-
1
-
-
84941729534
-
White biotechnology: state of the art strategies for the development of biocatalysts for biorefining
-
Heux S, Meynial-Salles I, O'Donohue MJ, Dumon C. White biotechnology: state of the art strategies for the development of biocatalysts for biorefining. Biotechnol Adv. 2015;33:1653–1670.
-
(2015)
Biotechnol Adv.
, vol.33
, pp. 1653-1670
-
-
Heux, S.1
Meynial-Salles, I.2
O'Donohue, M.J.3
Dumon, C.4
-
3
-
-
77952499476
-
Fundamentals of microfluidic cell culture in controlled microenvironments
-
Young EWK, Beebe DJ. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev. 2010;39:1036–1048.
-
(2010)
Chem Soc Rev.
, vol.39
, pp. 1036-1048
-
-
Young, E.W.K.1
Beebe, D.J.2
-
4
-
-
84896284039
-
The present and future role of microfluidics in biomedical research
-
Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature 2014;507:181–189.
-
(2014)
Nature
, vol.507
, pp. 181-189
-
-
Sackmann, E.K.1
Fulton, A.L.2
Beebe, D.J.3
-
5
-
-
78149268198
-
Biological applications of microfluidic gradient devices
-
Kim S, Kim HJ, Jeon NL. Biological applications of microfluidic gradient devices. Integr Biol. 2010;2:584–603.
-
(2010)
Integr Biol.
, vol.2
, pp. 584-603
-
-
Kim, S.1
Kim, H.J.2
Jeon, N.L.3
-
7
-
-
84876403132
-
Going local: technologies for exploring bacterial microenvironments
-
Wessel AK, Hmelo L, Parsek MR, Whiteley M. Going local: technologies for exploring bacterial microenvironments. Nat Publ Gr. 2013;11:337–348.
-
(2013)
Nat Publ Gr.
, vol.11
, pp. 337-348
-
-
Wessel, A.K.1
Hmelo, L.2
Parsek, M.R.3
Whiteley, M.4
-
8
-
-
84908254231
-
Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria
-
Hol FJH, Dekker C. Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science 2014;346:1251821.
-
(2014)
Science
, vol.346
, pp. 1251821
-
-
Hol, F.J.H.1
Dekker, C.2
-
9
-
-
84947237435
-
Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics
-
Son K, Brumley DR, Stocker R. Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics. Nat Rev Microbiol. 2015;13:761–775.
-
(2015)
Nat Rev Microbiol.
, vol.13
, pp. 761-775
-
-
Son, K.1
Brumley, D.R.2
Stocker, R.3
-
10
-
-
84949982197
-
Origins of cell-to-cell bioprocessing diversity and implications of the extracellular environment revealed at the single-cell level
-
Vasdekis AE, Silverman AM, Stephanopoulos G. Origins of cell-to-cell bioprocessing diversity and implications of the extracellular environment revealed at the single-cell level. Sci Rep. 2015;5:17689.
-
(2015)
Sci Rep.
, vol.5
, pp. 17689
-
-
Vasdekis, A.E.1
Silverman, A.M.2
Stephanopoulos, G.3
-
11
-
-
84937829112
-
High-throughput microfluidics to control and measure signaling dynamics in single yeast cells
-
Hansen AS, Hao N, Shea EKO. High-throughput microfluidics to control and measure signaling dynamics in single yeast cells. Nat Protoc. 2015;10:1181–1197.
-
(2015)
Nat Protoc.
, vol.10
, pp. 1181-1197
-
-
Hansen, A.S.1
Hao, N.2
Shea, E.K.O.3
-
13
-
-
84893968359
-
Nanoimprint lithography for microfluidics manufacturing
-
Kreindl G, Matthias T. Nanoimprint lithography for microfluidics manufacturing. Micro/Nano Mater. 2013;8923:1–7.
-
(2013)
Micro/Nano Mater.
, vol.8923
, pp. 1-7
-
-
Kreindl, G.1
Matthias, T.2
-
14
-
-
85009745517
-
Towards developing algal synthetic biology
-
Scaife MA, Smith AG. Towards developing algal synthetic biology. Biochem Soc Trans. 2016;44:716–722.
-
(2016)
Biochem Soc Trans.
, vol.44
, pp. 716-722
-
-
Scaife, M.A.1
Smith, A.G.2
-
15
-
-
84856447116
-
New and emerging analytical techniques for marine biotechnology
-
Burgess JG. New and emerging analytical techniques for marine biotechnology. Curr Opin Biotechnol. 2012;23:29–33.
-
(2012)
Curr Opin Biotechnol.
, vol.23
, pp. 29-33
-
-
Burgess, J.G.1
-
16
-
-
84973866189
-
Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications
-
Muñoz-Sánchez BN, Silva SF, Pinho D, Vega EJ, Lima R. Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications. Biomicrofluidics 2016;10:014122.
-
(2016)
Biomicrofluidics
, vol.10
, pp. 014122
-
-
Muñoz-Sánchez, B.N.1
Silva, S.F.2
Pinho, D.3
Vega, E.J.4
Lima, R.5
-
17
-
-
79960934762
-
Rapid liposome quality assessment using a lab-on-a-chip
-
Birnbaumer G, Kupcu S, Jungreuthmayer C, Richter L, Vorauer-Uhl K, Wagner A, Valenta C, Sleytr U, Ertl P. Rapid liposome quality assessment using a lab-on-a-chip. Lab Chip 2011;11:2753–2762.
-
(2011)
Lab Chip
, vol.11
, pp. 2753-2762
-
-
Birnbaumer, G.1
Kupcu, S.2
Jungreuthmayer, C.3
Richter, L.4
Vorauer-Uhl, K.5
Wagner, A.6
Valenta, C.7
Sleytr, U.8
Ertl, P.9
-
18
-
-
84923205478
-
Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation
-
Shields CW, Reyes CD, López GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 2015;15:1230–1249.
-
(2015)
Lab Chip
, vol.15
, pp. 1230-1249
-
-
Shields, C.W.1
Reyes, C.D.2
López, G.P.3
-
19
-
-
84928647111
-
Bioreaktionstechnik in mikrofluidischen reaktoren
-
Peterat G, Maldonado SL, Edlich A, Rasch D, Dietzel A, Krull R. Bioreaktionstechnik in mikrofluidischen reaktoren. Chemie Ing Tech. 2015;87:505–517.
-
(2015)
Chemie Ing Tech.
