메뉴 건너뛰기




Volumn 32, Issue 6, 2016, Pages 1372-1389

Microfluidic tools toward industrial biotechnology

Author keywords

concentration gradient generator; droplet based; industrial biotechnology; microbioreactor; microfluidics

Indexed keywords

BIOREACTORS; BIOTECHNOLOGY; DROPS; ENZYMES;

EID: 84988602691     PISSN: 87567938     EISSN: 15206033     Source Type: Journal    
DOI: 10.1002/btpr.2350     Document Type: Review
Times cited : (33)

References (188)
  • 1
    • 84941729534 scopus 로고    scopus 로고
    • White biotechnology: state of the art strategies for the development of biocatalysts for biorefining
    • Heux S, Meynial-Salles I, O'Donohue MJ, Dumon C. White biotechnology: state of the art strategies for the development of biocatalysts for biorefining. Biotechnol Adv. 2015;33:1653–1670.
    • (2015) Biotechnol Adv. , vol.33 , pp. 1653-1670
    • Heux, S.1    Meynial-Salles, I.2    O'Donohue, M.J.3    Dumon, C.4
  • 3
    • 77952499476 scopus 로고    scopus 로고
    • Fundamentals of microfluidic cell culture in controlled microenvironments
    • Young EWK, Beebe DJ. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev. 2010;39:1036–1048.
    • (2010) Chem Soc Rev. , vol.39 , pp. 1036-1048
    • Young, E.W.K.1    Beebe, D.J.2
  • 4
    • 84896284039 scopus 로고    scopus 로고
    • The present and future role of microfluidics in biomedical research
    • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature 2014;507:181–189.
    • (2014) Nature , vol.507 , pp. 181-189
    • Sackmann, E.K.1    Fulton, A.L.2    Beebe, D.J.3
  • 5
    • 78149268198 scopus 로고    scopus 로고
    • Biological applications of microfluidic gradient devices
    • Kim S, Kim HJ, Jeon NL. Biological applications of microfluidic gradient devices. Integr Biol. 2010;2:584–603.
    • (2010) Integr Biol. , vol.2 , pp. 584-603
    • Kim, S.1    Kim, H.J.2    Jeon, N.L.3
  • 7
    • 84876403132 scopus 로고    scopus 로고
    • Going local: technologies for exploring bacterial microenvironments
    • Wessel AK, Hmelo L, Parsek MR, Whiteley M. Going local: technologies for exploring bacterial microenvironments. Nat Publ Gr. 2013;11:337–348.
    • (2013) Nat Publ Gr. , vol.11 , pp. 337-348
    • Wessel, A.K.1    Hmelo, L.2    Parsek, M.R.3    Whiteley, M.4
  • 8
    • 84908254231 scopus 로고    scopus 로고
    • Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria
    • Hol FJH, Dekker C. Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science 2014;346:1251821.
    • (2014) Science , vol.346 , pp. 1251821
    • Hol, F.J.H.1    Dekker, C.2
  • 9
    • 84947237435 scopus 로고    scopus 로고
    • Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics
    • Son K, Brumley DR, Stocker R. Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics. Nat Rev Microbiol. 2015;13:761–775.
    • (2015) Nat Rev Microbiol. , vol.13 , pp. 761-775
    • Son, K.1    Brumley, D.R.2    Stocker, R.3
  • 10
    • 84949982197 scopus 로고    scopus 로고
    • Origins of cell-to-cell bioprocessing diversity and implications of the extracellular environment revealed at the single-cell level
    • Vasdekis AE, Silverman AM, Stephanopoulos G. Origins of cell-to-cell bioprocessing diversity and implications of the extracellular environment revealed at the single-cell level. Sci Rep. 2015;5:17689.
    • (2015) Sci Rep. , vol.5 , pp. 17689
    • Vasdekis, A.E.1    Silverman, A.M.2    Stephanopoulos, G.3
  • 11
    • 84937829112 scopus 로고    scopus 로고
    • High-throughput microfluidics to control and measure signaling dynamics in single yeast cells
    • Hansen AS, Hao N, Shea EKO. High-throughput microfluidics to control and measure signaling dynamics in single yeast cells. Nat Protoc. 2015;10:1181–1197.
    • (2015) Nat Protoc. , vol.10 , pp. 1181-1197
    • Hansen, A.S.1    Hao, N.2    Shea, E.K.O.3
  • 12
    • 65549167499 scopus 로고    scopus 로고
    • A MEMS-based coriolis mass flow sensor for industrial applications
    • Smith R, Sparks DR, Riley D, Najafi N. A MEMS-based coriolis mass flow sensor for industrial applications. IEEE Trans Ind Electron. 2009;56:1066–1071.
    • (2009) IEEE Trans Ind Electron. , vol.56 , pp. 1066-1071
    • Smith, R.1    Sparks, D.R.2    Riley, D.3    Najafi, N.4
  • 13
    • 84893968359 scopus 로고    scopus 로고
    • Nanoimprint lithography for microfluidics manufacturing
    • Kreindl G, Matthias T. Nanoimprint lithography for microfluidics manufacturing. Micro/Nano Mater. 2013;8923:1–7.
    • (2013) Micro/Nano Mater. , vol.8923 , pp. 1-7
    • Kreindl, G.1    Matthias, T.2
  • 14
    • 85009745517 scopus 로고    scopus 로고
    • Towards developing algal synthetic biology
    • Scaife MA, Smith AG. Towards developing algal synthetic biology. Biochem Soc Trans. 2016;44:716–722.
    • (2016) Biochem Soc Trans. , vol.44 , pp. 716-722
    • Scaife, M.A.1    Smith, A.G.2
  • 15
    • 84856447116 scopus 로고    scopus 로고
    • New and emerging analytical techniques for marine biotechnology
    • Burgess JG. New and emerging analytical techniques for marine biotechnology. Curr Opin Biotechnol. 2012;23:29–33.
    • (2012) Curr Opin Biotechnol. , vol.23 , pp. 29-33
    • Burgess, J.G.1
  • 16
    • 84973866189 scopus 로고    scopus 로고
    • Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications
    • Muñoz-Sánchez BN, Silva SF, Pinho D, Vega EJ, Lima R. Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications. Biomicrofluidics 2016;10:014122.
    • (2016) Biomicrofluidics , vol.10 , pp. 014122
    • Muñoz-Sánchez, B.N.1    Silva, S.F.2    Pinho, D.3    Vega, E.J.4    Lima, R.5
  • 18
    • 84923205478 scopus 로고    scopus 로고
    • Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation
    • Shields CW, Reyes CD, López GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 2015;15:1230–1249.
    • (2015) Lab Chip , vol.15 , pp. 1230-1249
    • Shields, C.W.1    Reyes, C.D.2    López, G.P.3
  • 21
    • 10944250656 scopus 로고    scopus 로고
    • Immobilized microfluidic enzymatic reactors
    • Krenková J, Foret F. Immobilized microfluidic enzymatic reactors. Electrophoresis 2004;25:3550–3563.
    • (2004) Electrophoresis , vol.25 , pp. 3550-3563
    • Krenková, J.1    Foret, F.2
  • 22
    • 84923816751 scopus 로고    scopus 로고
    • Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity
    • Bruchmann J, Sachsenheimer K, Rapp BE, Schwartz T. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity. PLoS One 2015;10:1–19.
    • (2015) PLoS One , vol.10 , pp. 1-19
    • Bruchmann, J.1    Sachsenheimer, K.2    Rapp, B.E.3    Schwartz, T.4
  • 23
    • 80755175428 scopus 로고    scopus 로고
    • A scalable microfluidic chip for bacterial suspension culture
    • Gan M, Su J, Wang J, Wu H, Chen L. A scalable microfluidic chip for bacterial suspension culture. Lab Chip 2011;11:4087–4092.
