-
1
-
-
0032969563
-
AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
-
Neuwald A.F., Aravind L., Spouge J.L., Koonin E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 1999, 9:27-43.
-
(1999)
Genome Res
, vol.9
, pp. 27-43
-
-
Neuwald, A.F.1
Aravind, L.2
Spouge, J.L.3
Koonin, E.V.4
-
2
-
-
63649144413
-
Principles of ubiquitin and SUMO modifications in DNA repair
-
Bergink S., Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 2009, 458:461-467.
-
(2009)
Nature
, vol.458
, pp. 461-467
-
-
Bergink, S.1
Jentsch, S.2
-
3
-
-
79955484976
-
The spatial and temporal organization of ubiquitin networks
-
Grabbe C., Husnjak K., Dikic I. The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol 2011, 12:295-307.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 295-307
-
-
Grabbe, C.1
Husnjak, K.2
Dikic, I.3
-
4
-
-
71749085978
-
The role of proteolysis in the Caulobacter crescentus cell cycle and development
-
Jenal U. The role of proteolysis in the Caulobacter crescentus cell cycle and development. Res Microbiol 2009, 160:687-695.
-
(2009)
Res Microbiol
, vol.160
, pp. 687-695
-
-
Jenal, U.1
-
5
-
-
77449153351
-
Regulation of death receptor signaling by the ubiquitin system
-
Wertz I.E., Dixit V.M. Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ 2010, 17:14-24.
-
(2010)
Cell Death Differ
, vol.17
, pp. 14-24
-
-
Wertz, I.E.1
Dixit, V.M.2
-
6
-
-
0037010120
-
AAA+proteins and substrate recognition, it all depends on their partner in crime
-
Dougan D.A., Mogk A., Zeth K., Turgay K., Bukau B. AAA+proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett 2002, 529:6-10.
-
(2002)
FEBS Lett
, vol.529
, pp. 6-10
-
-
Dougan, D.A.1
Mogk, A.2
Zeth, K.3
Turgay, K.4
Bukau, B.5
-
7
-
-
67651208925
-
Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+proteases
-
Kirstein J., Moliere N., Dougan D.A., Turgay K. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+proteases. Nat Rev Microbiol 2009, 7:589-599.
-
(2009)
Nat Rev Microbiol
, vol.7
, pp. 589-599
-
-
Kirstein, J.1
Moliere, N.2
Dougan, D.A.3
Turgay, K.4
-
8
-
-
32544432878
-
ClpS is an essential component of the N-end rule pathway in Escherichia coli
-
Erbse A., Schmidt R., Bornemann T., Schneider-Mergener J., Mogk A., Zahn R., Dougan D.A., Bukau B. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 2006, 439:753-756.
-
(2006)
Nature
, vol.439
, pp. 753-756
-
-
Erbse, A.1
Schmidt, R.2
Bornemann, T.3
Schneider-Mergener, J.4
Mogk, A.5
Zahn, R.6
Dougan, D.A.7
Bukau, B.8
-
9
-
-
0029861143
-
The N-end rule: functions, mysteries, uses
-
Varshavsky A. The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci USA 1996, 93:12142-12149.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 12142-12149
-
-
Varshavsky, A.1
-
10
-
-
0023003380
-
In vivo half-life of a protein is a function of its amino-terminal residue
-
Bachmair A., Finley D., Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 1986, 234:179-186.
-
(1986)
Science
, vol.234
, pp. 179-186
-
-
Bachmair, A.1
Finley, D.2
Varshavsky, A.3
-
11
-
-
0026316101
-
The N-end rule in bacteria
-
Tobias J.W., Shrader T.E., Rocap G., Varshavsky A. The N-end rule in bacteria. Science 1991, 254:1374-1377.
-
(1991)
Science
, vol.254
, pp. 1374-1377
-
-
Tobias, J.W.1
Shrader, T.E.2
Rocap, G.3
Varshavsky, A.4
-
12
-
-
77950148360
-
Structure and evolutionary conservation of the plant N-end rule pathway
-
Graciet E., Mesiti F., Wellmer F. Structure and evolutionary conservation of the plant N-end rule pathway. Plant J 2010, 61:741-751.