, vol.87
, pp. 505-517
-
-
Peterat, G.1
Maldonado, S.L.2
Edlich, A.3
Rasch, D.4
Dietzel, A.5
Krull, R.6
-
20
-
-
70349617005
-
Application of microbioreactors in fermentation process development: a review
-
Schäpper D, Alam MNHZ, Szita N, Eliasson Lantz A, Gernaey KV. Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem. 2009;395:679–695.
-
(2009)
Anal Bioanal Chem.
, vol.395
, pp. 679-695
-
-
Schäpper, D.1
Alam, M.N.H.Z.2
Szita, N.3
Eliasson Lantz, A.4
Gernaey, K.V.5
-
21
-
-
10944250656
-
Immobilized microfluidic enzymatic reactors
-
Krenková J, Foret F. Immobilized microfluidic enzymatic reactors. Electrophoresis 2004;25:3550–3563.
-
(2004)
Electrophoresis
, vol.25
, pp. 3550-3563
-
-
Krenková, J.1
Foret, F.2
-
22
-
-
84923816751
-
Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity
-
Bruchmann J, Sachsenheimer K, Rapp BE, Schwartz T. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity. PLoS One 2015;10:1–19.
-
(2015)
PLoS One
, vol.10
, pp. 1-19
-
-
Bruchmann, J.1
Sachsenheimer, K.2
Rapp, B.E.3
Schwartz, T.4
-
23
-
-
80755175428
-
A scalable microfluidic chip for bacterial suspension culture
-
Gan M, Su J, Wang J, Wu H, Chen L. A scalable microfluidic chip for bacterial suspension culture. Lab Chip 2011;11:4087–4092.
-
(2011)
Lab Chip
, vol.11
, pp. 4087-4092
-
-
Gan, M.1
Su, J.2
Wang, J.3
Wu, H.4
Chen, L.5
-
24
-
-
84976209182
-
Photo inactivation of virus particles in microfluidic capillary systems
-
(February)
-
Ren Y, Crump CM, Mackley MM, Li Puma G, Reis NM. Photo inactivation of virus particles in microfluidic capillary systems. Biotechnol Bioeng. 2016;1481–1492. (February):
-
(2016)
Biotechnol Bioeng.
, pp. 1481-1492
-
-
Ren, Y.1
Crump, C.M.2
Mackley, M.M.3
Li Puma, G.4
Reis, N.M.5
-
25
-
-
84937519255
-
Electroporation-based applications in biotechnology
-
Kotnik T, Frey W, Sack M, Meglič SH, Peterka M, Miklavčič D. Electroporation-based applications in biotechnology. Trends Biotechnol. 2015;33:480–488.
-
(2015)
Trends Biotechnol.
, vol.33
, pp. 480-488
-
-
Kotnik, T.1
Frey, W.2
Sack, M.3
Meglič, S.H.4
Peterka, M.5
Miklavčič, D.6
-
26
-
-
84872402351
-
Next-generation bioproduction systems: cell-free conversion concepts for industrial biotechnology
-
Rupp S. Next-generation bioproduction systems: cell-free conversion concepts for industrial biotechnology. Eng Life Sci. 2013;13:19–25.
-
(2013)
Eng Life Sci.
, vol.13
, pp. 19-25
-
-
Rupp, S.1
-
27
-
-
84902659771
-
Commercialization of microfluidic devices
-
Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32:347–350.
-
(2014)
Trends Biotechnol.
, vol.32
, pp. 347-350
-
-
Volpatti, L.R.1
Yetisen, A.K.2
-
29
-
-
79959316650
-
Biotransformations in microstructured reactors: more than flowing with the stream?
-
Bolivar JM, Wiesbauer J, Nidetzky B. Biotransformations in microstructured reactors: more than flowing with the stream? Trends Biotechnol 2011;29:333–342.
-
(2011)
Trends Biotechnol
, vol.29
, pp. 333-342
-
-
Bolivar, J.M.1
Wiesbauer, J.2
Nidetzky, B.3
-
30
-
-
84988935927
-
Enzymatic microreactors in biocatalysis: history, features, and future perspectives
-
Laurenti E, dos Santos Vianna A Jr. Enzymatic microreactors in biocatalysis: history, features, and future perspectives. Biocatalysis 2016;1:148–165.
-
(2016)
Biocatalysis
, vol.1
, pp. 148-165
-
-
Laurenti, E.1
dos Santos Vianna, A.2
-
31
-
-
84928050748
-
Microscale technology and biocatalytic processes: opportunities and challenges for synthesis
-
Wohlgemuth R, Plazl I, Znidarsic-Plazl P, Gernaey KV, Woodley JM. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis. Trends Biotechnol. 2015;33:302–314.
-
(2015)
Trends Biotechnol.
, vol.33
, pp. 302-314
-
-
Wohlgemuth, R.1
Plazl, I.2
Znidarsic-Plazl, P.3
Gernaey, K.V.4
Woodley, J.M.5
-
32
-
-
84906787363
-
Engineering and evaluating drug delivery particles in microfluidic devices
-
Björnmalm M, Yan Y, Caruso F. Engineering and evaluating drug delivery particles in microfluidic devices. J Control Release. 2014;190:139–149.
-
(2014)
J Control Release.
, vol.190
, pp. 139-149
-
-
Björnmalm, M.1
Yan, Y.2
Caruso, F.3
-
33
-
-
77952494802
-
Synthesis of micro and nanostructures in microfluidic systems
-
Marre S, Jensen KF. Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev. 2010;39:1183.
-
(2010)
Chem Soc Rev.
, vol.39
, pp. 1183
-
-
Marre, S.1
Jensen, K.F.2
-
34
-
-
33751392855
-
Applications of microfluidics in chemical biology
-
Weibel DB, Whitesides GM. Applications of microfluidics in chemical biology. Curr Opin Chem Biol. 2006;10:584–591.
-
(2006)
Curr Opin Chem Biol.
, vol.10
, pp. 584-591
-
-
Weibel, D.B.1
Whitesides, G.M.2
-
35
-
-
33747117373
-
The origins and the future of microfluidics
-
Whitesides GM. The origins and the future of microfluidics. Nature 2006;442:368–373.
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
37
-
-
24944498780
-
Microfluidics: fluid physics at the nanoliter scale
-
Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys. 2005;77:977–1026.
-
(2005)
Rev Mod Phys.
, vol.77
, pp. 977-1026
-
-
Squires, T.M.1
Quake, S.R.2
-
38
-
-
26944440933
-
Controlled microfluidic interfaces
-
Atencia J, Beebe DJ. Controlled microfluidic interfaces. Nature 2005;437:648–655.
