메뉴 건너뛰기




Volumn 106, Issue 7, 2009, Pages 2142-2147

Two proteolytic pathways regulate DNA repair by cotargeting the Mgt1 alkylguanine transferase

Author keywords

N end rule; Proteolysis; Ubr1; Ufd4; Yeast

Indexed keywords

MGT1 ENZYME; TRANSFERASE; UBIQUITIN PROTEIN LIGASE; UBR1 ENZYME; UFD4 ENZYME; UNCLASSIFIED DRUG;

EID: 60549096291     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.0812316106     Document Type: Article
Times cited : (65)

References (40)
  • 1
    • 0023236126 scopus 로고
    • The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme
    • Jentsch S, McGrath JP, Varshavsky A (1987) The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329:131-134.
    • (1987) Nature , vol.329 , pp. 131-134
    • Jentsch, S.1    McGrath, J.P.2    Varshavsky, A.3
  • 2
    • 57149115173 scopus 로고    scopus 로고
    • Discovery of cellular regulation by protein degradation
    • Varshavsky A (2008) Discovery of cellular regulation by protein degradation. J Biol Chem 283:34469-34489.
    • (2008) J Biol Chem , vol.283 , pp. 34469-34489
    • Varshavsky, A.1
  • 3
    • 36749022214 scopus 로고    scopus 로고
    • The DNA damage response: Ten years after
    • Harper JW, Elledge SJ (2007) The DNA damage response: Ten years after. Mol Cell 28:739-745.
    • (2007) Mol Cell , vol.28 , pp. 739-745
    • Harper, J.W.1    Elledge, S.J.2
  • 6
    • 0034650703 scopus 로고    scopus 로고
    • Crystal structure of the human O6-alkylguanine-DNA alkyltransferase
    • Wibley JEA, Pegg AE, Moody PCE (2000) Crystal structure of the human O6-alkylguanine-DNA alkyltransferase. Nucl Acids Res 28:393-401.
    • (2000) Nucl Acids Res , vol.28 , pp. 393-401
    • Wibley, J.E.A.1    Pegg, A.E.2    Moody, P.C.E.3
  • 7
    • 0026650587 scopus 로고
    • The Saccharomyces cerevisiae MGT1 DNA repair methyltransferase gene: Its promoter and entire coding sequence, regulation and in vivo biological functions
    • Xiao W, Samson L (1992) The Saccharomyces cerevisiae MGT1 DNA repair methyltransferase gene: Its promoter and entire coding sequence, regulation and in vivo biological functions. Nucl Acids Res 20:3599-3606.
    • (1992) Nucl Acids Res , vol.20 , pp. 3599-3606
    • Xiao, W.1    Samson, L.2
  • 8
    • 0037194597 scopus 로고    scopus 로고
    • 6-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein
    • 6-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene 21:5940-5945.
    • (2002) Oncogene , vol.21 , pp. 5940-5945
    • Srivenugopal, K.S.1    Ali-Osman, F.2
  • 10
    • 38449106894 scopus 로고    scopus 로고
    • HECT E3s and human disease
    • Scheffner M, Staub O (2007) HECT E3s and human disease. BMC Biochemistry 8 (Suppl. I):S6.
    • (2007) BMC Biochemistry , vol.8 , Issue.SUPPL. I
    • Scheffner, M.1    Staub, O.2
  • 11
    • 1842485068 scopus 로고    scopus 로고
    • Spalog and sequelog: Neutral terms for spatial and sequence similarity
    • Varshavsky A (2004) Spalog and sequelog: Neutral terms for spatial and sequence similarity. Curr Biol 14:R181-R183.
    • (2004) Curr Biol , vol.14
    • Varshavsky, A.1
  • 12
    • 0025177276 scopus 로고
    • 6-methylguanine DNA repair methyltransferase in the yeast Saccharomyces cerevisiae
    • 6-methylguanine DNA repair methyltransferase in the yeast Saccharomyces cerevisiae. J Biol Chem 265:20-25.
    • (1990) J Biol Chem , vol.265 , pp. 20-25
    • Sassanfar, M.1    Samson, L.2
  • 13
    • 3042999556 scopus 로고
    • 6- methylguanine-DNA methyltransferase (MGMT) gene
    • 6- methylguanine-DNA methyltransferase (MGMT) gene. Cell Mol Biol 41:545-553.
    • (1995) Cell Mol Biol , vol.41 , pp. 545-553
    • Joo, J.H.1
  • 14
    • 0023003380 scopus 로고
    • In vivo half-life of a protein is a function of its amino-terminal residue
    • Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179-186.
    • (1986) Science , vol.234 , pp. 179-186
    • Bachmair, A.1    Finley, D.2    Varshavsky, A.3
  • 15
    • 0029861143 scopus 로고    scopus 로고
    • The N-end rule: Functions, mysteries, uses