-
(2010)
Plant J
, vol.61
, pp. 741-751
-
-
Graciet, E.1
Mesiti, F.2
Wellmer, F.3
-
13
-
-
0024474145
-
Universality and structure of the N-end rule
-
Gonda D.K., Bachmair A., Wunning I., Tobias J.W., Lane W.S., Varshavsky A. Universality and structure of the N-end rule. J Biol Chem 1989, 264:16700-16712.
-
(1989)
J Biol Chem
, vol.264
, pp. 16700-16712
-
-
Gonda, D.K.1
Bachmair, A.2
Wunning, I.3
Tobias, J.W.4
Lane, W.S.5
Varshavsky, A.6
-
14
-
-
0029905594
-
A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway
-
Grigoryev S., Stewart A.E., Kwon Y.T., Arfin S.M., Bradshaw R.A., Jenkins N.A., Copeland N.G., Varshavsky A. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. J Biol Chem 1996, 271:28521-28532.
-
(1996)
J Biol Chem
, vol.271
, pp. 28521-28532
-
-
Grigoryev, S.1
Stewart, A.E.2
Kwon, Y.T.3
Arfin, S.M.4
Bradshaw, R.A.5
Jenkins, N.A.6
Copeland, N.G.7
Varshavsky, A.8
-
15
-
-
0032493449
-
The mouse and human genes encoding the recognition component of the N-end rule pathway
-
Kwon Y.T., Reiss Y., Fried V.A., Hershko A., Yoon J.K., Gonda D.K., Sangan P., Copeland N.G., Jenkins N.A., Varshavsky A. The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc Natl Acad Sci USA 1998, 95:7898-7903.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 7898-7903
-
-
Kwon, Y.T.1
Reiss, Y.2
Fried, V.A.3
Hershko, A.4
Yoon, J.K.5
Gonda, D.K.6
Sangan, P.7
Copeland, N.G.8
Jenkins, N.A.9
Varshavsky, A.10
-
16
-
-
27244444724
-
RGS4 and RGS5 are in vivo substrates of the N-end rule pathway
-
Lee M.J., Tasaki T., Moroi K., An J.Y., Kimura S., Davydov I.V., Kwon Y.T. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci USA 2005, 102:15030-15035.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 15030-15035
-
-
Lee, M.J.1
Tasaki, T.2
Moroi, K.3
An, J.Y.4
Kimura, S.5
Davydov, I.V.6
Kwon, Y.T.7
-
17
-
-
67649552963
-
Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli
-
Ninnis R.L., Spall S.K., Talbo G.H., Truscott K.N., Dougan D.A. Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J 2009, 28:1732-1744.
-
(2009)
EMBO J
, vol.28
, pp. 1732-1744
-
-
Ninnis, R.L.1
Spall, S.K.2
Talbo, G.H.3
Truscott, K.N.4
Dougan, D.A.5
-
18
-
-
64149130398
-
ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway
-
Schmidt R., Zahn R., Bukau B., Mogk A. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol Microbiol 2009, 72:506-517.
-
(2009)
Mol Microbiol
, vol.72
, pp. 506-517
-
-
Schmidt, R.1
Zahn, R.2
Bukau, B.3
Mogk, A.4
-
19
-
-
23344452833
-
A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons
-
Tasaki T., Mulder L.C., Iwamatsu A., Lee M.J., Davydov I.V., Varshavsky A., Muesing M., Kwon Y.T. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol Cell Biol 2005, 25:7120-7136.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 7120-7136
-
-
Tasaki, T.1
Mulder, L.C.2
Iwamatsu, A.3
Lee, M.J.4
Davydov, I.V.5
Varshavsky, A.6
Muesing, M.7
Kwon, Y.T.8
-
20
-
-
67449146916
-
Glutamine-specific N-terminal amidase, a component of the N-end rule pathway
-
Wang H., Piatkov K.I., Brower C.S., Varshavsky A. Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol Cell 2009, 34:686-695.