    • (2011) Lab Chip , vol.11 , pp. 4087-4092
    • Gan, M.1    Su, J.2    Wang, J.3    Wu, H.4    Chen, L.5
  • 24
    • 84976209182 scopus 로고    scopus 로고
    • Photo inactivation of virus particles in microfluidic capillary systems
    • (February)
    • Ren Y, Crump CM, Mackley MM, Li Puma G, Reis NM. Photo inactivation of virus particles in microfluidic capillary systems. Biotechnol Bioeng. 2016;1481–1492. (February):
    • (2016) Biotechnol Bioeng. , pp. 1481-1492
    • Ren, Y.1    Crump, C.M.2    Mackley, M.M.3    Li Puma, G.4    Reis, N.M.5
  • 26
    • 84872402351 scopus 로고    scopus 로고
    • Next-generation bioproduction systems: cell-free conversion concepts for industrial biotechnology
    • Rupp S. Next-generation bioproduction systems: cell-free conversion concepts for industrial biotechnology. Eng Life Sci. 2013;13:19–25.
    • (2013) Eng Life Sci. , vol.13 , pp. 19-25
    • Rupp, S.1
  • 27
    • 84902659771 scopus 로고    scopus 로고
    • Commercialization of microfluidic devices
    • Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32:347–350.
    • (2014) Trends Biotechnol. , vol.32 , pp. 347-350
    • Volpatti, L.R.1    Yetisen, A.K.2
  • 28
    • 79960762452 scopus 로고    scopus 로고
    • Enzyme-immobilized microfluidic process reactors
    • Asanomi Y, Yamaguchi H, Miyazaki M, Maeda H. Enzyme-immobilized microfluidic process reactors. Molecules 2011;16:6041–6059.
    • (2011) Molecules , vol.16 , pp. 6041-6059
    • Asanomi, Y.1    Yamaguchi, H.2    Miyazaki, M.3    Maeda, H.4
  • 29
    • 79959316650 scopus 로고    scopus 로고
    • Biotransformations in microstructured reactors: more than flowing with the stream?
    • Bolivar JM, Wiesbauer J, Nidetzky B. Biotransformations in microstructured reactors: more than flowing with the stream? Trends Biotechnol 2011;29:333–342.
    • (2011) Trends Biotechnol , vol.29 , pp. 333-342
    • Bolivar, J.M.1    Wiesbauer, J.2    Nidetzky, B.3
  • 30
    • 84988935927 scopus 로고    scopus 로고
    • Enzymatic microreactors in biocatalysis: history, features, and future perspectives
    • Laurenti E, dos Santos Vianna A Jr. Enzymatic microreactors in biocatalysis: history, features, and future perspectives. Biocatalysis 2016;1:148–165.
    • (2016) Biocatalysis , vol.1 , pp. 148-165
    • Laurenti, E.1    dos Santos Vianna, A.2
  • 32
    • 84906787363 scopus 로고    scopus 로고
    • Engineering and evaluating drug delivery particles in microfluidic devices
    • Björnmalm M, Yan Y, Caruso F. Engineering and evaluating drug delivery particles in microfluidic devices. J Control Release. 2014;190:139–149.
    • (2014) J Control Release. , vol.190 , pp. 139-149
    • Björnmalm, M.1    Yan, Y.2    Caruso, F.3
  • 33
    • 77952494802 scopus 로고    scopus 로고
    • Synthesis of micro and nanostructures in microfluidic systems
    • Marre S, Jensen KF. Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev. 2010;39:1183.
    • (2010) Chem Soc Rev. , vol.39 , pp. 1183
    • Marre, S.1    Jensen, K.F.2
  • 34
    • 33751392855 scopus 로고    scopus 로고
    • Applications of microfluidics in chemical biology
    • Weibel DB, Whitesides GM. Applications of microfluidics in chemical biology. Curr Opin Chem Biol. 2006;10:584–591.
    • (2006) Curr Opin Chem Biol. , vol.10 , pp. 584-591
    • Weibel, D.B.1    Whitesides, G.M.2
  • 35
    • 33747117373 scopus 로고    scopus 로고
    • The origins and the future of microfluidics
    • Whitesides GM. The origins and the future of microfluidics. Nature 2006;442:368–373.
    • (2006) Nature , vol.442 , pp. 368-373
    • Whitesides, G.M.1
  • 37
    • 24944498780 scopus 로고    scopus 로고
    • Microfluidics: fluid physics at the nanoliter scale
    • Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys. 2005;77:977–1026.
    • (2005) Rev Mod Phys. , vol.77 , pp. 977-1026
    • Squires, T.M.1    Quake, S.R.2
  • 38
    • 26944440933 scopus 로고    scopus 로고
    • Controlled microfluidic interfaces
    • Atencia J, Beebe DJ. Controlled microfluidic interfaces. Nature 2005;437:648–655.
    • (2005) Nature , vol.437 , pp. 648-655
    • Atencia, J.1    Beebe, D.J.2
  • 39
    • 0035280360 scopus 로고    scopus 로고
    • Mixing characteristics of T-type microfluidic mixers
    • Gobby D, Angeli P, Gavriilidis A. Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng. 2001;11:126–132.
    • (2001) J Micromech Microeng. , vol.11 , pp. 126-132
    • Gobby, D.1    Angeli, P.2    Gavriilidis, A.3
  • 40
    • 1642493938 scopus 로고    scopus 로고
    • Design and simulation of the micromixer with chaotic advection in twisted microchannels
    • Jen C-P, Wu C-Y, Lin Y-C, Wu C-Y. Design and simulation of the micromixer with chaotic advection in twisted microchannels. Lab Chip 2003;3:77–81.
    • (2003) Lab Chip , vol.3 , pp. 77-81
    • Jen, C.-P.1    Wu, C.-Y.2    Lin, Y.-C.3    Wu, C.-Y.4
  • 41
    • 84943766626 scopus 로고    scopus 로고
    • Droplet microfluidics in (bio)chemical analysis
    • Basova EY, Foret F. Droplet microfluidics in (bio)chemical analysis. Analyst 2015;140:22–38.
    • (2015) Analyst , vol.140 , pp. 22-38
    • Basova, E.Y.1    Foret, F.2
  • 42
    • 34748865046 scopus 로고    scopus 로고
    • Microfluidic methods for generating continuous droplet streams
    • Christopher GF, Anna SL. Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys. 2007;40:R319–R336.
    • (2007) J Phys D Appl Phys. , vol.40 , pp. R319-R336
    • Christopher, G.F.1    Anna, S.L.2
  • 43
    • 77954970051 scopus 로고    scopus 로고
    • Dynamics of microfluidic droplets
    • Baroud CN, Gallaire F, Dangla R. Dynamics of microfluidic droplets. Lab Chip 2010;10:2032–2045.
    • (2010) Lab Chip , vol.10 , pp. 2032-2045
    • Baroud, C.N.1    Gallaire, F.2    Dangla, R.3
  • 44
    • 84887287227 scopus 로고    scopus 로고
    • Microfluidics: a focus on improved cancer targeted drug delivery systems
    • Khan IU, Serra CA, Anton N, Vandamme T. Microfluidics: a focus on improved cancer targeted drug delivery systems. J Control Release. 2013;172:1065–1074.
    • (2013) J Control Release. , vol.172 , pp. 1065-1074
    • Khan, I.U.1    Serra, C.A.2    Anton, N.3    Vandamme, T.4
  • 46
    • 84894317056 scopus 로고    scopus 로고
    • Mixing performance of a planar micromixer with circular obstructions in a curved microchannel
    • Alam A, Afzal A, Kim K-Y. Mixing performance of a planar micromixer with circular obstructions in a curved microchannel. Chem Eng Res Des. 2014;92:423–434.
