
Igloi, G.L.9
Schlosser, A.10
Reski, R.11
-
86
-
-
84867665006
-
Augmented generation of protein fragments during wakefulness as the molecular cause of sleep: A hypothesis
-
Varshavsky, A. (2012) Augmented generation of protein fragments during wakefulness as the molecular cause of sleep: a hypothesis. Protein Sci. 21, 1634-1661
-
(2012)
Protein Sci.
, vol.21
, pp. 1634-1661
-
-
Varshavsky, A.1
-
87
-
-
35648944795
-
Global analysis of posttranslational protein arginylation
-
Wong, C. C. L., Xu, T., Rai, R., Bailey, A. O., Yates, J. R., 3rd, Wolf, Y. I., Zebroski, H., and Kashina, A. (2007) Global analysis of posttranslational protein arginylation. PLos Biol. 5, e258
-
(2007)
PLos Biol.
, vol.5
, pp. e258
-
-
Wong, C.C.L.1
Xu, T.2
Rai, R.3
Bailey, A.O.4
Yates, J.R.5
Wolf, Y.I.6
Zebroski, H.7
Kashina, A.8
-
88
-
-
59749087384
-
Arginyltransferase regulates α cardiac actin function, myofibril formation and contractility during heart development
-
Rai, R., Wong, C. C., Xu, T., Leu, N. A., Dong, D. W., Guo, C., McLaughlin, K. J., Yates, J. R., 3rd, and Kashina, A. (2008) Arginyltransferase regulates α cardiac actin function, myofibril formation and contractility during heart development. Development 135, 3881-3889
-
(2008)
Development
, vol.135
, pp. 3881-3889
-
-
Rai, R.1
Wong, C.C.2
Xu, T.3
Leu, N.A.4
Dong, D.W.5
Guo, C.6
McLaughlin, K.J.7
Yates, J.R.8
Kashina, A.9
-
89
-
-
63349110971
-
Identification of N-terminally arginylated proteins and peptides by mass spectrometry
-
Xu, T., Wong, C. C., Kashina, A., and Yates, J. R., 3rd (2009) Identification of N-terminally arginylated proteins and peptides by mass spectrometry. Nat. Protoc. 4, 325-332
-
(2009)
Nat. Protoc
, vol.4
, pp. 325-332
-
-
Xu, T.1
Wong, C.C.2
Kashina, A.3
Yates, J.R.4
-
90
-
-
82255181179
-
Arginylation and methylation double up to regulate nuclear proteins and nuclear architecture in vivo
-
Saha, S., Wong, C. C., Xu, T., Namgoong, S., Zebroski, H., Yates, J. R., 3rd, and Kashina, A. (2011) Arginylation and methylation double up to regulate nuclear proteins and nuclear architecture in vivo. Chem. Biol. 18, 1369-1378
-
(2011)
Chem. Biol.
, vol.18
, pp. 1369-1378
-
-
Saha, S.1
Wong, C.C.2
Xu, T.3
Namgoong, S.4
Zebroski, H.5
Yates, J.R.6
Kashina, A.7
-
91
-
-
79251568327
-
Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo
-
Wang, J., Han, X., Saha, S., Xu, T., Rai, R., Zhang, F., Wolf, Y. I., Wolfson, A., Yates, J. R., 3rd, and Kashina, A. (2011) Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo. Chem. Biol. 18, 121-130
-
(2011)
Chem. Biol.
, vol.18
, pp. 121-130
-
-
Wang, J.1
Han, X.2
Saha, S.3
Xu, T.4
Rai, R.5
Zhang, F.6
Wolf, Y.I.7
Wolfson, A.8
Yates, J.R.9
Kashina, A.10
-
92
-
-
84864817775
-
Arginylation regulates myofibrils to maintain heart function and prevent dilated cardiomyopathy
-
Kurosaka, S., Leu, N. A., Pavlov, I., Han, X., Ribeiro, P. A., Xu, T., Bunte, R., Saha, S., Wang, J., Cornachione, A., Mai, W., Yates, J. R., 3rd, Rassier, D. E., and Kashina, A. (2012) Arginylation regulates myofibrils to maintain heart function and prevent dilated cardiomyopathy. J. Mol. Cell. Cardiol. 53, 333-341
-
(2012)
J. Mol. Cell. Cardiol.
, vol.53
, pp. 333-341
-
-
Kurosaka, S.1
Leu, N.A.2
Pavlov, I.3
Han, X.4
Ribeiro, P.A.5
Xu, T.6
Bunte, R.7
Saha, S.8
Wang, J.9
Cornachione, A.10
Mai, W.11
Yates, J.R.12
Rassier, D.E.13
Kashina, A.14
-
93
-
-
22544484457
-
Identification of mammalian arginyltransferases that modify a specific subset of protein substrates
-
Rai, R., and Kashina, A. (2005) Identification of mammalian arginyltransferases that modify a specific subset of protein substrates. Proc. Natl. Acad. Sci. U.S.A. 102, 10123-10128
-
(2005)
Proc. Natl. Acad. Sci. U.S.A
, vol.102
, pp. 10123-10128
-
-
Rai, R.1
Kashina, A.2
-
94
-
-
84897069838
-
Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo
-
Wang, J., Han, X., Wong, C. C., Cheng, H., Aslanian, A., Xu, T., Leavis, P., Roder, H., Hedstrom, L., Yates, J. R., 3rd, and Kashina, A. (2014) Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo. Chem. Biol. 21, 331-337
-
(2014)
Chem. Biol.