-
(2009)
Mol Cell
, vol.34
, pp. 686-695
-
-
Wang, H.1
Piatkov, K.I.2
Brower, C.S.3
Varshavsky, A.4
-
21
-
-
33644786997
-
Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen
-
Graciet E., Hu R.G., Piatkov K., Rhee J.H., Schwarz E.M., Varshavsky A. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen. Proc Natl Acad Sci USA 2006, 103:3078-3083.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 3078-3083
-
-
Graciet, E.1
Hu, R.G.2
Piatkov, K.3
Rhee, J.H.4
Schwarz, E.M.5
Varshavsky, A.6
-
22
-
-
67349099562
-
Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS
-
Schuenemann V.J., Kralik S.M., Albrecht R., Spall S.K., Truscott K.N., Dougan D.A., Zeth K. Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS. EMBO Rep 2009, 10:508-514.
-
(2009)
EMBO Rep
, vol.10
, pp. 508-514
-
-
Schuenemann, V.J.1
Kralik, S.M.2
Albrecht, R.3
Spall, S.K.4
Truscott, K.N.5
Dougan, D.A.6
Zeth, K.7
-
23
-
-
55049110221
-
The molecular basis of N-end rule recognition
-
Wang K.H., Roman-Hernandez G., Grant R.A., Sauer R.T., Baker T.A. The molecular basis of N-end rule recognition. Mol Cell 2008, 32:406-414.
-
(2008)
Mol Cell
, vol.32
, pp. 406-414
-
-
Wang, K.H.1
Roman-Hernandez, G.2
Grant, R.A.3
Sauer, R.T.4
Baker, T.A.5
-
24
-
-
0029016564
-
Yeast N-terminal amidase. A new enzyme and component of the N-end rule pathway
-
Baker R.T., Varshavsky A. Yeast N-terminal amidase. A new enzyme and component of the N-end rule pathway. J Biol Chem 1995, 270:12065-12074.
-
(1995)
J Biol Chem
, vol.270
, pp. 12065-12074
-
-
Baker, R.T.1
Varshavsky, A.2
-
25
-
-
0025272837
-
Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae
-
Balzi E., Choder M., Chen W.N., Varshavsky A., Goffeau A. Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. J Biol Chem 1990, 265:7464-7471.
-
(1990)
J Biol Chem
, vol.265
, pp. 7464-7471
-
-
Balzi, E.1
Choder, M.2
Chen, W.N.3
Varshavsky, A.4
Goffeau, A.5
-
26
-
-
63149132055
-
The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis
-
Holman T.J., Jones P.D., Russell L., Medhurst A., Ubeda Tomas S., Talloji P., Marquez J., Schmuths H., Tung S.A., Taylor I., Footitt S., Bachmair A., Theodoulou F.L., Holdsworth M.J. The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proc Natl Acad Sci USA 2009, 106:4549-4554.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 4549-4554
-
-
Holman, T.J.1
Jones, P.D.2
Russell, L.3
Medhurst, A.4
Ubeda Tomas, S.5
Talloji, P.6
Marquez, J.7
Schmuths, H.8
Tung, S.A.9
Taylor, I.10
Footitt, S.11
Bachmair, A.12
Theodoulou, F.L.13
Holdsworth, M.J.14
-
27
-
-
0036795587
-
A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis
-
Yoshida S., Ito M., Callis J., Nishida I., Watanabe A. A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant J 2002, 32:129-137.
-
(2002)
Plant J
, vol.32
, pp. 129-137
-
-
Yoshida, S.1
Ito, M.2
Callis, J.3
Nishida, I.4
Watanabe, A.5
-
28
-
-
77149120798
-
N-terminal acetylation of cellular proteins creates specific degradation signals
-
Hwang C.S., Shemorry A., Varshavsky A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 2010, 327:973-977.
-
(2010)
Science
, vol.327
, pp. 973-977
-
-
Hwang, C.S.1
Shemorry, A.2
Varshavsky, A.3
-
29
-
-
0024324489
-
Degradation of proteins with acetylated amino termini by the ubiquitin system
-
Mayer A., Siegel N.R., Schwartz A.L., Ciechanover A. Degradation of proteins with acetylated amino termini by the ubiquitin system. Science 1989, 244:1480-1483.
-
(1989)
Science
, vol.244
, pp. 1480-1483
-
-
Mayer, A.1
Siegel, N.R.2
Schwartz, A.L.3
Ciechanover, A.4
-
30
-
-
0034711184
-
Nalpha -terminal acetylation of eukaryotic proteins
-
Polevoda B., Sherman F. Nalpha -terminal acetylation of eukaryotic proteins. J Biol Chem 2000, 275:36479-36482.