    • (2014) Chem Eng Res Des. , vol.92 , pp. 423-434
    • Alam, A.1    Afzal, A.2    Kim, K.-Y.3
  • 48
  • 50
    • 84876099601 scopus 로고    scopus 로고
    • Advances in microfluidic materials, functions, integration, and applications
    • Nge PN, Rogers CI, Wooley AT. Advances in microfluidic materials, functions, integration, and applications. Chem Rev. 2013;113:2550–2583.
    • (2013) Chem Rev. , vol.113 , pp. 2550-2583
    • Nge, P.N.1    Rogers, C.I.2    Wooley, A.T.3
  • 51
    • 84884937482 scopus 로고    scopus 로고
    • New materials for microfluidics in biology
    • Ren K, Chen Y, Wu H. New materials for microfluidics in biology. Curr Opin Biotechnol. 2014;25:78–85.
    • (2014) Curr Opin Biotechnol. , vol.25 , pp. 78-85
    • Ren, K.1    Chen, Y.2    Wu, H.3
  • 52
    • 82055183852 scopus 로고    scopus 로고
    • Development of fundamental technologies for micro bioreactors
    • In Endo I, Nagamune, T editors., New York, Springer Berlin Heidelberg
    • Sato K, Kitamori T. Development of fundamental technologies for micro bioreactors. In: Endo I, Nagamune, T editors. Nano/Micro Biotechnology, Vol. 119. New York: Springer Berlin Heidelberg; 2009:251–265.
    • (2009) Nano/Micro Biotechnology , vol.119 , pp. 251-265
    • Sato, K.1    Kitamori, T.2
  • 54
    • 84949524599 scopus 로고    scopus 로고
    • Trends on microfluidic liposome production through hydrodynamic flow-focusing and microdroplet techniques for gene delivery applications
    • In, Finney L, editor., New York, Nova Publishers
    • De La Torre LG, Balbino TA, Sipoli CC, Vitor MT, Oliveira AF. Trends on microfluidic liposome production through hydrodynamic flow-focusing and microdroplet techniques for gene delivery applications. In: Finney L, editor. Advances in Liposomes Research. New York: Nova Publishers; 2014:63–96.
    • (2014) Advances in Liposomes Research , pp. 63-96
    • De La Torre, L.G.1    Balbino, T.A.2    Sipoli, C.C.3    Vitor, M.T.4    Oliveira, A.F.5
  • 56
    • 84859341988 scopus 로고    scopus 로고
    • A practical guide for the fabrication of microfluidic devices using glass and silicon
    • Iliescu C, Taylor H, Avram M, Miao J, Franssila S. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 2012;6.
    • (2012) Biomicrofluidics , vol.6
    • Iliescu, C.1    Taylor, H.2    Avram, M.3    Miao, J.4    Franssila, S.5
  • 57
    • 84942289952 scopus 로고    scopus 로고
    • Warpage characterization of microchannels fabricated by injection molding
    • Çetin B, Koska AK, Erdal M. Warpage characterization of microchannels fabricated by injection molding. J Micro-and Nano-Manufacturing 2015;3:021005.
    • (2015) J Micro-and Nano-Manufacturing , vol.3 , pp. 021005
    • Çetin, B.1    Koska, A.K.2    Erdal, M.3
  • 58
  • 59
    • 84930668091 scopus 로고    scopus 로고
    • Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices
    • Guckenberger DJ, de Groot T, Wan AM-D, Beebe D, Young E. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 2015;15:2364–2378.
    • (2015) Lab Chip , vol.15 , pp. 2364-2378
    • Guckenberger, D.J.1    de Groot, T.2    Wan, A.M.-D.3    Beebe, D.4    Young, E.5
  • 60
    • 79953199826 scopus 로고    scopus 로고
    • Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography
    • Wilson ME, Kota N, Kim Y, Wang Y, Stolz DB, LeDuc PR, Ozdoganlar OB. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip 2011;11:1550–1555.
    • (2011) Lab Chip , vol.11 , pp. 1550-1555
    • Wilson, M.E.1    Kota, N.2    Kim, Y.3    Wang, Y.4    Stolz, D.B.5    LeDuc, P.R.6    Ozdoganlar, O.B.7
  • 61
    • 0035984039 scopus 로고    scopus 로고
    • Poly (dimethylsiloxane) as a material for fabricating microfluidic devices
    • Mcdonald JC, Whitesides GM. Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res. 2002;35:491–499.
    • (2002) Acc Chem Res. , vol.35 , pp. 491-499
    • Mcdonald, J.C.1    Whitesides, G.M.2
  • 62
    • 0032136806 scopus 로고    scopus 로고
    • Diffusion of gases in silicone polymers: molecular dynamics simulations
    • Charati S, Stern S. Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 1998;31:5529–5535.
    • (1998) Macromolecules , vol.31 , pp. 5529-5535
    • Charati, S.1    Stern, S.2
  • 63
    • 0347134477 scopus 로고    scopus 로고
    • Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies
    • Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003;24:3563–3576.
    • (2003) Electrophoresis , vol.24 , pp. 3563-3576
    • Sia, S.K.1    Whitesides, G.M.2
  • 64
    • 84869473161 scopus 로고    scopus 로고
    • Integration of microreactors with spectroscopic detection for online reaction monitoring and catalyst characterization
    • Yue J, Schouten JC, Alexander Nijhuis T. Integration of microreactors with spectroscopic detection for online reaction monitoring and catalyst characterization. Ind Eng Chem Res. 2012;51:14583–14609.
    • (2012) Ind Eng Chem Res. , vol.51 , pp. 14583-14609
    • Yue, J.1    Schouten, J.C.2    Alexander Nijhuis, T.3
  • 67
    • 77953747083 scopus 로고    scopus 로고
    • A microfluidic mixer with self-excited “turbulent” fluid motion for wide viscosity ratio applications
    • Xia HM, Wang ZP, Koh YX, May KT. A microfluidic mixer with self-excited “turbulent” fluid motion for wide viscosity ratio applications. Lab Chip 2010;10:1712–1716.
    • (2010) Lab Chip , vol.10 , pp. 1712-1716
    • Xia, H.M.1    Wang, Z.P.2    Koh, Y.X.3    May, K.T.4
  • 69
    • 84055207544 scopus 로고    scopus 로고
    • A robust diffusion-based gradient generator for dynamic cell assays
    • Atencia J, Cooksey GA, Locascio LE. A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 2012;12:309–316.
    • (2012) Lab Chip , vol.12 , pp. 309-316
    • Atencia, J.1    Cooksey, G.A.2    Locascio, L.E.3
  • 71
    • 80054021855 scopus 로고    scopus 로고
    • Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions
    • Chen YH, Peng CC, Cheng YJ, Wu JG, Tung YC. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab Chip 2011;11:3626–3633.
    • (2011) Lab Chip , vol.11 , pp. 3626-3633
    • Chen, Y.H.1    Peng, C.C.2    Cheng, Y.J.3    Wu, J.G.4    Tung, Y.C.5
  • 74
    • 84867311626 scopus 로고    scopus 로고
    • Droplet electroporation in microfluidics for efficient cell transformation with or without cell wall removal
    • Qu B, Eu Y-J, Jeong W-J, Kim D-P. Droplet electroporation in microfluidics for efficient cell transformation with or without cell wall removal. Lab Chip 2012;12:4483.