-
(2005)
Nature
, vol.437
, pp. 648-655
-
-
Atencia, J.1
Beebe, D.J.2
-
40
-
-
1642493938
-
Design and simulation of the micromixer with chaotic advection in twisted microchannels
-
Jen C-P, Wu C-Y, Lin Y-C, Wu C-Y. Design and simulation of the micromixer with chaotic advection in twisted microchannels. Lab Chip 2003;3:77–81.
-
(2003)
Lab Chip
, vol.3
, pp. 77-81
-
-
Jen, C.-P.1
Wu, C.-Y.2
Lin, Y.-C.3
Wu, C.-Y.4
-
41
-
-
84943766626
-
Droplet microfluidics in (bio)chemical analysis
-
Basova EY, Foret F. Droplet microfluidics in (bio)chemical analysis. Analyst 2015;140:22–38.
-
(2015)
Analyst
, vol.140
, pp. 22-38
-
-
Basova, E.Y.1
Foret, F.2
-
42
-
-
34748865046
-
Microfluidic methods for generating continuous droplet streams
-
Christopher GF, Anna SL. Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys. 2007;40:R319–R336.
-
(2007)
J Phys D Appl Phys.
, vol.40
, pp. R319-R336
-
-
Christopher, G.F.1
Anna, S.L.2
-
44
-
-
84887287227
-
Microfluidics: a focus on improved cancer targeted drug delivery systems
-
Khan IU, Serra CA, Anton N, Vandamme T. Microfluidics: a focus on improved cancer targeted drug delivery systems. J Control Release. 2013;172:1065–1074.
-
(2013)
J Control Release.
, vol.172
, pp. 1065-1074
-
-
Khan, I.U.1
Serra, C.A.2
Anton, N.3
Vandamme, T.4
-
45
-
-
84892020984
-
Introduction to Microfluidics
-
In, Tian W-C, Finehout E, editors., New York, Springer Science & Business Media
-
Sommer GJ, Chang DS, Jain A, Langelier S., Park J, Rhee M, Wang F, Zeitoun RI, Burns MA. Introduction to Microfluidics. In: Tian W-C, Finehout E, editors. Microfluidics for Biological Applications. New York: Springer Science & Business Media; 2009:1–29.
-
(2009)
Microfluidics for Biological Applications
, pp. 1-29
-
-
Sommer, G.J.1
Chang, D.S.2
Jain, A.3
Langelier, S.4
Park, J.5
Rhee, M.6
Wang, F.7
Zeitoun, R.I.8
Burns, M.A.9
-
46
-
-
84894317056
-
Mixing performance of a planar micromixer with circular obstructions in a curved microchannel
-
Alam A, Afzal A, Kim K-Y. Mixing performance of a planar micromixer with circular obstructions in a curved microchannel. Chem Eng Res Des. 2014;92:423–434.
-
(2014)
Chem Eng Res Des.
, vol.92
, pp. 423-434
-
-
Alam, A.1
Afzal, A.2
Kim, K.-Y.3
-
50
-
-
84876099601
-
Advances in microfluidic materials, functions, integration, and applications
-
Nge PN, Rogers CI, Wooley AT. Advances in microfluidic materials, functions, integration, and applications. Chem Rev. 2013;113:2550–2583.
-
(2013)
Chem Rev.
, vol.113
, pp. 2550-2583
-
-
Nge, P.N.1
Rogers, C.I.2
Wooley, A.T.3
-
51
-
-
84884937482
-
New materials for microfluidics in biology
-
Ren K, Chen Y, Wu H. New materials for microfluidics in biology. Curr Opin Biotechnol. 2014;25:78–85.
-
(2014)
Curr Opin Biotechnol.
, vol.25
, pp. 78-85
-
-
Ren, K.1
Chen, Y.2
Wu, H.3
-
52
-
-
82055183852
-
Development of fundamental technologies for micro bioreactors
-
In Endo I, Nagamune, T editors., New York, Springer Berlin Heidelberg
-
Sato K, Kitamori T. Development of fundamental technologies for micro bioreactors. In: Endo I, Nagamune, T editors. Nano/Micro Biotechnology, Vol. 119. New York: Springer Berlin Heidelberg; 2009:251–265.
-
(2009)
Nano/Micro Biotechnology
, vol.119
, pp. 251-265
-
-
Sato, K.1
Kitamori, T.2
-
53
-
-
84886221183
-
Fundamentals of microfluidics devices
-
In, Kumar CSSR, editor., New Jersey, Wiley
-
Addae-Mensah KAZ, Wang H, Parsa S, CHIN T, Laksanasopin T, Sia SK. Fundamentals of microfluidics devices. In: Kumar CSSR, editor. Microfluidic Devices in Nanotechnology: Fundamental Concepts. New Jersey: Wiley; 2010:1–38.
-
(2010)
Microfluidic Devices in Nanotechnology: Fundamental Concepts
, pp. 1-38
-
-
Addae-Mensah, K.A.Z.1
Wang, H.2
Parsa, S.3
Chin, T.4
Laksanasopin, T.5
Sia, S.K.6
-
54
-
-
84949524599
-
Trends on microfluidic liposome production through hydrodynamic flow-focusing and microdroplet techniques for gene delivery applications
-
In, Finney L, editor., New York, Nova Publishers
-
De La Torre LG, Balbino TA, Sipoli CC, Vitor MT, Oliveira AF. Trends on microfluidic liposome production through hydrodynamic flow-focusing and microdroplet techniques for gene delivery applications. In: Finney L, editor. Advances in Liposomes Research. New York: Nova Publishers; 2014:63–96.
-
(2014)
Advances in Liposomes Research
, pp. 63-96
-
-
De La Torre, L.G.1
Balbino, T.A.2
Sipoli, C.C.3
Vitor, M.T.4
Oliveira, A.F.5
-
56
-
-
84859341988
-
A practical guide for the fabrication of microfluidic devices using glass and silicon
-
Iliescu C, Taylor H, Avram M, Miao J, Franssila S. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 2012;6.
-
(2012)
Biomicrofluidics
, vol.6
-
-
Iliescu, C.1
Taylor, H.2
Avram, M.3
Miao, J.4
Franssila, S.5
-
57
-
-
84942289952
-
Warpage characterization of microchannels fabricated by injection molding
-
Çetin B, Koska AK, Erdal M. Warpage characterization of microchannels fabricated by injection molding. J Micro-and Nano-Manufacturing 2015;3:021005.
-
(2015)
J Micro-and Nano-Manufacturing
, vol.3
, pp. 021005
-
-
Çetin, B.1
Koska, A.K.2
Erdal, M.3
-
59
-
-
84930668091
-
Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices
-
Guckenberger DJ, de Groot T, Wan AM-D, Beebe D, Young E. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 2015;15:2364–2378.