, vol.21
, pp. 331-337
-
-
Wang, J.1
Han, X.2
Wong, C.C.3
Cheng, H.4
Aslanian, A.5
Xu, T.6
Leavis, P.7
Roder, H.8
Hedstrom, L.9
Yates, J.R.10
Kashina, A.11
-
95
-
-
84904819492
-
Arginylation of myosin heavy chain regulates skeletal muscle strength
-
Cornachione, A. S., Leite, F. S., Wang, J., Leu, N. A., Kalganov, A., Volgin, D., Han, X., Xu, T., Cheng, Y. S., Yates, J. R., 3rd, Rassier, D. E., and Kashina, A. (2014) Arginylation of myosin heavy chain regulates skeletal muscle strength. Cell Rep. 8, 470-476
-
(2014)
Cell Rep.
, vol.8
, pp. 470-476
-
-
Cornachione, A.S.1
Leite, F.S.2
Wang, J.3
Leu, N.A.4
Kalganov, A.5
Volgin, D.6
Han, X.7
Xu, T.8
Cheng, Y.S.9
Yates, J.R.10
Rassier, D.E.11
Kashina, A.12
-
96
-
-
27444436167
-
A novel form of neurotensin post-translationally modified by arginylation
-
Eriste, E., Norberg, Å., Nepomuceno, D., Kuei, C., Kamme, F., Tran, D.-T., Strupat, K., Jörnvall, H., Liu, C., Lovenberg, T. W., and Sillard, R. (2005) A novel form of neurotensin post-translationally modified by arginylation. J. Biol. Chem. 280, 35089-35097
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 35089-35097
-
-
Eriste, E.1
Norberg, Å.2
Nepomuceno, D.3
Kuei, C.4
Kamme, F.5
Tran, D.-T.6
Strupat, K.7
Jörnvall, H.8
Liu, C.9
Lovenberg, T.W.10
Sillard, R.11
-
97
-
-
84973505602
-
Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots
-
Zhang, H., Deery, M. J., Gannon, L., Powers, S. J., Lilley, K. S., and Theodoulou, F. L. (2015) Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots. Proteomics 15, 2447-2457
-
(2015)
Proteomics
, vol.15
, pp. 2447-2457
-
-
Zhang, H.1
Deery, M.J.2
Gannon, L.3
Powers, S.J.4
Lilley, K.S.5
Theodoulou, F.L.6
-
98
-
-
84907857020
-
Targeted proteomics analysis of protein degradation in plant signaling on an LTQ-Orbitrap mass spectrometer
-
Majovsky, P., Naumann, C., Lee, C.-W., Lassowskat, I., Trujillo, M., Dissmeyer, N., and Hoehenwarter, W. (2014) Targeted proteomics analysis of protein degradation in plant signaling on an LTQ-Orbitrap mass spectrometer. J. Proteome Res. 13, 4246-4258
-
(2014)
J. Proteome Res.
, vol.13
, pp. 4246-4258
-
-
Majovsky, P.1
Naumann, C.2
Lee, C.-W.3
Lassowskat, I.4
Trujillo, M.5
Dissmeyer, N.6
Hoehenwarter, W.7
-
99
-
-
84954445952
-
Enzymatic generation of peptides flanked by basic amino acids to obtain MS/MS spectra with 2X sequence coverage
-
Ebhardt, H. A., Nan, J., Chaulk, S. G., Fahlman, R. P., and Aebersold, R. (2014) Enzymatic generation of peptides flanked by basic amino acids to obtain MS/MS spectra with 2X sequence coverage. Rapid Commun. Mass Spectrom. 28, 2735-2743
-
(2014)
Rapid Commun. Mass Spectrom.
, vol.28
, pp. 2735-2743
-
-
Ebhardt, H.A.1
Nan, J.2
Chaulk, S.G.3
Fahlman, R.P.4
Aebersold, R.5
-
100
-
-
84863992173
-
Arginylation-dependent regulation of a proteolytic product of talin is essential for cell-cell adhesion
-
Zhang, F., Saha, S., and Kashina, A. (2012) Arginylation-dependent regulation of a proteolytic product of talin is essential for cell-cell adhesion. J. Cell Biol. 197, 819-836
-
(2012)
J. Cell Biol.
, vol.197
, pp. 819-836
-
-
Zhang, F.1
Saha, S.2
Kashina, A.3
-
101
-
-
84954443448
-
Arginylation regulates purine nucleotide biosynthesis by enhancing the activity of phosphoribosyl pyrophosphate synthase
-
Zhang, F., Patel, D. M., Colavita, K., Rodionova, I., Buckley, B., Scott, D. A., Kumar, A., Shabalina, S. A., Saha, S., Chernov, M., Osterman, A. L., and Kashina, A. (2015) Arginylation regulates purine nucleotide biosynthesis by enhancing the activity of phosphoribosyl pyrophosphate synthase. Nat. Commun. 6, 7517
-
(2015)
Nat. Commun.