    • Varshavsky A (1996) The N-end rule: Functions, mysteries, uses. Proc Natl Acad Sci USA 93:12142-12149.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 12142-12149
    • Varshavsky, A.1
  • 16
    • 33947713897 scopus 로고    scopus 로고
    • The N-end rule pathway of regulated proteolysis: Prokaryotic and eukaryotic strategies
    • Mogk A, Schmidt R, Bukau B (2007) The N-end rule pathway of regulated proteolysis: Prokaryotic and eukaryotic strategies. Trends Cell Biol 17:165-172.
    • (2007) Trends Cell Biol , vol.17 , pp. 165-172
    • Mogk, A.1    Schmidt, R.2    Bukau, B.3
  • 17
    • 35548974677 scopus 로고    scopus 로고
    • The mammalian N-end rule pathway: New insights into its components and physiological roles
    • Tasaki T, Kwon YT (2007) The mammalian N-end rule pathway: New insights into its components and physiological roles. Trends Biochem Sci 32:520-528.
    • (2007) Trends Biochem Sci , vol.32 , pp. 520-528
    • Tasaki, T.1    Kwon, Y.T.2
  • 18
    • 27144557281 scopus 로고    scopus 로고
    • The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators
    • Hu R-G, et al. (2005) The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 437:981-986.
    • (2005) Nature , vol.437 , pp. 981-986
    • Hu, R.-G.1
  • 19
    • 53049096418 scopus 로고    scopus 로고
    • Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway
    • Xia Z, Webster A, Du F, Piatkov K, Ghislain M, Varshavsky A (2008) Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J Biol Chem 283:24011-24028.
    • (2008) J Biol Chem , vol.283 , pp. 24011-24028
    • Xia, Z.1    Webster, A.2    Du, F.3    Piatkov, K.4    Ghislain, M.5    Varshavsky, A.6
  • 20
    • 0033485869 scopus 로고    scopus 로고
    • The E2-E3 interaction in the N-end rule pathway: The RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain
    • Xie Y, Varshavsky A (1999) The E2-E3 interaction in the N-end rule pathway: The RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J 18:6832-6844.
    • (1999) EMBO J , vol.18 , pp. 6832-6844
    • Xie, Y.1    Varshavsky, A.2
  • 21
    • 58049196794 scopus 로고    scopus 로고
    • Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway
    • Hwang C-S, Varshavsky A (2008) Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway. Proc Natl Acad Sci USA 105:19188-19193.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 19188-19193
    • Hwang, C.-S.1    Varshavsky, A.2
  • 22
    • 0037195103 scopus 로고    scopus 로고
    • Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain
    • Du F, Navarro-Garcia F, Xia Z, Tasaki T, Varshavsky A (2002) Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc Natl Acad Sci USA 99:14110-14115.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 14110-14115
    • Du, F.1    Navarro-Garcia, F.2    Xia, Z.3    Tasaki, T.4    Varshavsky, A.5
  • 23
    • 57649223684 scopus 로고    scopus 로고
    • Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter
    • Xia Z, Turner GC, Hwang C-S, Byrd C, Varshavsky A (2008) Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J Biol Chem 283:28958-28968.
    • (2008) J Biol Chem , vol.283 , pp. 28958-28968
    • Xia, Z.1    Turner, G.C.2    Hwang, C.-S.3    Byrd, C.4    Varshavsky, A.5
  • 25
    • 0034213352 scopus 로고    scopus 로고
    • Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway
    • Turner GC, Du F, Varshavsky A (2000) Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405:579-583.
    • (2000) Nature , vol.405 , pp. 579-583
    • Turner1    GC, D.F.2    Varshavsky, A.3
  • 27
    • 0029119522 scopus 로고
    • A proteolytic pathway that recognizes ubiquitin as a degradation signal
    • Johnson ES, Ma PC, Ota IM, Varshavsky A (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270:17442-17456.
    • (1995) J Biol Chem , vol.270 , pp. 17442-17456
    • Johnson, E.S.1    Ma, P.C.2    Ota, I.M.3    Varshavsky, A.4
  • 28
    • 0033525589 scopus 로고    scopus 로고
    • A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly
    • Koegl M, et al. (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635-644.
    • (1999) Cell , vol.96 , pp. 635-644