    • (2012) Lab Chip , vol.12 , pp. 4483
    • Qu, B.1    Eu, Y.-J.2    Jeong, W.-J.3    Kim, D.-P.4
  • 76
    • 84855405452 scopus 로고    scopus 로고
    • Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay
    • Cai LF, Zhu Y, Du GS, Fang Q. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay. Anal Chem. 2011;84:446–452.
    • (2011) Anal Chem. , vol.84 , pp. 446-452
    • Cai, L.F.1    Zhu, Y.2    Du, G.S.3    Fang, Q.4
  • 77
    • 33645243393 scopus 로고    scopus 로고
    • Cell culture and life support system for microbioreactor and bioassay
    • Tanaka Y, Sato K, Yamato M, Okano T, Kitamori T. Cell culture and life support system for microbioreactor and bioassay. J Chromatogr A 2006;1111:233–237.
    • (2006) J Chromatogr A , vol.1111 , pp. 233-237
    • Tanaka, Y.1    Sato, K.2    Yamato, M.3    Okano, T.4    Kitamori, T.5
  • 78
    • 84870904732 scopus 로고    scopus 로고
    • Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions
    • Jones CN, Dalli J, Dimisko L, Wong E, Serhan CN, Irimia D. Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions. Proc Natl Acad Sci USA 2012;109:20560–20565.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 20560-20565
    • Jones, C.N.1    Dalli, J.2    Dimisko, L.3    Wong, E.4    Serhan, C.N.5    Irimia, D.6
  • 79
    • 84881077335 scopus 로고    scopus 로고
    • Design of a prototype flow microreactor for synthetic biology in vitro
    • Boehm CR, Freemont PS, Ces O. Design of a prototype flow microreactor for synthetic biology in vitro. Lab Chip 2013;13:3426–3432.
    • (2013) Lab Chip , vol.13 , pp. 3426-3432
    • Boehm, C.R.1    Freemont, P.S.2    Ces, O.3
  • 80
    • 77958544387 scopus 로고    scopus 로고
    • Development of a single-use microbioreactor for cultivation of microorganisms
    • Schäpper D, Stocks SM, Szita N, Lantz AE, Gernaey KV. Development of a single-use microbioreactor for cultivation of microorganisms. Chem Eng J. 2010;160:891–898.
    • (2010) Chem Eng J. , vol.160 , pp. 891-898
    • Schäpper, D.1    Stocks, S.M.2    Szita, N.3    Lantz, A.E.4    Gernaey, K.V.5
  • 81
    • 67349218380 scopus 로고    scopus 로고
    • Modeling growth and quorum sensing in biofilms grown in microfluidic chambers
    • Janakiraman V, Englert D, Jayaraman A, Baskaran H. Modeling growth and quorum sensing in biofilms grown in microfluidic chambers. Ann Biomed Eng. 2009;37:1206–1216.
    • (2009) Ann Biomed Eng. , vol.37 , pp. 1206-1216
    • Janakiraman, V.1    Englert, D.2    Jayaraman, A.3    Baskaran, H.4
  • 83
    • 21644441288 scopus 로고    scopus 로고
    • Long-term monitoring of bacteria undergoing programmed population control in a microchemostat
    • Balagaddé FK, You L, Hansen CL, Arnold FH, Quake SR. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005;309:137–140.
    • (2005) Science , vol.309 , pp. 137-140
    • Balagaddé, F.K.1    You, L.2    Hansen, C.L.3    Arnold, F.H.4    Quake, S.R.5
  • 84
    • 84872090939 scopus 로고    scopus 로고
    • Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells
    • Cimetta E, Sirabella D, Yeager K, Davidson K, Simon J, Moon RT, Vunjak-Novakovic G. Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells. Lab Chip 2013;13:355–364.
    • (2013) Lab Chip , vol.13 , pp. 355-364
    • Cimetta, E.1    Sirabella, D.2    Yeager, K.3    Davidson, K.4    Simon, J.5    Moon, R.T.6    Vunjak-Novakovic, G.7
  • 87
    • 47749112521 scopus 로고    scopus 로고
    • Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms
    • Lee JH, Kaplan JB, Lee WY. Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed Microdevices 2008;10:489–498.
    • (2008) Biomed Microdevices , vol.10 , pp. 489-498
    • Lee, J.H.1    Kaplan, J.B.2    Lee, W.Y.3
  • 88
    • 33745504892 scopus 로고    scopus 로고
    • Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor
    • Zhang Z, Boccazzi P, Choi H-G, Perozziello G, Sinskey AJ, Jensen KF. Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor. Lab Chip 2006;6:906–913.
    • (2006) Lab Chip , vol.6 , pp. 906-913
    • Zhang, Z.1    Boccazzi, P.2    Choi, H.-G.3    Perozziello, G.4    Sinskey, A.J.5    Jensen, K.F.6
  • 89
    • 84898630931 scopus 로고    scopus 로고
    • A novel functionalisation process for glucose oxidase immobilisation in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations
    • Cerqueira MRF, Grasseschi D, Matos RC, Angnes L. A novel functionalisation process for glucose oxidase immobilisation in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations. Talanta 2014;126:20–26.
    • (2014) Talanta , vol.126 , pp. 20-26
    • Cerqueira, M.R.F.1    Grasseschi, D.2    Matos, R.C.3    Angnes, L.4
  • 91
    • 84857276528 scopus 로고    scopus 로고
    • A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics
    • Cira NJ, Ho JY, Dueck ME, Weibel DB. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab Chip 2012;12:1052–1059.
    • (2012) Lab Chip , vol.12 , pp. 1052-1059
    • Cira, N.J.1    Ho, J.Y.2    Dueck, M.E.3    Weibel, D.B.4
  • 92
    • 65349084359 scopus 로고    scopus 로고
    • Soft inertial microfluidics for high throughput separation of bacteria from human blood cells
    • Wu Z, Willing B, Bjerketorp J, Jansson JK, Hjort K. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 2009;9:1193–1199.
    • (2009) Lab Chip , vol.9 , pp. 1193-1199
    • Wu, Z.1    Willing, B.2    Bjerketorp, J.3    Jansson, J.K.4    Hjort, K.5
  • 94
    • 79952658974 scopus 로고    scopus 로고
    • Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid
    • Yu J, Ge L, Huang J, Wang S, Ge S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 2011;11:1286–1291.
    • (2011) Lab Chip , vol.11 , pp. 1286-1291
    • Yu, J.1    Ge, L.2    Huang, J.3    Wang, S.4    Ge, S.5
  • 96
    • 84055172797 scopus 로고    scopus 로고
    • Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices
    • Yang X, Forouzan O, Brown TP, Shevkoplyas SS. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 2012;12:274–280.
    • (2012) Lab Chip , vol.12 , pp. 274-280
    • Yang, X.1    Forouzan, O.2    Brown, T.P.3    Shevkoplyas, S.S.4
  • 97
    • 33344476424 scopus 로고    scopus 로고
    • Microfluidics technology for manipulation and analysis of biological cells
    • Yi C, Li C-W, Ji S, Yang M. Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 2006;560:1–23.
    • (2006) Anal Chim Acta , vol.560 , pp. 1-23
    • Yi, C.1    Li, C.-W.2    Ji, S.3    Yang, M.4
  • 98
    • 0025210818 scopus 로고
    • Design of an open-tubular columm liquid chromatograph using silicon chip technology
    • Manz A, Miyahara Y, Miura J, Watanabe Y, Miyage H, Sato K. Design of an open-tubular columm liquid chromatograph using silicon chip technology. Sens Actuators 1990;1:249–255.
    • (1990) Sens Actuators , vol.1 , pp. 249-255
    • Manz, A.1    Miyahara, Y.2    Miura, J.3    Watanabe, Y.4    Miyage, H.5    Sato, K.6
  • 99
    • 84898966455 scopus 로고    scopus 로고
    • Engineering microfluidic concentration gradient generators for biological applications
    • Toh AGG, Wang ZP, Yang C, Nguyen N-T. Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid. 2014;16:1–18.