-
(2015)
Lab Chip
, vol.15
, pp. 2364-2378
-
-
Guckenberger, D.J.1
de Groot, T.2
Wan, A.M.-D.3
Beebe, D.4
Young, E.5
-
60
-
-
79953199826
-
Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography
-
Wilson ME, Kota N, Kim Y, Wang Y, Stolz DB, LeDuc PR, Ozdoganlar OB. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip 2011;11:1550–1555.
-
(2011)
Lab Chip
, vol.11
, pp. 1550-1555
-
-
Wilson, M.E.1
Kota, N.2
Kim, Y.3
Wang, Y.4
Stolz, D.B.5
LeDuc, P.R.6
Ozdoganlar, O.B.7
-
61
-
-
0035984039
-
Poly (dimethylsiloxane) as a material for fabricating microfluidic devices
-
Mcdonald JC, Whitesides GM. Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res. 2002;35:491–499.
-
(2002)
Acc Chem Res.
, vol.35
, pp. 491-499
-
-
Mcdonald, J.C.1
Whitesides, G.M.2
-
62
-
-
0032136806
-
Diffusion of gases in silicone polymers: molecular dynamics simulations
-
Charati S, Stern S. Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 1998;31:5529–5535.
-
(1998)
Macromolecules
, vol.31
, pp. 5529-5535
-
-
Charati, S.1
Stern, S.2
-
63
-
-
0347134477
-
Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies
-
Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003;24:3563–3576.
-
(2003)
Electrophoresis
, vol.24
, pp. 3563-3576
-
-
Sia, S.K.1
Whitesides, G.M.2
-
64
-
-
84869473161
-
Integration of microreactors with spectroscopic detection for online reaction monitoring and catalyst characterization
-
Yue J, Schouten JC, Alexander Nijhuis T. Integration of microreactors with spectroscopic detection for online reaction monitoring and catalyst characterization. Ind Eng Chem Res. 2012;51:14583–14609.
-
(2012)
Ind Eng Chem Res.
, vol.51
, pp. 14583-14609
-
-
Yue, J.1
Schouten, J.C.2
Alexander Nijhuis, T.3
-
66
-
-
77950336131
-
Introduction to Microfluidics
-
editors. New York Springer Science & Business Media;
-
Sommer GJ, Chang DS, Jain A, Langelier SM, Park J, Rhee M, Wang F, Zeitoun RI, Burns MA. Introduction to Microfluidics. Tian W-C, Finehout E editors. Microfluidics for Biological Applications. Vol. 16. New York: Springer Science & Business Media; 2008.
-
(2008)
Microfluidics for Biological Applications
, vol.16
-
-
Sommer, G.J.1
Chang, D.S.2
Jain, A.3
Langelier, S.M.4
Park, J.5
Rhee, M.6
Wang, F.7
Zeitoun, R.I.8
Burns, M.A.9
Tian, W.-C.10
Finehout, E.11
-
67
-
-
77953747083
-
A microfluidic mixer with self-excited “turbulent” fluid motion for wide viscosity ratio applications
-
Xia HM, Wang ZP, Koh YX, May KT. A microfluidic mixer with self-excited “turbulent” fluid motion for wide viscosity ratio applications. Lab Chip 2010;10:1712–1716.
-
(2010)
Lab Chip
, vol.10
, pp. 1712-1716
-
-
Xia, H.M.1
Wang, Z.P.2
Koh, Y.X.3
May, K.T.4
-
68
-
-
84961960482
-
Cultivation of yeast in diffusion-based microfluidic device
-
Oliveira AF, Pelegati VB, Carvalho HF, Cesar CL, Bastos RG, De la Torre LG. Cultivation of yeast in diffusion-based microfluidic device. Biochem Eng J. 2016;105:288–295.
-
(2016)
Biochem Eng J.
, vol.105
, pp. 288-295
-
-
Oliveira, A.F.1
Pelegati, V.B.2
Carvalho, H.F.3
Cesar, C.L.4
Bastos, R.G.5
De la Torre, L.G.6
-
69
-
-
84055207544
-
A robust diffusion-based gradient generator for dynamic cell assays
-
Atencia J, Cooksey GA, Locascio LE. A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 2012;12:309–316.
-
(2012)
Lab Chip
, vol.12
, pp. 309-316
-
-
Atencia, J.1
Cooksey, G.A.2
Locascio, L.E.3
-
70
-
-
17144398875
-
Human neural stem cell growth and differentiation in a gradient-generating microfluidic device
-
Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 2005;5:401–406.
-
(2005)
Lab Chip
, vol.5
, pp. 401-406
-
-
Chung, B.G.1
Flanagan, L.A.2
Rhee, S.W.3
Schwartz, P.H.4
Lee, A.P.5
Monuki, E.S.6
Jeon, N.L.7
-
71
-
-
80054021855
-
Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions
-
Chen YH, Peng CC, Cheng YJ, Wu JG, Tung YC. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab Chip 2011;11:3626–3633.
-
(2011)
Lab Chip
, vol.11
, pp. 3626-3633
-
-
Chen, Y.H.1
Peng, C.C.2
Cheng, Y.J.3
Wu, J.G.4
Tung, Y.C.5
-
72
-
-
46149091744
-
Drop-based microfluidic devices for encapsulation of single cells
-
Köster S, Angilè FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD, Weitz DA. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 2008;8:1110–1115.
-
(2008)
Lab Chip
, vol.8
, pp. 1110-1115
-
-
Köster, S.1
Angilè, F.E.2
Duan, H.3
Agresti, J.J.4
Wintner, A.5
Schmitz, C.6
Rowat, A.C.7
Merten, C.A.8
Pisignano, D.9
Griffiths, A.D.10
Weitz, D.A.11
-
73
-
-
69149108257
-
Progress technology in microencapsulation methods for Cell therapy
-
Rabanel JM, Banquy X, Zouaoui H, Mokhtar M, Hildgen P. Progress technology in microencapsulation methods for Cell therapy. Biotechnol Prog. 2009;25:946–963.
-
(2009)
Biotechnol Prog.
, vol.25
, pp. 946-963
-
-
Rabanel, J.M.1
Banquy, X.2
Zouaoui, H.3
Mokhtar, M.4
Hildgen, P.5
-
74
-
-
84867311626
-
Droplet electroporation in microfluidics for efficient cell transformation with or without cell wall removal
-
Qu B, Eu Y-J, Jeong W-J, Kim D-P. Droplet electroporation in microfluidics for efficient cell transformation with or without cell wall removal. Lab Chip 2012;12:4483.