    • Koegl, M.1
  • 29
    • 33846231904 scopus 로고    scopus 로고
    • The armadillo repeats of the Ufd4 ubiquitin ligase recognize ubiquitin-fusion proteins
    • Ju D, Wang X, Xu H, Xie Y (2007) The armadillo repeats of the Ufd4 ubiquitin ligase recognize ubiquitin-fusion proteins. FEBS Lett 581:265-270.
    • (2007) FEBS Lett , vol.581 , pp. 265-270
    • Ju, D.1    Wang, X.2    Xu, H.3    Xie, Y.4
  • 30
    • 0034646298 scopus 로고    scopus 로고
    • Physical association of ubiquitin ligases and the 26S proteasome
    • Xie Y, Varshavsky A (2000) Physical association of ubiquitin ligases and the 26S proteasome. Proc Natl Acad Sci USA 97:2497-2502.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 2497-2502
    • Xie, Y.1    Varshavsky, A.2
  • 31
    • 0036904663 scopus 로고    scopus 로고
    • UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis
    • Xie Y, Varshavsky A (2002) UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nat Cell Biol 4:1003-1007.
    • (2002) Nat Cell Biol , vol.4 , pp. 1003-1007
    • Xie, Y.1    Varshavsky, A.2
  • 32
    • 33947539481 scopus 로고    scopus 로고
    • Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue
    • Ravid T, Hochstrasser M (2007) Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat Cell Biol 9:422-427.
    • (2007) Nat Cell Biol , vol.9 , pp. 422-427
    • Ravid, T.1    Hochstrasser, M.2
  • 33
    • 31444434131 scopus 로고    scopus 로고
    • A synthetic defect in protein degradation caused by loss of Ufd4 and Rad23
    • Ju D, Xie Y (2006) A synthetic defect in protein degradation caused by loss of Ufd4 and Rad23. Biochem Biophys Res Commun 341:648-652.
    • (2006) Biochem Biophys Res Commun , vol.341 , pp. 648-652
    • Ju, D.1    Xie, Y.2
  • 34
    • 21244464796 scopus 로고    scopus 로고
    • The RAD6 pathway: Control of DNA damage bypass and mutagenesis by ubiquitin and SUMO
    • Ullrich HD (2005) The RAD6 pathway: Control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. ChemBioChem 6:1735-1743.
    • (2005) ChemBioChem , vol.6 , pp. 1735-1743
    • Ullrich, H.D.1
  • 35
    • 11244343965 scopus 로고    scopus 로고
    • Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase
    • Wang L, Mao X, Ju D, Xie Y (2004) Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J Biol Chem 279:55218-55223.
    • (2004) J Biol Chem , vol.279 , pp. 55218-55223
    • Wang, L.1    Mao, X.2    Ju, D.3    Xie, Y.4
  • 36
    • 0035853037 scopus 로고    scopus 로고
    • RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit
    • Xie Y, Varshavsky A (2001) RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit. Proc Natl Acad Sci USA 98:3056-3061.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 3056-3061
    • Xie, Y.1    Varshavsky, A.2
  • 37
    • 33646007680 scopus 로고    scopus 로고
    • Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair
    • Ouyang Y, et al. (2006) Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair. Mut Res 596:64-75.
    • (2006) Mut Res , vol.596 , pp. 64-75
    • Ouyang, Y.1
  • 38
    • 32544446880 scopus 로고    scopus 로고
    • 6-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C
    • 6-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C. Toxicol Appl Pharmacol 211:97-105.
    • (2006) Toxicol Appl Pharmacol , vol.211 , pp. 97-105
    • Passagne, I.1
  • 39
    • 0025345753 scopus 로고
    • Cis-trans recognition and subunit-specific degradation of short-lived proteins
    • Johnson ES, Gonda DK, Varshavsky A (1990) Cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature 346:287-291.
    • (1990) Nature , vol.346 , pp. 287-291
    • Johnson, E.S.1    Gonda, D.K.2    Varshavsky, A.3
  • 40
    • 0035912183 scopus 로고    scopus 로고
    • Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability
    • Rao H, Uhlmann F, Nasmyth K, Varshavsky A (2001) Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410:955-960.
    • (2001) Nature , vol.410 , pp. 955-960
    • Rao, H.1    Uhlmann, F.2    Nasmyth, K.3    Varshavsky, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.