    • (2014) Microfluid Nanofluid. , vol.16 , pp. 1-18
    • Toh, A.G.G.1    Wang, Z.P.2    Yang, C.3    Nguyen, N.-T.4
  • 100
    • 84951860799 scopus 로고    scopus 로고
    • A review of chemical gradient systems for cell analysis
    • Somaweera H, Ibraguimov A, Pappas D. A review of chemical gradient systems for cell analysis. Anal Chim Acta 2016;907:7–17.
    • (2016) Anal Chim Acta , vol.907 , pp. 7-17
    • Somaweera, H.1    Ibraguimov, A.2    Pappas, D.3
  • 101
    • 67649624720 scopus 로고    scopus 로고
    • Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients
    • Englert DL, Manson MD, Jayaraman A. Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl Environ Microbiol. 2009;75:4557–4564.
    • (2009) Appl Environ Microbiol. , vol.75 , pp. 4557-4564
    • Englert, D.L.1    Manson, M.D.2    Jayaraman, A.3
  • 102
    • 84928537269 scopus 로고    scopus 로고
    • The effect of biomolecular gradients on mesenchymal stem cell chondrogenesis under shear stress
    • Rivera AL, Baskaran H. The effect of biomolecular gradients on mesenchymal stem cell chondrogenesis under shear stress. Micromachines 2015;6:330–346.
    • (2015) Micromachines , vol.6 , pp. 330-346
    • Rivera, A.L.1    Baskaran, H.2
  • 103
    • 0000259359 scopus 로고    scopus 로고
    • Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels
    • Ismagilov RF, Strook AD, Kenis PJA, Whitesides GM. Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett. 2000;76:2376–2378.
    • (2000) Appl Phys Lett. , vol.76 , pp. 2376-2378
    • Ismagilov, R.F.1    Strook, A.D.2    Kenis, P.J.A.3    Whitesides, G.M.4
  • 104
    • 0033485870 scopus 로고    scopus 로고
    • Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor
    • Kamholz AE, Weigl BH, Finlayson BA, Yager P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem. 1999;71:5340–5347.
    • (1999) Anal Chem. , vol.71 , pp. 5340-5347
    • Kamholz, A.E.1    Weigl, B.H.2    Finlayson, B.A.3    Yager, P.4
  • 105
    • 0035866594 scopus 로고    scopus 로고
    • Generation of gradients having complex shapes using microfluidic networks
    • Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM. Generation of gradients having complex shapes using microfluidic networks. Anal Chem. 2001;73:1240–1246.
    • (2001) Anal Chem. , vol.73 , pp. 1240-1246
    • Dertinger, S.K.W.1    Chiu, D.T.2    Jeon, N.L.3    Whitesides, G.M.4
  • 106
    • 33646746703 scopus 로고    scopus 로고
    • Universal microfluidic gradient generator
    • Irimia D, Geba DA, Toner M. Universal microfluidic gradient generator. Anal Chem. 2006;78:3472–3477.
    • (2006) Anal Chem. , vol.78 , pp. 3472-3477
    • Irimia, D.1    Geba, D.A.2    Toner, M.3
  • 107
    • 52649136688 scopus 로고    scopus 로고
    • Modular microfluidics for gradient generation
    • Sun K, Wang Z, Jiang X. Modular microfluidics for gradient generation. Lab Chip 2008;8:1536.
    • (2008) Lab Chip , vol.8 , pp. 1536
    • Sun, K.1    Wang, Z.2    Jiang, X.3
  • 108
    • 0141989831 scopus 로고    scopus 로고
    • Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip
    • Yang M, Yang J, Li C-W, Zhao J. Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip. Lab Chip 2002;2:158–163.
    • (2002) Lab Chip , vol.2 , pp. 158-163
    • Yang, M.1    Yang, J.2    Li, C.-W.3    Zhao, J.4
  • 109
    • 20844440162 scopus 로고    scopus 로고
    • Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator
    • Walker GM, Sai J, Richmond A, Stremler M, Chung CY, Wikswo JP. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 2005;5:611–618.
    • (2005) Lab Chip , vol.5 , pp. 611-618
    • Walker, G.M.1    Sai, J.2    Richmond, A.3    Stremler, M.4    Chung, C.Y.5    Wikswo, J.P.6
  • 110
    • 33846932052 scopus 로고    scopus 로고
    • Generation of complex concentration profiles in microchannels in a logarithmically small number of steps
    • Campbell K, Groisman A. Generation of complex concentration profiles in microchannels in a logarithmically small number of steps. Lab Chip 2007;7:264–272.
    • (2007) Lab Chip , vol.7 , pp. 264-272
    • Campbell, K.1    Groisman, A.2
  • 111
    • 70549085891 scopus 로고    scopus 로고
    • Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel
    • Lee SS, Yim Y, Ahn KH, Lee SJ. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed Microdevices 2009;11:1021–1027.
    • (2009) Biomed Microdevices , vol.11 , pp. 1021-1027
    • Lee, S.S.1    Yim, Y.2    Ahn, K.H.3    Lee, S.J.4
  • 112
    • 36349024270 scopus 로고    scopus 로고
    • Cell-based high content screening using an integrated microfluidic device
    • Ye N, Qin J, Shi W, Liu X, Lin B. Cell-based high content screening using an integrated microfluidic device. Lab Chip 2007;7:1696–1704.
    • (2007) Lab Chip , vol.7 , pp. 1696-1704
    • Ye, N.1    Qin, J.2    Shi, W.3    Liu, X.4    Lin, B.5
  • 113
    • 84949457748 scopus 로고    scopus 로고
    • High-throughput single cell multidrug resistance analysis with multifunctional gradients-customizing microfluidic device
    • Li Y, Chen D, Zhang Y, Liu C, Chen P, Wang Y, Feng X, Du W, Liu B. High-throughput single cell multidrug resistance analysis with multifunctional gradients-customizing microfluidic device. Sens Actuatores B Chem. 2016;225:563–571.
    • (2016) Sens Actuatores B Chem. , vol.225 , pp. 563-571
    • Li, Y.1    Chen, D.2    Zhang, Y.3    Liu, C.4    Chen, P.5    Wang, Y.6    Feng, X.7    Du, W.8    Liu, B.9
  • 114
    • 0037965621 scopus 로고    scopus 로고
    • A sensitive, versatile microfluidic assay for bacterial chemotaxis
    • Mao H, Cremer PS, Manson MD. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc Natl Acad Sci USA 2003;100:5449–5454.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 5449-5454
    • Mao, H.1    Cremer, P.S.2    Manson, M.D.3
  • 115
    • 84921329677 scopus 로고    scopus 로고
    • An in vitro microfluidic gradient generator platform for antimicrobial testing
    • DiCicco M, Neethirajan S. An in vitro microfluidic gradient generator platform for antimicrobial testing. BioChip J. 2014;8:282–288.
    • (2014) BioChip J. , vol.8 , pp. 282-288
    • DiCicco, M.1    Neethirajan, S.2
  • 116
    • 33947262968 scopus 로고    scopus 로고
    • A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii
    • Steinhaus B, Garcia ML, Shen AQ, Angenent LT. A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii. Appl Environ Microbiol. 2007;73:1653–1658.
    • (2007) Appl Environ Microbiol. , vol.73 , pp. 1653-1658
    • Steinhaus, B.1    Garcia, M.L.2    Shen, A.Q.3    Angenent, L.T.4
  • 118
    • 84949604269 scopus 로고    scopus 로고
    • A laminar flow microfluidic fuel cell for detection of hexavalent chromium concentration
    • Ye D, Yang Y, Li J, Zhu X, Liao Q, Zhang B. A laminar flow microfluidic fuel cell for detection of hexavalent chromium concentration. Biomicrofluidics 2015;9:064110.