-
(2012)
Lab Chip
, vol.12
, pp. 4483
-
-
Qu, B.1
Eu, Y.-J.2
Jeong, W.-J.3
Kim, D.-P.4
-
75
-
-
84915750351
-
A droplet-to-digital (D2D) microfluidic device for single cell assays †
-
Shih SCC, Gach PC, Sustarich J, Simmons BA, Adams PD, Singh S, Singh AK. A droplet-to-digital (D2D) microfluidic device for single cell assays †. Lab Chip 2015;15:225–236.
-
(2015)
Lab Chip
, vol.15
, pp. 225-236
-
-
Shih, S.C.C.1
Gach, P.C.2
Sustarich, J.3
Simmons, B.A.4
Adams, P.D.5
Singh, S.6
Singh, A.K.7
-
76
-
-
84855405452
-
Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay
-
Cai LF, Zhu Y, Du GS, Fang Q. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay. Anal Chem. 2011;84:446–452.
-
(2011)
Anal Chem.
, vol.84
, pp. 446-452
-
-
Cai, L.F.1
Zhu, Y.2
Du, G.S.3
Fang, Q.4
-
77
-
-
33645243393
-
Cell culture and life support system for microbioreactor and bioassay
-
Tanaka Y, Sato K, Yamato M, Okano T, Kitamori T. Cell culture and life support system for microbioreactor and bioassay. J Chromatogr A 2006;1111:233–237.
-
(2006)
J Chromatogr A
, vol.1111
, pp. 233-237
-
-
Tanaka, Y.1
Sato, K.2
Yamato, M.3
Okano, T.4
Kitamori, T.5
-
78
-
-
84870904732
-
Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions
-
Jones CN, Dalli J, Dimisko L, Wong E, Serhan CN, Irimia D. Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions. Proc Natl Acad Sci USA 2012;109:20560–20565.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 20560-20565
-
-
Jones, C.N.1
Dalli, J.2
Dimisko, L.3
Wong, E.4
Serhan, C.N.5
Irimia, D.6
-
79
-
-
84881077335
-
Design of a prototype flow microreactor for synthetic biology in vitro
-
Boehm CR, Freemont PS, Ces O. Design of a prototype flow microreactor for synthetic biology in vitro. Lab Chip 2013;13:3426–3432.
-
(2013)
Lab Chip
, vol.13
, pp. 3426-3432
-
-
Boehm, C.R.1
Freemont, P.S.2
Ces, O.3
-
80
-
-
77958544387
-
Development of a single-use microbioreactor for cultivation of microorganisms
-
Schäpper D, Stocks SM, Szita N, Lantz AE, Gernaey KV. Development of a single-use microbioreactor for cultivation of microorganisms. Chem Eng J. 2010;160:891–898.
-
(2010)
Chem Eng J.
, vol.160
, pp. 891-898
-
-
Schäpper, D.1
Stocks, S.M.2
Szita, N.3
Lantz, A.E.4
Gernaey, K.V.5
-
81
-
-
67349218380
-
Modeling growth and quorum sensing in biofilms grown in microfluidic chambers
-
Janakiraman V, Englert D, Jayaraman A, Baskaran H. Modeling growth and quorum sensing in biofilms grown in microfluidic chambers. Ann Biomed Eng. 2009;37:1206–1216.
-
(2009)
Ann Biomed Eng.
, vol.37
, pp. 1206-1216
-
-
Janakiraman, V.1
Englert, D.2
Jayaraman, A.3
Baskaran, H.4
-
82
-
-
4644343922
-
Bacterial persistence as a phenotypic switch
-
Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science 2004;305:1622–1625.
-
(2004)
Science
, vol.305
, pp. 1622-1625
-
-
Balaban, N.Q.1
Merrin, J.2
Chait, R.3
Kowalik, L.4
Leibler, S.5
-
83
-
-
21644441288
-
Long-term monitoring of bacteria undergoing programmed population control in a microchemostat
-
Balagaddé FK, You L, Hansen CL, Arnold FH, Quake SR. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005;309:137–140.
-
(2005)
Science
, vol.309
, pp. 137-140
-
-
Balagaddé, F.K.1
You, L.2
Hansen, C.L.3
Arnold, F.H.4
Quake, S.R.5
-
84
-
-
84872090939
-
Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells
-
Cimetta E, Sirabella D, Yeager K, Davidson K, Simon J, Moon RT, Vunjak-Novakovic G. Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells. Lab Chip 2013;13:355–364.
-
(2013)
Lab Chip
, vol.13
, pp. 355-364
-
-
Cimetta, E.1
Sirabella, D.2
Yeager, K.3
Davidson, K.4
Simon, J.5
Moon, R.T.6
Vunjak-Novakovic, G.7
-
85
-
-
67349185120
-
Integrated microfluidic devices for combinatorial cell-based assays
-
Yu ZTF, Kamei K, Takahashi H, Shu CJ, Wang X, He GW, Silverman R, Radu CG, Witte ON, Lee K-B, Tseng H-R. Integrated microfluidic devices for combinatorial cell-based assays. Biomed Microdevices 2009;11:547–555.
-
(2009)
Biomed Microdevices
, vol.11
, pp. 547-555
-
-
Yu, Z.T.F.1
Kamei, K.2
Takahashi, H.3
Shu, C.J.4
Wang, X.5
He, G.W.6
Silverman, R.7
Radu, C.G.8
Witte, O.N.9
Lee, K.-B.10
Tseng, H.-R.11
-
86
-
-
66849138510
-
Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells
-
Song JW, Cavnar SP, Walker AC, Luker KE, Gupta M, Tung Y-C, Luker GD, Takayama S. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 2009;4:e5756.
-
(2009)
PLoS One
, vol.4
-
-
Song, J.W.1
Cavnar, S.P.2
Walker, A.C.3
Luker, K.E.4
Gupta, M.5
Tung, Y.-C.6
Luker, G.D.7
Takayama, S.8
-
87
-
-
47749112521
-
Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms
-
Lee JH, Kaplan JB, Lee WY. Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed Microdevices 2008;10:489–498.
-
(2008)
Biomed Microdevices
, vol.10
, pp. 489-498
-
-
Lee, J.H.1
Kaplan, J.B.2
Lee, W.Y.3
-
88
-
-
33745504892
-
Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor
-
Zhang Z, Boccazzi P, Choi H-G, Perozziello G, Sinskey AJ, Jensen KF. Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor. Lab Chip 2006;6:906–913.