-
(2000)
J Biol Chem
, vol.275
, pp. 36479-36482
-
-
Polevoda, B.1
Sherman, F.2
-
31
-
-
0035887277
-
A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation
-
Swanson R., Locher M., Hochstrasser M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev 2001, 15:2660-2674.
-
(2001)
Genes Dev
, vol.15
, pp. 2660-2674
-
-
Swanson, R.1
Locher, M.2
Hochstrasser, M.3
-
32
-
-
58049196794
-
Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway
-
Hwang C.S., Varshavsky A. Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway. Proc Natl Acad Sci USA 2008, 105:19188-19193.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 19188-19193
-
-
Hwang, C.S.1
Varshavsky, A.2
-
33
-
-
0035912183
-
Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability
-
Rao H., Uhlmann F., Nasmyth K., Varshavsky A. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 2001, 410:955-959.
-
(2001)
Nature
, vol.410
, pp. 955-959
-
-
Rao, H.1
Uhlmann, F.2
Nasmyth, K.3
Varshavsky, A.4
-
34
-
-
0037936841
-
Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis
-
Ditzel M., Wilson R., Tenev T., Zachariou A., Paul A., Deas E., Meier P. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nat Cell Biol 2003, 5:467-473.
-
(2003)
Nat Cell Biol
, vol.5
, pp. 467-473
-
-
Ditzel, M.1
Wilson, R.2
Tenev, T.3
Zachariou, A.4
Paul, A.5
Deas, E.6
Meier, P.7
-
35
-
-
70649088959
-
Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations
-
Brower C.S., Varshavsky A. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS One 2009, 4:e7757.
-
(2009)
PLoS One
, vol.4
-
-
Brower, C.S.1
Varshavsky, A.2
-
36
-
-
38349098190
-
The N-end rule pathway is a sensor of heme
-
Hu R.G., Wang H., Xia Z., Varshavsky A. The N-end rule pathway is a sensor of heme. Proc Natl Acad Sci USA 2008, 105:76-81.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 76-81
-
-
Hu, R.G.1
Wang, H.2
Xia, Z.3
Varshavsky, A.4
-
37
-
-
0037025163
-
An essential role of N-terminal arginylation in cardiovascular development
-
Kwon Y.T., Kashina A.S., Davydov I.V., Hu R.G., An J.Y., Seo J.W., Du F., Varshavsky A. An essential role of N-terminal arginylation in cardiovascular development. Science 2002, 297:96-99.
-
(2002)
Science
, vol.297
, pp. 96-99
-
-
Kwon, Y.T.1
Kashina, A.S.2
Davydov, I.V.3
Hu, R.G.4
An, J.Y.5
Seo, J.W.6
Du, F.7
Varshavsky, A.8
-
38
-
-
33748951372
-
Loss of Ubr1 promotes aneuploidy and accelerates B-cell lymphomagenesis in TLX1/HOX11-transgenic mice
-
Chen E., Kwon Y.T., Lim M.S., Dube I.D., Hough M.R. Loss of Ubr1 promotes aneuploidy and accelerates B-cell lymphomagenesis in TLX1/HOX11-transgenic mice. Oncogene 2006, 25:5752-5763.
-
(2006)
Oncogene
, vol.25
, pp. 5752-5763
-
-
Chen, E.1
Kwon, Y.T.2
Lim, M.S.3
Dube, I.D.4
Hough, M.R.5
-
39
-
-
28444458475
-
Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome)
-
Zenker M., Mayerle J., Lerch M.M., Tagariello A., Zerres K., Durie P.R., Beier M., Hulskamp G., Guzman C., Rehder H., Beemer F.A., Hamel B., Vanlieferinghen P., Gershoni-Baruch R., Vieira M.W., Dumic M., Auslender R., Gil-da-Silva-Lopes V.L., Steinlicht S., Rauh M., Shalev S.A., Thiel C., Ekici A.B., Winterpacht A., Kwon Y.T., Varshavsky A., Reis A. Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nat Genet 2005, 37:1345-1350.