    • (2015) Biomicrofluidics , vol.9 , pp. 064110
    • Ye, D.1    Yang, Y.2    Li, J.3    Zhu, X.4    Liao, Q.5    Zhang, B.6
  • 119
    • 69549115993 scopus 로고    scopus 로고
    • The microfluidic palette: a diffusive gradient generator with spatio-temporal control
    • Atencia J, Morrow J, Locascio LE. The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab Chip 2009;9:2707–2714.
    • (2009) Lab Chip , vol.9 , pp. 2707-2714
    • Atencia, J.1    Morrow, J.2    Locascio, L.E.3
  • 120
    • 84905457582 scopus 로고    scopus 로고
    • Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device
    • Hou Z, An Y, Hjort K, Hjort K, Sandegren L, Wu Z. Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device. Lab Chip 2014;14:3409–3418.
    • (2014) Lab Chip , vol.14 , pp. 3409-3418
    • Hou, Z.1    An, Y.2    Hjort, K.3    Hjort, K.4    Sandegren, L.5    Wu, Z.6
  • 123
    • 34548354876 scopus 로고    scopus 로고
    • Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber
    • Saadi W, Rhee SW, Lin F, Vahidi B, Chung BG, Jeon NL. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 2007;9:627–635.
    • (2007) Biomed Microdevices , vol.9 , pp. 627-635
    • Saadi, W.1    Rhee, S.W.2    Lin, F.3    Vahidi, B.4    Chung, B.G.5    Jeon, N.L.6
  • 124
    • 33644659211 scopus 로고    scopus 로고
    • Characterization of a membrane-based gradient generator for use in cell-signaling studies
    • Abhyankar VV, Lokuta MA, Huttenlocher A, Beebe DJ. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 2006;6:389–393.
    • (2006) Lab Chip , vol.6 , pp. 389-393
    • Abhyankar, V.V.1    Lokuta, M.A.2    Huttenlocher, A.3    Beebe, D.J.4
  • 125
    • 33644661720 scopus 로고    scopus 로고
    • A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis
    • Diao J, Young L, Kim S, Fogarty EA, Heilman SM, Zhou P, Shuler ML, Wu M, DeLisa MP. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 2006;6:381.
    • (2006) Lab Chip , vol.6 , pp. 381
    • Diao, J.1    Young, L.2    Kim, S.3    Fogarty, E.A.4    Heilman, S.M.5    Zhou, P.6    Shuler, M.L.7    Wu, M.8    DeLisa, M.P.9
  • 126
    • 33645469924 scopus 로고    scopus 로고
    • Generation of complex, static solution gradients in microfluidic channels
    • Wu H, Huang B, Zare RN. Generation of complex, static solution gradients in microfluidic channels. J Am Chem Soc. 2006;128:4194–4195.
    • (2006) J Am Chem Soc. , vol.128 , pp. 4194-4195
    • Wu, H.1    Huang, B.2    Zare, R.N.3
  • 127
    • 84899899239 scopus 로고    scopus 로고
    • Rapid and accurate generation of various concentration gradients using polydimethylsiloxane-sealed hydrogel device
    • Kim M, Jia M, Kim Y, Kim T. Rapid and accurate generation of various concentration gradients using polydimethylsiloxane-sealed hydrogel device. Microfluid 2014;16:645–654.
    • (2014) Microfluid , vol.16 , pp. 645-654
    • Kim, M.1    Jia, M.2    Kim, Y.3    Kim, T.4
  • 128
    • 84873704012 scopus 로고    scopus 로고
    • Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels
    • Choi E, Chang H, Young Lim C, Kim T, Park J. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels. Lab Chip 2012;12:3968–3975.
    • (2012) Lab Chip , vol.12 , pp. 3968-3975
    • Choi, E.1    Chang, H.2    Young Lim, C.3    Kim, T.4    Park, J.5
  • 129
    • 84934878790 scopus 로고    scopus 로고
    • Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device
    • Garcia S, Sunyer R, Olivares A, Noailly J, Atencia J, Trepat X. Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device. Lab Chip 2015;15:2606–2614.
    • (2015) Lab Chip , vol.15 , pp. 2606-2614
    • Garcia, S.1    Sunyer, R.2    Olivares, A.3    Noailly, J.4    Atencia, J.5    Trepat, X.6
  • 130
    • 84896910353 scopus 로고    scopus 로고
    • A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration
    • McLaughlin LM, Xu H, Carden SE, Fisher S, Reyes M, Heilshorn SC, Monack DM. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration. Integr Biol. 2014;6:438–449.
    • (2014) Integr Biol. , vol.6 , pp. 438-449
    • McLaughlin, L.M.1    Xu, H.2    Carden, S.E.3    Fisher, S.4    Reyes, M.5    Heilshorn, S.C.6    Monack, D.M.7
  • 131
    • 84867288492 scopus 로고    scopus 로고
    • A microfluidic platform for rapid, stress-induced antibiotic susceptibility testing of Staphylococcus aureus
    • Kalashnikov M, Lee JC, Campbell J, Sauer-budge AF. A microfluidic platform for rapid, stress-induced antibiotic susceptibility testing of Staphylococcus aureus. Lab Chip 2012;2012:4523–4532.
    • (2012) Lab Chip , vol.2012 , pp. 4523-4532
    • Kalashnikov, M.1    Lee, J.C.2    Campbell, J.3    Sauer-budge, A.F.4
  • 132
    • 84925610299 scopus 로고    scopus 로고
    • Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device
    • Wang X, Atencia J, Ford RM. Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device. Biotechnol Bioeng. 2015;112:896–904.
    • (2015) Biotechnol Bioeng. , vol.112 , pp. 896-904
    • Wang, X.1    Atencia, J.2    Ford, R.M.3
  • 134
    • 84862792012 scopus 로고    scopus 로고
    • Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber
    • Wang X, Long T, Ford RM. Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber. Biotechnol Bioeng. 2012;109:1622–1628.
    • (2012) Biotechnol Bioeng. , vol.109 , pp. 1622-1628
    • Wang, X.1    Long, T.2    Ford, R.M.3
  • 135
    • 84866423496 scopus 로고    scopus 로고
    • Multiplexed detection of waterborne pathogens in circular microfluidics
    • Agrawal S, Morarka A, Bodas D, Paknikar KM. Multiplexed detection of waterborne pathogens in circular microfluidics. Appl Biochem Biotechnol. 2012;167:1668–1677.
    • (2012) Appl Biochem Biotechnol. , vol.167 , pp. 1668-1677
    • Agrawal, S.1    Morarka, A.2    Bodas, D.3    Paknikar, K.M.4
  • 136
    • 84948157772 scopus 로고    scopus 로고
    • One-step fabrication of inorganic/organic hybrid microspheres with tunable surface texture for controlled drug release application
    • Dong H, Tang G, Ma T, Cao X. One-step fabrication of inorganic/organic hybrid microspheres with tunable surface texture for controlled drug release application. J Mater Sci Mater Med. 2016;27:1–8.
    • (2016) J Mater Sci Mater Med. , vol.27 , pp. 1-8
    • Dong, H.1    Tang, G.2    Ma, T.3    Cao, X.4
  • 138
    • 84862212456 scopus 로고    scopus 로고
    • Droplet microfluidics for high-throughput biological assays
    • Guo MT, Rotem A, Heyman JA, Weitz DA. Droplet microfluidics for high-throughput biological assays. Lab Chip 2012;12:2146–2155.