-
(2006)
Lab Chip
, vol.6
, pp. 906-913
-
-
Zhang, Z.1
Boccazzi, P.2
Choi, H.-G.3
Perozziello, G.4
Sinskey, A.J.5
Jensen, K.F.6
-
89
-
-
84898630931
-
A novel functionalisation process for glucose oxidase immobilisation in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations
-
Cerqueira MRF, Grasseschi D, Matos RC, Angnes L. A novel functionalisation process for glucose oxidase immobilisation in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations. Talanta 2014;126:20–26.
-
(2014)
Talanta
, vol.126
, pp. 20-26
-
-
Cerqueira, M.R.F.1
Grasseschi, D.2
Matos, R.C.3
Angnes, L.4
-
90
-
-
84879831868
-
Microfluidic multi-input reactor for biocatalytic synthesis using transketolase
-
Lawrence J, O'Sullivan B, Lye GJ, Wohlgemuth R, Szita N. Microfluidic multi-input reactor for biocatalytic synthesis using transketolase. J Mol Catal B Enzym. 2013;95:111–117.
-
(2013)
J Mol Catal B Enzym.
, vol.95
, pp. 111-117
-
-
Lawrence, J.1
O'Sullivan, B.2
Lye, G.J.3
Wohlgemuth, R.4
Szita, N.5
-
91
-
-
84857276528
-
A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics
-
Cira NJ, Ho JY, Dueck ME, Weibel DB. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab Chip 2012;12:1052–1059.
-
(2012)
Lab Chip
, vol.12
, pp. 1052-1059
-
-
Cira, N.J.1
Ho, J.Y.2
Dueck, M.E.3
Weibel, D.B.4
-
92
-
-
65349084359
-
Soft inertial microfluidics for high throughput separation of bacteria from human blood cells
-
Wu Z, Willing B, Bjerketorp J, Jansson JK, Hjort K. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 2009;9:1193–1199.
-
(2009)
Lab Chip
, vol.9
, pp. 1193-1199
-
-
Wu, Z.1
Willing, B.2
Bjerketorp, J.3
Jansson, J.K.4
Hjort, K.5
-
93
-
-
13844308944
-
On-chip cell lysis by local hydroxide generation
-
Carlo D, Di, Ionescu-Zanetti C, Zhang Y, Hung P, Lee LP. On-chip cell lysis by local hydroxide generation. Lab Chip 2005;5:171–178.
-
(2005)
Lab Chip
, vol.5
, pp. 171-178
-
-
Carlo, D.1
Di Ionescu-Zanetti, C.2
Zhang, Y.3
Hung, P.4
Lee, L.P.5
-
94
-
-
79952658974
-
Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid
-
Yu J, Ge L, Huang J, Wang S, Ge S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 2011;11:1286–1291.
-
(2011)
Lab Chip
, vol.11
, pp. 1286-1291
-
-
Yu, J.1
Ge, L.2
Huang, J.3
Wang, S.4
Ge, S.5
-
95
-
-
84865258581
-
Blood separation on microfluidic paper-based analytical devices
-
Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W. Blood separation on microfluidic paper-based analytical devices. Lab Chip 2012;12:3392–3398.
-
(2012)
Lab Chip
, vol.12
, pp. 3392-3398
-
-
Songjaroen, T.1
Dungchai, W.2
Chailapakul, O.3
Henry, C.S.4
Laiwattanapaisal, W.5
-
96
-
-
84055172797
-
Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices
-
Yang X, Forouzan O, Brown TP, Shevkoplyas SS. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 2012;12:274–280.
-
(2012)
Lab Chip
, vol.12
, pp. 274-280
-
-
Yang, X.1
Forouzan, O.2
Brown, T.P.3
Shevkoplyas, S.S.4
-
97
-
-
33344476424
-
Microfluidics technology for manipulation and analysis of biological cells
-
Yi C, Li C-W, Ji S, Yang M. Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 2006;560:1–23.
-
(2006)
Anal Chim Acta
, vol.560
, pp. 1-23
-
-
Yi, C.1
Li, C.-W.2
Ji, S.3
Yang, M.4
-
98
-
-
0025210818
-
Design of an open-tubular columm liquid chromatograph using silicon chip technology
-
Manz A, Miyahara Y, Miura J, Watanabe Y, Miyage H, Sato K. Design of an open-tubular columm liquid chromatograph using silicon chip technology. Sens Actuators 1990;1:249–255.
-
(1990)
Sens Actuators
, vol.1
, pp. 249-255
-
-
Manz, A.1
Miyahara, Y.2
Miura, J.3
Watanabe, Y.4
Miyage, H.5
Sato, K.6
-
99
-
-
84898966455
-
Engineering microfluidic concentration gradient generators for biological applications
-
Toh AGG, Wang ZP, Yang C, Nguyen N-T. Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid. 2014;16:1–18.
-
(2014)
Microfluid Nanofluid.
, vol.16
, pp. 1-18
-
-
Toh, A.G.G.1
Wang, Z.P.2
Yang, C.3
Nguyen, N.-T.4
-
100
-
-
84951860799
-
A review of chemical gradient systems for cell analysis
-
Somaweera H, Ibraguimov A, Pappas D. A review of chemical gradient systems for cell analysis. Anal Chim Acta 2016;907:7–17.
-
(2016)
Anal Chim Acta
, vol.907
, pp. 7-17
-
-
Somaweera, H.1
Ibraguimov, A.2
Pappas, D.3
-
101
-
-
67649624720
-
Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients
-
Englert DL, Manson MD, Jayaraman A. Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl Environ Microbiol. 2009;75:4557–4564.
-
(2009)
Appl Environ Microbiol.
, vol.75
, pp. 4557-4564
-
-
Englert, D.L.1
Manson, M.D.2
Jayaraman, A.3
-
102
-
-
84928537269
-
The effect of biomolecular gradients on mesenchymal stem cell chondrogenesis under shear stress
-
Rivera AL, Baskaran H. The effect of biomolecular gradients on mesenchymal stem cell chondrogenesis under shear stress. Micromachines 2015;6:330–346.
-
(2015)
Micromachines
, vol.6
, pp. 330-346
-
-
Rivera, A.L.1
Baskaran, H.2
-
103
-
-
0000259359
-
Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels
-
Ismagilov RF, Strook AD, Kenis PJA, Whitesides GM. Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett. 2000;76:2376–2378.
-
(2000)
Appl Phys Lett.
, vol.76
, pp. 2376-2378
-
-
Ismagilov, R.F.1
Strook, A.D.2
Kenis, P.J.A.3
Whitesides, G.M.4
-
104
-
-
0033485870
-
Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor
-
Kamholz AE, Weigl BH, Finlayson BA, Yager P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem. 1999;71:5340–5347.
-
(1999)
Anal Chem.