-
(2005)
Nat Genet
, vol.37
, pp. 1345-1350
-
-
Zenker, M.1
Mayerle, J.2
Lerch, M.M.3
Tagariello, A.4
Zerres, K.5
Durie, P.R.6
Beier, M.7
Hulskamp, G.8
Guzman, C.9
Rehder, H.10
Beemer, F.A.11
Hamel, B.12
Vanlieferinghen, P.13
Gershoni-Baruch, R.14
Vieira, M.W.15
Dumic, M.16
Auslender, R.17
Gil-da-Silva-Lopes, V.L.18
Steinlicht, S.19
Rauh, M.20
Shalev, S.A.21
Thiel, C.22
Ekici, A.B.23
Winterpacht, A.24
Kwon, Y.T.25
Varshavsky, A.26
Reis, A.27
more..
-
40
-
-
0034725661
-
RGS4 is arginylated and degraded by the N-end rule pathway in vitro
-
Davydov I.V., Varshavsky A. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J Biol Chem 2000, 275:22931-22941.
-
(2000)
J Biol Chem
, vol.275
, pp. 22931-22941
-
-
Davydov, I.V.1
Varshavsky, A.2
-
41
-
-
27144557281
-
The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators
-
Hu R.G., Sheng J., Qi X., Xu Z., Takahashi T.T., Varshavsky A. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 2005, 437:981-986.
-
(2005)
Nature
, vol.437
, pp. 981-986
-
-
Hu, R.G.1
Sheng, J.2
Qi, X.3
Xu, Z.4
Takahashi, T.T.5
Varshavsky, A.6
-
42
-
-
0035902920
-
Cohesin cleavage by separase required for anaphase and cytokinesis in human cells
-
Hauf S., Waizenegger I.C., Peters J.M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 2001, 293:1320-1323.
-
(2001)
Science
, vol.293
, pp. 1320-1323
-
-
Hauf, S.1
Waizenegger, I.C.2
Peters, J.M.3
-
43
-
-
0037351068
-
Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals
-
Flynn J.M., Neher S.B., Kim Y.I., Sauer R.T., Baker T.A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 2003, 11:671-683.
-
(2003)
Mol Cell
, vol.11
, pp. 671-683
-
-
Flynn, J.M.1
Neher, S.B.2
Kim, Y.I.3
Sauer, R.T.4
Baker, T.A.5
-
44
-
-
10244243805
-
DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus
-
Ceci P., Cellai S., Falvo E., Rivetti C., Rossi G.L., Chiancone E. DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Nucleic Acids Res 2004, 32:5935-5944.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 5935-5944
-
-
Ceci, P.1
Cellai, S.2
Falvo, E.3
Rivetti, C.4
Rossi, G.L.5
Chiancone, E.6
-
45
-
-
77951567636
-
The bacterial N-end rule pathway: expect the unexpected
-
Dougan D.A., Truscott K.N., Zeth K. The bacterial N-end rule pathway: expect the unexpected. Mol Microbiol 2010, 76:545-558.
-
(2010)
Mol Microbiol
, vol.76
, pp. 545-558
-
-
Dougan, D.A.1
Truscott, K.N.2
Zeth, K.3
-
46
-
-
67049154051
-
Molecular basis of substrate selection by the N-end rule adaptor protein ClpS
-
Roman-Hernandez G., Grant R.A., Sauer R.T., Baker T.A. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS. Proc Natl Acad Sci USA 2009, 106:8888-8893.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 8888-8893
-
-
Roman-Hernandez, G.1
Grant, R.A.2
Sauer, R.T.3
Baker, T.A.4
-
47
-
-
77957805791
-
Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases
-
Choi W.S., Jeong B.C., Joo Y.J., Lee M.R., Kim J., Eck M.J., Song H.K. Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat Struct Mol Biol 2010, 17:1175-1181.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1175-1181
-
-
Choi, W.S.1
Jeong, B.C.2
Joo, Y.J.3
Lee, M.R.4
Kim, J.5
Eck, M.J.6
Song, H.K.7
-
48
-
-
77957790301
-
Structural basis of substrate recognition and specificity in the N-end rule pathway
-
Matta-Camacho E., Kozlov G., Li F.F., Gehring K. Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat Struct Mol Biol 2010, 17:1182-1187.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1182-1187
-
-
Matta-Camacho, E.1
Kozlov, G.2
Li, F.F.3
Gehring, K.4
-
49
-
-
59449093066
-
The substrate recognition domains of the N-end rule pathway
-
Tasaki T., Zakrzewska A., Dudgeon D.D., Jiang Y., Lazo J.S., Kwon Y.T. The substrate recognition domains of the N-end rule pathway. J Biol Chem 2009, 284:1884-1895.