    • (2012) Lab Chip , vol.12 , pp. 2146-2155
    • Guo, M.T.1    Rotem, A.2    Heyman, J.A.3    Weitz, D.A.4
  • 140
    • 84855675958 scopus 로고    scopus 로고
    • Surfactants in droplet-based microfluidics
    • Baret J-C. Surfactants in droplet-based microfluidics. Lab Chip 2012;12:422–433.
    • (2012) Lab Chip , vol.12 , pp. 422-433
    • Baret, J.-C.1
  • 141
    • 51949096580 scopus 로고    scopus 로고
    • Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics
    • Srisa-Art M, Dyson EC, DeMello AJ, Edel JB. Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics. Anal Chem. 2008;80:7063–7067.
    • (2008) Anal Chem. , vol.80 , pp. 7063-7067
    • Srisa-Art, M.1    Dyson, E.C.2    DeMello, A.J.3    Edel, J.B.4
  • 142
    • 80755158894 scopus 로고    scopus 로고
    • Simple and cheap microfluidic devices for the preparation of monodisperse emulsions
    • Deng N-N, Meng Z-J, Xie R, Ju X-J, Mou C-L, Wang W, Chu L-Y. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions. Lab Chip 2011;11:3963–3969.
    • (2011) Lab Chip , vol.11 , pp. 3963-3969
    • Deng, N.-N.1    Meng, Z.-J.2    Xie, R.3    Ju, X.-J.4    Mou, C.-L.5    Wang, W.6    Chu, L.-Y.7
  • 143
    • 34748901356 scopus 로고    scopus 로고
    • Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation
    • Tan W-H, Takeuchi S. Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation. Adv Mater. 2007;19:2696–2701.
    • (2007) Adv Mater. , vol.19 , pp. 2696-2701
    • Tan, W.-H.1    Takeuchi, S.2
  • 144
    • 84872510026 scopus 로고    scopus 로고
    • Droplet microfluidics driven by gradients of confinement
    • Dangla R, Kayi SC, Baroud CN. Droplet microfluidics driven by gradients of confinement. Proc Natl Acad Sci USA 2013;110:853–858.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 853-858
    • Dangla, R.1    Kayi, S.C.2    Baroud, C.N.3
  • 145
    • 0037455351 scopus 로고    scopus 로고
    • Formation of dispersions using “flow focusing” in microchannels
    • Anna SL, Bontoux N, Stone HA. Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett. 2003;82:364–366.
    • (2003) Appl Phys Lett. , vol.82 , pp. 364-366
    • Anna, S.L.1    Bontoux, N.2    Stone, H.A.3
  • 146
    • 4544366400 scopus 로고    scopus 로고
    • Dynamic pattern formation in a vesicle-generating microfluidic device
    • Thorsen T, Roberts RW, Arnold FH, Quake SR. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett. 2001;86:4163–4166.
    • (2001) Phys Rev Lett. , vol.86 , pp. 4163-4166
    • Thorsen, T.1    Roberts, R.W.2    Arnold, F.H.3    Quake, S.R.4
  • 147
    • 84904488850 scopus 로고    scopus 로고
    • Encapsulation of acetyl ginsenoside Rb 1 within monodisperse poly(DL-lactide-co-glycolide) microspheres using a microfluidic device
    • Samimi R, Salarian M, Xu WZ, Lui EMK, Charpentier PA. Encapsulation of acetyl ginsenoside Rb 1 within monodisperse poly(DL-lactide-co-glycolide) microspheres using a microfluidic device. Ind Eng Chem Res. 2014;53:11333–11344.
    • (2014) Ind Eng Chem Res. , vol.53 , pp. 11333-11344
    • Samimi, R.1    Salarian, M.2    Xu, W.Z.3    Lui, E.M.K.4    Charpentier, P.A.5
  • 148
    • 84954129615 scopus 로고    scopus 로고
    • Droplets and bubbles in microfluidic devices
    • Anna SL. Droplets and bubbles in microfluidic devices. Annu Rev Fluid Mech. 2016;48:285–309.
    • (2016) Annu Rev Fluid Mech. , vol.48 , pp. 285-309
    • Anna, S.L.1
  • 151
    • 84877736912 scopus 로고    scopus 로고
    • Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting
    • Wu L, Chen P, Dong Y, Feng X, Liu B-F. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Biomed Microdevices 2013;15:553–560.
    • (2013) Biomed Microdevices , vol.15 , pp. 553-560
    • Wu, L.1    Chen, P.2    Dong, Y.3    Feng, X.4    Liu, B.-F.5
  • 153
    • 84900315204 scopus 로고    scopus 로고
    • Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption
    • Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR, Stephanopoulos G. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol. 2014;32:473–478.
    • (2014) Nat Biotechnol. , vol.32 , pp. 473-478
    • Wang, B.L.1    Ghaderi, A.2    Zhou, H.3    Agresti, J.4    Weitz, D.A.5    Fink, G.R.6    Stephanopoulos, G.7
  • 154
    • 79952147403 scopus 로고    scopus 로고
    • Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient
    • Bui M-PN, Li CA, Han KN, Choo J, Lee EK, Seong GH. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal Chem. 2011;83:1603–1608.
    • (2011) Anal Chem. , vol.83 , pp. 1603-1608
    • Bui, M.-P.N.1    Li, C.A.2    Han, K.N.3    Choo, J.4    Lee, E.K.5    Seong, G.H.6
  • 155
    • 84908637041 scopus 로고    scopus 로고
    • Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets
    • Piao Y, Han DJ, Azad MR, Park M, Seo TS. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets. Biosens Bioelectron. 2015;65:220–225.
    • (2015) Biosens Bioelectron. , vol.65 , pp. 220-225
    • Piao, Y.1    Han, D.J.2    Azad, M.R.3    Park, M.4    Seo, T.S.5
  • 157
    • 79751527622 scopus 로고    scopus 로고
    • Integrated microbioreactor for culture and analysis of bacteria, algae and yeast
    • Au SH, Shih SCC, Wheeler AR. Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomed Microdevices 2011;13:41–50.
    • (2011) Biomed Microdevices , vol.13 , pp. 41-50
    • Au, S.H.1    Shih, S.C.C.2    Wheeler, A.R.3
  • 160
    • 84874506976 scopus 로고    scopus 로고
    • Large-scale droplet production in microfluidic devices—an industrial perspective
    • Holtze C. Large-scale droplet production in microfluidic devices—an industrial perspective. J Phys D Appl Phys. 2013;46:114008.
    • (2013) J Phys D Appl Phys. , vol.46 , pp. 114008
    • Holtze, C.1
  • 162
    • 38849164275 scopus 로고    scopus 로고
    • Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles
    • Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 2008;8:287–293.
    • (2008) Lab Chip , vol.8 , pp. 287-293
    • Nisisako, T.1    Torii, T.2
  • 163
    • 84904290904 scopus 로고    scopus 로고
    • Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions
    • Conchouso D, Castro D, Khan SA, Foulds IG. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab Chip 2014;14:3011–3020.
    • (2014) Lab Chip , vol.14 , pp. 3011-3020
    • Conchouso, D.1    Castro, D.2    Khan, S.A.3    Foulds, I.G.4
  • 165
    • 84928923328 scopus 로고    scopus 로고
    • Parallelized ultra-high throughput microfluidic emulsifier for multiplex kinetic assays
    • Lim J, Caen O, Vrignon J, Konrad M, Taly V, Baret JC. Parallelized ultra-high throughput microfluidic emulsifier for multiplex kinetic assays. Biomicrofluidics 2015;9:034101 1–11.