, vol.71
, pp. 5340-5347
-
-
Kamholz, A.E.1
Weigl, B.H.2
Finlayson, B.A.3
Yager, P.4
-
105
-
-
0035866594
-
Generation of gradients having complex shapes using microfluidic networks
-
Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM. Generation of gradients having complex shapes using microfluidic networks. Anal Chem. 2001;73:1240–1246.
-
(2001)
Anal Chem.
, vol.73
, pp. 1240-1246
-
-
Dertinger, S.K.W.1
Chiu, D.T.2
Jeon, N.L.3
Whitesides, G.M.4
-
106
-
-
33646746703
-
Universal microfluidic gradient generator
-
Irimia D, Geba DA, Toner M. Universal microfluidic gradient generator. Anal Chem. 2006;78:3472–3477.
-
(2006)
Anal Chem.
, vol.78
, pp. 3472-3477
-
-
Irimia, D.1
Geba, D.A.2
Toner, M.3
-
107
-
-
52649136688
-
Modular microfluidics for gradient generation
-
Sun K, Wang Z, Jiang X. Modular microfluidics for gradient generation. Lab Chip 2008;8:1536.
-
(2008)
Lab Chip
, vol.8
, pp. 1536
-
-
Sun, K.1
Wang, Z.2
Jiang, X.3
-
108
-
-
0141989831
-
Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip
-
Yang M, Yang J, Li C-W, Zhao J. Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip. Lab Chip 2002;2:158–163.
-
(2002)
Lab Chip
, vol.2
, pp. 158-163
-
-
Yang, M.1
Yang, J.2
Li, C.-W.3
Zhao, J.4
-
109
-
-
20844440162
-
Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator
-
Walker GM, Sai J, Richmond A, Stremler M, Chung CY, Wikswo JP. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 2005;5:611–618.
-
(2005)
Lab Chip
, vol.5
, pp. 611-618
-
-
Walker, G.M.1
Sai, J.2
Richmond, A.3
Stremler, M.4
Chung, C.Y.5
Wikswo, J.P.6
-
110
-
-
33846932052
-
Generation of complex concentration profiles in microchannels in a logarithmically small number of steps
-
Campbell K, Groisman A. Generation of complex concentration profiles in microchannels in a logarithmically small number of steps. Lab Chip 2007;7:264–272.
-
(2007)
Lab Chip
, vol.7
, pp. 264-272
-
-
Campbell, K.1
Groisman, A.2
-
111
-
-
70549085891
-
Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel
-
Lee SS, Yim Y, Ahn KH, Lee SJ. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed Microdevices 2009;11:1021–1027.
-
(2009)
Biomed Microdevices
, vol.11
, pp. 1021-1027
-
-
Lee, S.S.1
Yim, Y.2
Ahn, K.H.3
Lee, S.J.4
-
112
-
-
36349024270
-
Cell-based high content screening using an integrated microfluidic device
-
Ye N, Qin J, Shi W, Liu X, Lin B. Cell-based high content screening using an integrated microfluidic device. Lab Chip 2007;7:1696–1704.
-
(2007)
Lab Chip
, vol.7
, pp. 1696-1704
-
-
Ye, N.1
Qin, J.2
Shi, W.3
Liu, X.4
Lin, B.5
-
113
-
-
84949457748
-
High-throughput single cell multidrug resistance analysis with multifunctional gradients-customizing microfluidic device
-
Li Y, Chen D, Zhang Y, Liu C, Chen P, Wang Y, Feng X, Du W, Liu B. High-throughput single cell multidrug resistance analysis with multifunctional gradients-customizing microfluidic device. Sens Actuatores B Chem. 2016;225:563–571.
-
(2016)
Sens Actuatores B Chem.
, vol.225
, pp. 563-571
-
-
Li, Y.1
Chen, D.2
Zhang, Y.3
Liu, C.4
Chen, P.5
Wang, Y.6
Feng, X.7
Du, W.8
Liu, B.9
-
114
-
-
0037965621
-
A sensitive, versatile microfluidic assay for bacterial chemotaxis
-
Mao H, Cremer PS, Manson MD. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc Natl Acad Sci USA 2003;100:5449–5454.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 5449-5454
-
-
Mao, H.1
Cremer, P.S.2
Manson, M.D.3
-
115
-
-
84921329677
-
An in vitro microfluidic gradient generator platform for antimicrobial testing
-
DiCicco M, Neethirajan S. An in vitro microfluidic gradient generator platform for antimicrobial testing. BioChip J. 2014;8:282–288.
-
(2014)
BioChip J.
, vol.8
, pp. 282-288
-
-
DiCicco, M.1
Neethirajan, S.2
-
116
-
-
33947262968
-
A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii
-
Steinhaus B, Garcia ML, Shen AQ, Angenent LT. A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii. Appl Environ Microbiol. 2007;73:1653–1658.
-
(2007)
Appl Environ Microbiol.
, vol.73
, pp. 1653-1658
-
-
Steinhaus, B.1
Garcia, M.L.2
Shen, A.Q.3
Angenent, L.T.4
-
117
-
-
78049262939
-
Counting bacteria on a microfluidic chip
-
Song Y, Zhang H, Chon CH, Chen S, Pan X, Li D. Counting bacteria on a microfluidic chip. Anal Chim Acta 2010;681:82–86.
-
(2010)
Anal Chim Acta
, vol.681
, pp. 82-86
-
-
Song, Y.1
Zhang, H.2
Chon, C.H.3
Chen, S.4
Pan, X.5
Li, D.6
-
118
-
-
84949604269
-
A laminar flow microfluidic fuel cell for detection of hexavalent chromium concentration
-
Ye D, Yang Y, Li J, Zhu X, Liao Q, Zhang B. A laminar flow microfluidic fuel cell for detection of hexavalent chromium concentration. Biomicrofluidics 2015;9:064110.
-
(2015)
Biomicrofluidics
, vol.9
, pp. 064110
-
-
Ye, D.1
Yang, Y.2
Li, J.3
Zhu, X.4
Liao, Q.5
Zhang, B.6
-
119
-
-
69549115993
-
The microfluidic palette: a diffusive gradient generator with spatio-temporal control
-
Atencia J, Morrow J, Locascio LE. The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab Chip 2009;9:2707–2714.
-
(2009)
Lab Chip
, vol.9
, pp. 2707-2714
-
-
Atencia, J.1
Morrow, J.2
Locascio, L.E.3
-
120
-
-
84905457582
-
Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device
-
Hou Z, An Y, Hjort K, Hjort K, Sandegren L, Wu Z. Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device. Lab Chip 2014;14:3409–3418.