-
(2009)
J Biol Chem
, vol.284
, pp. 1884-1895
-
-
Tasaki, T.1
Zakrzewska, A.2
Dudgeon, D.D.3
Jiang, Y.4
Lazo, J.S.5
Kwon, Y.T.6
-
50
-
-
0025050840
-
The recognition component of the N-end rule pathway
-
Bartel B., Wunning I., Varshavsky A. The recognition component of the N-end rule pathway. EMBO J 1990, 9:3179-3189.
-
(1990)
EMBO J
, vol.9
, pp. 3179-3189
-
-
Bartel, B.1
Wunning, I.2
Varshavsky, A.3
-
51
-
-
34250890107
-
PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus
-
Garzon M., Eifler K., Faust A., Scheel H., Hofmann K., Koncz C., Yephremov A., Bachmair A. PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus. FEBS Lett 2007, 581:3189-3196.
-
(2007)
FEBS Lett
, vol.581
, pp. 3189-3196
-
-
Garzon, M.1
Eifler, K.2
Faust, A.3
Scheel, H.4
Hofmann, K.5
Koncz, C.6
Yephremov, A.7
Bachmair, A.8
-
52
-
-
0344530352
-
PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues
-
Stary S., Yin X.J., Potuschak T., Schlogelhofer P., Nizhynska V., Bachmair A. PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol 2003, 133:1360-1366.
-
(2003)
Plant Physiol
, vol.133
, pp. 1360-1366
-
-
Stary, S.1
Yin, X.J.2
Potuschak, T.3
Schlogelhofer, P.4
Nizhynska, V.5
Bachmair, A.6
-
53
-
-
67649413592
-
Structure and function of a novel type of ATP-dependent Clp protease
-
Andersson F.I., Tryggvesson A., Sharon M., Diemand A.V., Classen M., Best C., Schmidt R., Schelin J., Stanne T.M., Bukau B., Robinson C.V., Witt S., Mogk A., Clarke A.K. Structure and function of a novel type of ATP-dependent Clp protease. J Biol Chem 2009, 284:13519-13532.
-
(2009)
J Biol Chem
, vol.284
, pp. 13519-13532
-
-
Andersson, F.I.1
Tryggvesson, A.2
Sharon, M.3
Diemand, A.V.4
Classen, M.5
Best, C.6
Schmidt, R.7
Schelin, J.8
Stanne, T.M.9
Bukau, B.10
Robinson, C.V.11
Witt, S.12
Mogk, A.13
Clarke, A.K.14
-
54
-
-
0033520987
-
Posttranslational quality control: folding, refolding, and degrading proteins
-
Wickner S., Maurizi M.R., Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999, 286:1888-1893.
-
(1999)
Science
, vol.286
, pp. 1888-1893
-
-
Wickner, S.1
Maurizi, M.R.2
Gottesman, S.3
-
55
-
-
71749110235
-
The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease
-
Kirstein J., Hoffmann A., Lilie H., Schmidt R., Rubsamen-Waigmann H., Brotz-Oesterhelt H., Mogk A., Turgay K. The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 2009, 1:37-49.
-
(2009)
EMBO Mol Med
, vol.1
, pp. 37-49
-
-
Kirstein, J.1
Hoffmann, A.2
Lilie, H.3
Schmidt, R.4
Rubsamen-Waigmann, H.5
Brotz-Oesterhelt, H.6
Mogk, A.7
Turgay, K.8
-
56
-
-
77950519954
-
Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism
-
Lee B.G., Park E.Y., Lee K.E., Jeon H., Sung K.H., Paulsen H., Rubsamen-Schaeff H., Brotz-Oesterhelt H., Song H.K. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 2010, 17:471-478.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 471-478
-
-
Lee, B.G.1
Park, E.Y.2
Lee, K.E.3
Jeon, H.4
Sung, K.H.5
Paulsen, H.6
Rubsamen-Schaeff, H.7
Brotz-Oesterhelt, H.8
Song, H.K.9
-
57
-
-
0030691115
-
The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis
-
Wang J., Hartling J.A., Flanagan J.M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 1997, 91:447-456.