, vol.6
, pp. 7517
-
-
Zhang, F.1
Patel, D.M.2
Colavita, K.3
Rodionova, I.4
Buckley, B.5
Scott, D.A.6
Kumar, A.7
Shabalina, S.A.8
Saha, S.9
Chernov, M.10
Osterman, A.L.11
Kashina, A.12
-
102
-
-
73949155950
-
CelluSpots: A reproducible means of making peptide arrays for the determination of SH2 domain binding specificity
-
Wu, C., and Li, S. S. (2009) CelluSpots: a reproducible means of making peptide arrays for the determination of SH2 domain binding specificity. Methods Mol. Biol. 570, 197-202
-
(2009)
Methods Mol. Biol.
, vol.570
, pp. 197-202
-
-
Wu, C.1
Li, S.S.2
-
103
-
-
80052140473
-
Application of CelluSpots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails
-
Bock, I., Kudithipudi, S., Tamas, R., Kungulovski, G., Dhayalan, A., and Jeltsch, A. (2011) Application of CelluSpots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails. BMC Biochem. 12, 48
-
(2011)
BMC Biochem.
, vol.12
, pp. 48
-
-
Bock, I.1
Kudithipudi, S.2
Tamas, R.3
Kungulovski, G.4
Dhayalan, A.5
Jeltsch, A.6
-
104
-
-
79151476637
-
Detailed specificity analysis of antibodies binding to modified histone tails with peptide arrays
-
Bock, I., Dhayalan, A., Kudithipudi, S., Brandt, O., Rathert, P., and Jeltsch, A. (2011) Detailed specificity analysis of antibodies binding to modified histone tails with peptide arrays. Epigenetics 6, 256-263
-
(2011)
Epigenetics
, vol.6
, pp. 256-263
-
-
Bock, I.1
Dhayalan, A.2
Kudithipudi, S.3
Brandt, O.4
Rathert, P.5
Jeltsch, A.6
-
105
-
-
77954126183
-
Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail
-
Zhang, Y., Jurkowska, R., Soeroes, S., Rajavelu, A., Dhayalan, A., Bock, I., Rathert, P., Brandt, O., Reinhardt, R., Fischle, W., and Jeltsch, A. (2010) Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 38, 4246-4253
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 4246-4253
-
-
Zhang, Y.1
Jurkowska, R.2
Soeroes, S.3
Rajavelu, A.4
Dhayalan, A.5
Bock, I.6
Rathert, P.7
Brandt, O.8
Reinhardt, R.9
Fischle, W.10
Jeltsch, A.11
-
106
-
-
1842485068
-
Spalog and sequelog: Neutral terms for spatial and sequence similarity
-
Varshavsky, A. (2004) Spalog and sequelog: neutral terms for spatial and sequence similarity. Curr. Biol. 14, R181-R183
-
(2004)
Curr. Biol.
, vol.14
, pp. R181-R183
-
-
Varshavsky, A.1
-
107
-
-
0034725661
-
RGS4 is arginylated and degraded by the N-end rule pathway in vitro
-
Davydov, I. V., and Varshavsky, A. (2000) RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J. Biol. Chem. 275, 22931-22941
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 22931-22941
-
-
Davydov, I.V.1
Varshavsky, A.2
-
108
-
-
28944437762
-
Ubiquitin fusion technique and related methods
-
Varshavsky, A. (2005) Ubiquitin fusion technique and related methods. Methods Enzymol. 399, 777-799
-
(2005)
Methods Enzymol.
, vol.399
, pp. 777-799
-
-
Varshavsky, A.1
-
109
-
-
0034581529
-
Ubiquitin fusion technique and its descendants
-
Varshavsky, A. (2000) Ubiquitin fusion technique and its descendants. Methods Enzymol. 327, 578-593
-
(2000)
Methods Enzymol.
, vol.327
, pp. 578-593
-
-
Varshavsky, A.1
-
110
-
-
0029955228
-
Using ubiquitin to follow the metabolic fate of a protein
-
Lévy, F., Johnsson, N., Rümenapf, T., and Varshavsky, A. (1996) Using ubiquitin to follow the metabolic fate of a protein. Proc. Natl. Acad. Sci. U.S.A. 93, 4907-4912
-
(1996)
Proc. Natl. Acad. Sci. U.S.A
, vol.93
, pp. 4907-4912
-
-
Lévy, F.1
Johnsson, N.2
Rümenapf, T.3
Varshavsky, A.4
-
111
-
-
1942537173
-
An efficient system for high-level expression and easy purification of authentic recombinant proteins
-
Catanzariti, A.-M., Soboleva, T. A., Jans, D. A., Board, P. G., and Baker, R. T. (2004) An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci. 13, 1331-1339
-
(2004)
Protein Sci.
, vol.13
, pp. 1331-1339
-
-
Catanzariti, A.-M.1
Soboleva, T.A.2
Jans, D.A.3
Board, P.G.4
Baker, R.T.5
|