    • (2015) Biomicrofluidics , vol.9
    • Lim, J.1    Caen, O.2    Vrignon, J.3    Konrad, M.4    Taly, V.5    Baret, J.C.6
  • 166
    • 79151469953 scopus 로고    scopus 로고
    • Microfluidic melt emulsification for encapsulation and release of actives
    • Sun BJ, Shum HC, Holtze C, Weitz DA. Microfluidic melt emulsification for encapsulation and release of actives. ACS Appl Mater Interfaces 2010;2:3411–3416.
    • (2010) ACS Appl Mater Interfaces , vol.2 , pp. 3411-3416
    • Sun, B.J.1    Shum, H.C.2    Holtze, C.3    Weitz, D.A.4
  • 169
    • 84877574899 scopus 로고    scopus 로고
    • Dynamic trapping and manipulation of biological cells with optical tweezers
    • Li X, Cheah CC, Hu S, Sun D. Dynamic trapping and manipulation of biological cells with optical tweezers. Automatica 2013;49:1614–1625.
    • (2013) Automatica , vol.49 , pp. 1614-1625
    • Li, X.1    Cheah, C.C.2    Hu, S.3    Sun, D.4
  • 170
    • 84889084264 scopus 로고    scopus 로고
    • Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes
    • Probst C, Grünberger A, Wiechert W, Kohlheyer D. Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes. J Microbiol Methods 2013;95:470–476.
    • (2013) J Microbiol Methods , vol.95 , pp. 470-476
    • Probst, C.1    Grünberger, A.2    Wiechert, W.3    Kohlheyer, D.4
  • 171
    • 84863033996 scopus 로고    scopus 로고
    • Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry
    • Chen Q, Wu J, Zhang Y, Lin J-M. Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry. Anal Chem. 2012;84:1695–1701.
    • (2012) Anal Chem. , vol.84 , pp. 1695-1701
    • Chen, Q.1    Wu, J.2    Zhang, Y.3    Lin, J.-M.4
  • 172
    • 80053562185 scopus 로고    scopus 로고
    • Optofluidic microsystems for chemical and biological analysis
    • Fan X, White IM. Optofluidic microsystems for chemical and biological analysis. Nat Photonics 2011;5:591–597.
    • (2011) Nat Photonics , vol.5 , pp. 591-597
    • Fan, X.1    White, I.M.2
  • 173
    • 84945444868 scopus 로고    scopus 로고
    • Compartmented microfluidic bioreactor system using magnetic enzyme immobilisates for fast small-scale biotransformation studies
    • Hübner J, Brakowaski R, Wohlgemuth J, Brenner-weiß G, Franzreb M. Compartmented microfluidic bioreactor system using magnetic enzyme immobilisates for fast small-scale biotransformation studies. Eng Life Sci. 2015;15:721–726.
    • (2015) Eng Life Sci. , vol.15 , pp. 721-726
    • Hübner, J.1    Brakowaski, R.2    Wohlgemuth, J.3    Brenner-weiß, G.4    Franzreb, M.5
  • 174
    • 0036240479 scopus 로고    scopus 로고
    • Development of novel microscale system as immobilized enzyme bioreactor
    • Jones F, Lu Z, Elmore BB. Development of novel microscale system as immobilized enzyme bioreactor. Appl Biochem Biotechnol. 2002;98–100:627–640.
    • (2002) Appl Biochem Biotechnol. , vol.98-100 , pp. 627-640
    • Jones, F.1    Lu, Z.2    Elmore, B.B.3
  • 175
    • 84896115265 scopus 로고    scopus 로고
    • Single-cell microfluidics: opportunity for bioprocess development
    • Grunberger A, Wiechert W, Kohlheyer D. Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol. 2014;29:15–23.
    • (2014) Curr Opin Biotechnol. , vol.29 , pp. 15-23
    • Grunberger, A.1    Wiechert, W.2    Kohlheyer, D.3
  • 177
    • 84887706104 scopus 로고    scopus 로고
    • The past, present and potential for microfluidic reactor technology in chemical synthesis
    • Elvira KS, Solvas i, Wootton XC, Andrew RCR, deMello J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem. 2013;5:905–915.
    • (2013) Nat Chem. , vol.5 , pp. 905-915
    • Elvira, K.S.1    Solvas, I.2    Wootton, X.C.3    Andrew, R.C.R.4    deMello, J.5
  • 178
    • 84916629473 scopus 로고    scopus 로고
    • High-efficiency nano/micro-reactors for protein analysis
    • Li Y, Yan L, Liu Y, Qian K, Liu B, Yang P, Liu B. High-efficiency nano/micro-reactors for protein analysis. RSC Adv. 2015;5:1331–1342.
    • (2015) RSC Adv. , vol.5 , pp. 1331-1342
    • Li, Y.1    Yan, L.2    Liu, Y.3    Qian, K.4    Liu, B.5    Yang, P.6    Liu, B.7
  • 182
    • 84877644505 scopus 로고    scopus 로고
    • Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation
    • Hegab HM, Elmekawy A, Stakenborg T. Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics 2013;7:21502.
    • (2013) Biomicrofluidics , vol.7 , pp. 21502
    • Hegab, H.M.1    Elmekawy, A.2    Stakenborg, T.3
  • 183
    • 84944908864 scopus 로고    scopus 로고
    • Application of multivariate analysis and mass transfer principles for refinement of a 3-L bioreactor scale-down model-when shake flasks mimic 15,000-L bioreactors better
    • Ahuja S, Jain S, Ram K. Application of multivariate analysis and mass transfer principles for refinement of a 3-L bioreactor scale-down model-when shake flasks mimic 15,000-L bioreactors better. Biotechnol Prog. 2015;31:1370–1380.
    • (2015) Biotechnol Prog. , vol.31 , pp. 1370-1380
    • Ahuja, S.1    Jain, S.2    Ram, K.3
  • 184
    • 84947997194 scopus 로고    scopus 로고
    • Scale-down of continuous protein producing Saccharomyces cerevisiae cultivations using a two-compartment system
    • Risager Wright N, Rønnest NP, Thykaer J. Scale-down of continuous protein producing Saccharomyces cerevisiae cultivations using a two-compartment system. Biotechnol Prog. 2016;32:152–159.
    • (2016) Biotechnol Prog. , vol.32 , pp. 152-159
    • Risager Wright, N.1    Rønnest, N.P.2    Thykaer, J.3
  • 185
    • 84893794827 scopus 로고    scopus 로고
    • Development of a scale down cell culture model using multivariate analysis as a qualification tool
    • Tsang VL, Wang AX, Yusuf-Makagiansar H, Ryll T. Development of a scale down cell culture model using multivariate analysis as a qualification tool. Biotechnol Prog. 2014;30:152–160.
    • (2014) Biotechnol Prog. , vol.30 , pp. 152-160
    • Tsang, V.L.1    Wang, A.X.2    Yusuf-Makagiansar, H.3    Ryll, T.4
  • 186
    • 84911408436 scopus 로고    scopus 로고
    • Application of bioreactor design principles and multivariate analysis for development of cell culture scale down models
    • Tescione L, Lambropoulos J, Paranandi MR, Makagiansar H, Ryll T. Application of bioreactor design principles and multivariate analysis for development of cell culture scale down models. Biotechnol Bioeng. 2015;112:84–97.
    • (2015) Biotechnol Bioeng. , vol.112 , pp. 84-97
    • Tescione, L.1    Lambropoulos, J.2    Paranandi, M.R.3    Makagiansar, H.4    Ryll, T.5
  • 188
    • 84862231072 scopus 로고    scopus 로고
    • Commercialization of microfluidic point-of-care diagnostic devices
    • Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012;12:2118–2134.
    • (2012) Lab Chip , vol.12 , pp. 2118-2134
    • Chin, C.D.1    Linder, V.2    Sia, S.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.