-
(1997)
Cell
, vol.91
, pp. 447-456
-
-
Wang, J.1
Hartling, J.A.2
Flanagan, J.M.3
-
58
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 Å resolution
-
Groll M., Ditzel L., Lowe J., Stock D., Bochtler M., Bartunik H.D., Huber R. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 1997, 386:463-471.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Lowe, J.3
Stock, D.4
Bochtler, M.5
Bartunik, H.D.6
Huber, R.7
-
59
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M., Bajorek M., Kohler A., Moroder L., Rubin D.M., Huber R., Glickman M.H., Finley D. A gated channel into the proteasome core particle. Nat Struct Biol 2000, 7:1062-1067.
-
(2000)
Nat Struct Biol
, vol.7
, pp. 1062-1067
-
-
Groll, M.1
Bajorek, M.2
Kohler, A.3
Moroder, L.4
Rubin, D.M.5
Huber, R.6
Glickman, M.H.7
Finley, D.8
-
61
-
-
0033517351
-
Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
-
Weber-Ban E.U., Reid B.G., Miranker A.D., Horwich A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 1999, 401:90-93.
-
(1999)
Nature
, vol.401
, pp. 90-93
-
-
Weber-Ban, E.U.1
Reid, B.G.2
Miranker, A.D.3
Horwich, A.L.4
-
62
-
-
78049264771
-
The 26S proteasome: assembly and function of a destructive machine
-
Gallastegui N., Groll M. The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci 2010, 35:634-642.
-
(2010)
Trends Biochem Sci
, vol.35
, pp. 634-642
-
-
Gallastegui, N.1
Groll, M.2
-
63
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J., Smith D.M., Yu Y., Chang S.C., Goldberg A.L., Cheng Y. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 2008, 30:360-368.
-
(2008)
Mol Cell
, vol.30
, pp. 360-368
-
-
Rabl, J.1
Smith, D.M.2
Yu, Y.3
Chang, S.C.4
Goldberg, A.L.5
Cheng, Y.6
-
64
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
-
Smith D.M., Chang S.C., Park S., Finley D., Cheng Y., Goldberg A.L. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol Cell 2007, 27:731-744.
-
(2007)
Mol Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
Chang, S.C.2
Park, S.3
Finley, D.4
Cheng, Y.5
Goldberg, A.L.6
-
65
-
-
76349089770
-
Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions
-
Yu Y., Smith D.M., Kim H.M., Rodriguez V., Goldberg A.L., Cheng Y. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J 2009, 29:692-702.
-
(2009)
EMBO J
, vol.29
, pp. 692-702
-
-
Yu, Y.1
Smith, D.M.2
Kim, H.M.3
Rodriguez, V.4
Goldberg, A.L.5
Cheng, Y.6
-
66
-
-
0035122947
-
Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase
-
Kim Y.I., Levchenko I., Fraczkowska K., Woodruff R.V., Sauer R.T., Baker T.A. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 2001, 8:230-233.
-
(2001)
Nat Struct Biol
, vol.8
, pp. 230-233
-
-
Kim, Y.I.1
Levchenko, I.2
Fraczkowska, K.3
Woodruff, R.V.4
Sauer, R.T.5
Baker, T.A.6
-
67
-
-
77951980628
-
Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase
-
Effantin G., Maurizi M.R., Steven A.C. Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase. J Biol Chem 2010, 285:14834-14840.
-
(2010)
J Biol Chem
, vol.285
, pp. 14834-14840
-
-
Effantin, G.1
Maurizi, M.R.2
Steven, A.C.3
-
68
-
-
34250850205
-
Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+protease
-
Martin A., Baker T.A., Sauer R.T. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+protease. Mol Cell 2007, 27:41-52.
-
(2007)
Mol Cell
, vol.27
, pp. 41-52
-
-
Martin, A.1
Baker, T.A.2
Sauer, R.T.3
-
69
-
-
54049111071
-
Tuning the strength of a bacterial N-end rule degradation signal
-
Wang K.H., Oakes E.S., Sauer R.T., Baker T.A. Tuning the strength of a bacterial N-end rule degradation signal. J Biol Chem 2008, 283:24600-24607.
-
(2008)
J Biol Chem
, vol.283
, pp. 24600-24607
-
-
Wang, K.H.1
Oakes, E.S.2
Sauer, R.T.3
Baker, T.A.4
-
70
-
-
77950578789
-
A single ClpS monomer is sufficient to direct the activity of the ClpA hexamer
-
De Donatis G.M., Singh S.K., Viswanathan S., Maurizi M.R. A single ClpS monomer is sufficient to direct the activity of the ClpA hexamer. J Biol Chem 2010, 285:8771-8781.
-
(2010)
J Biol Chem
, vol.285
, pp. 8771-8781
-
-
De Donatis, G.M.1
Singh, S.K.2
Viswanathan, S.3
Maurizi, M.R.4
-
71
-
-
0037195961
-
Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+chaperone, ClpA
-
Guo F., Esser L., Singh S.K., Maurizi M.R., Xia D. Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+chaperone, ClpA. J Biol Chem 2002, 277:46753-46762.
-
(2002)
J Biol Chem
, vol.277
, pp. 46753-46762
-
-
Guo, F.1
Esser, L.2
Singh, S.K.3
Maurizi, M.R.4
Xia, D.5
-
72
-
-
40949141846
-
Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP
-
Hou J.Y., Sauer R.T., Baker T.A. Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP. Nat Struct Mol Biol 2008, 15:288-294.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 288-294
-
-
Hou, J.Y.1
Sauer, R.T.2
Baker, T.A.3
-
73
-
-
0036896886
-
Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA
-
Zeth K., Ravelli R.B., Paal K., Cusack S., Bukau B., Dougan D.A. Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA. Nat Struct Biol 2002, 9:906-911.
-
(2002)
Nat Struct Biol
, vol.9
, pp. 906-911
-
-
Zeth, K.1
Ravelli, R.B.2
Paal, K.3
Cusack, S.4
Bukau, B.5
Dougan, D.A.6
-
74
-
-
71449115274
-
Both ATPase domains of ClpA are critical for processing of stable protein structures
-
Kress W., Mutschler H., Weber-Ban E. Both ATPase domains of ClpA are critical for processing of stable protein structures. J Biol Chem 2009, 284:31441-31452.
-
(2009)
J Biol Chem
, vol.284
, pp. 31441-31452
-
-
Kress, W.1
Mutschler, H.2
Weber-Ban, E.3
-
75
-
-
40749142482
-
Conserved residues in the N-domain of the AAA+chaperone ClpA regulate substrate recognition and unfolding
-
Erbse A.H., Wagner J.N., Truscott K.N., Spall S.K., Kirstein J., Zeth K., Turgay K., Mogk A., Bukau B., Dougan D.A. Conserved residues in the N-domain of the AAA+chaperone ClpA regulate substrate recognition and unfolding. FEBS J 2008, 275:1400-1410.
-
(2008)
FEBS J
, vol.275
, pp. 1400-1410
-
-
Erbse, A.H.1
Wagner, J.N.2
Truscott, K.N.3
Spall, S.K.4
Kirstein, J.5
Zeth, K.6
Turgay, K.7
Mogk, A.8
Bukau, B.9
Dougan, D.A.10
-
76
-
-
41249085227
-
The flexible attachment of the N-domains to the ClpA ring body allows their use on demand
-
Cranz-Mileva S., Imkamp F., Kolygo K., Maglica Z., Kress W., Weber-Ban E. The flexible attachment of the N-domains to the ClpA ring body allows their use on demand. J Mol Biol 2008, 378:412-424.
-
(2008)
J Mol Biol
, vol.378
, pp. 412-424
-
-
Cranz-Mileva, S.1
Imkamp, F.2
Kolygo, K.3
Maglica, Z.4
Kress, W.5
Weber-Ban, E.6
-
77
-
-
21244480104
-
Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation
-
Hinnerwisch J., Fenton W.A., Furtak K.J., Farr G.W., Horwich A.L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 2005, 121:1029-1041.
-
(2005)
Cell
, vol.121
, pp. 1029-1041
-
-
Hinnerwisch, J.1
Fenton, W.A.2
Furtak, K.J.3
Farr, G.W.4
Horwich, A.L.5
|