-
(2014)
Lab Chip
, vol.14
, pp. 3409-3418
-
-
Hou, Z.1
An, Y.2
Hjort, K.3
Hjort, K.4
Sandegren, L.5
Wu, Z.6
-
121
-
-
84955492530
-
A microfluidic dual gradient generator for conducting cell-based drug combination assays
-
Kilinc D, Schwab J, Rampini S, Ikpekha OW, Thampi A, Blasiak A, Li P, Schwamborn R, Kolch W, Matallanas D, Lee GU. A microfluidic dual gradient generator for conducting cell-based drug combination assays. Integr Biol. 2016;8:39–49.
-
(2016)
Integr Biol.
, vol.8
, pp. 39-49
-
-
Kilinc, D.1
Schwab, J.2
Rampini, S.3
Ikpekha, O.W.4
Thampi, A.5
Blasiak, A.6
Li, P.7
Schwamborn, R.8
Kolch, W.9
Matallanas, D.10
Lee, G.U.11
-
122
-
-
85007069863
-
-
July 10,, US 216,526
-
Locascio LE, Atencia-Fernandez JF. Method and device for generating diffusive gradients in a microfluidic chamber. U.S. Patent No. 8,216,526. July 10, 2012. US Patent 8,216,526.
-
(2012)
Method and device for generating diffusive gradients in a microfluidic chamber
-
-
Locascio, L.E.1
Atencia-Fernandez, J.F.2
-
123
-
-
34548354876
-
Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber
-
Saadi W, Rhee SW, Lin F, Vahidi B, Chung BG, Jeon NL. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 2007;9:627–635.
-
(2007)
Biomed Microdevices
, vol.9
, pp. 627-635
-
-
Saadi, W.1
Rhee, S.W.2
Lin, F.3
Vahidi, B.4
Chung, B.G.5
Jeon, N.L.6
-
124
-
-
33644659211
-
Characterization of a membrane-based gradient generator for use in cell-signaling studies
-
Abhyankar VV, Lokuta MA, Huttenlocher A, Beebe DJ. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 2006;6:389–393.
-
(2006)
Lab Chip
, vol.6
, pp. 389-393
-
-
Abhyankar, V.V.1
Lokuta, M.A.2
Huttenlocher, A.3
Beebe, D.J.4
-
125
-
-
33644661720
-
A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis
-
Diao J, Young L, Kim S, Fogarty EA, Heilman SM, Zhou P, Shuler ML, Wu M, DeLisa MP. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 2006;6:381.
-
(2006)
Lab Chip
, vol.6
, pp. 381
-
-
Diao, J.1
Young, L.2
Kim, S.3
Fogarty, E.A.4
Heilman, S.M.5
Zhou, P.6
Shuler, M.L.7
Wu, M.8
DeLisa, M.P.9
-
126
-
-
33645469924
-
Generation of complex, static solution gradients in microfluidic channels
-
Wu H, Huang B, Zare RN. Generation of complex, static solution gradients in microfluidic channels. J Am Chem Soc. 2006;128:4194–4195.
-
(2006)
J Am Chem Soc.
, vol.128
, pp. 4194-4195
-
-
Wu, H.1
Huang, B.2
Zare, R.N.3
-
127
-
-
84899899239
-
Rapid and accurate generation of various concentration gradients using polydimethylsiloxane-sealed hydrogel device
-
Kim M, Jia M, Kim Y, Kim T. Rapid and accurate generation of various concentration gradients using polydimethylsiloxane-sealed hydrogel device. Microfluid 2014;16:645–654.
-
(2014)
Microfluid
, vol.16
, pp. 645-654
-
-
Kim, M.1
Jia, M.2
Kim, Y.3
Kim, T.4
-
128
-
-
84873704012
-
Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels
-
Choi E, Chang H, Young Lim C, Kim T, Park J. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels. Lab Chip 2012;12:3968–3975.
-
(2012)
Lab Chip
, vol.12
, pp. 3968-3975
-
-
Choi, E.1
Chang, H.2
Young Lim, C.3
Kim, T.4
Park, J.5
-
129
-
-
84934878790
-
Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device
-
Garcia S, Sunyer R, Olivares A, Noailly J, Atencia J, Trepat X. Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device. Lab Chip 2015;15:2606–2614.
-
(2015)
Lab Chip
, vol.15
, pp. 2606-2614
-
-
Garcia, S.1
Sunyer, R.2
Olivares, A.3
Noailly, J.4
Atencia, J.5
Trepat, X.6
-
130
-
-
84896910353
-
A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration
-
McLaughlin LM, Xu H, Carden SE, Fisher S, Reyes M, Heilshorn SC, Monack DM. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration. Integr Biol. 2014;6:438–449.
-
(2014)
Integr Biol.
, vol.6
, pp. 438-449
-
-
McLaughlin, L.M.1
Xu, H.2
Carden, S.E.3
Fisher, S.4
Reyes, M.5
Heilshorn, S.C.6
Monack, D.M.7
-
131
-
-
84867288492
-
A microfluidic platform for rapid, stress-induced antibiotic susceptibility testing of Staphylococcus aureus
-
Kalashnikov M, Lee JC, Campbell J, Sauer-budge AF. A microfluidic platform for rapid, stress-induced antibiotic susceptibility testing of Staphylococcus aureus. Lab Chip 2012;2012:4523–4532.
-
(2012)
Lab Chip
, vol.2012
, pp. 4523-4532
-
-
Kalashnikov, M.1
Lee, J.C.2
Campbell, J.3
Sauer-budge, A.F.4
-
132
-
-
84925610299
-
Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device
-
Wang X, Atencia J, Ford RM. Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device. Biotechnol Bioeng. 2015;112:896–904.
-
(2015)
Biotechnol Bioeng.
, vol.112
, pp. 896-904
-
-
Wang, X.1
Atencia, J.2
Ford, R.M.3
-
133
-
-
84954564837
-
Local and global consequences of flow on bacterial quorum sensing
-
Kim MK, Ingremeau F, Zhao A, Bassler BL, Stone HA. Local and global consequences of flow on bacterial quorum sensing. Nat Microbiol. 2016;1:15005.
-
(2016)
Nat Microbiol.
, vol.1
, pp. 15005
-
-
Kim, M.K.1
Ingremeau, F.2
Zhao, A.3
Bassler, B.L.4
Stone, H.A.5
-
134
-
-
84862792012
-
Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber
-
Wang X, Long T, Ford RM. Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber. Biotechnol Bioeng. 2012;109:1622–1628.
-
(2012)
Biotechnol Bioeng.
, vol.109
, pp. 1622-1628
-
-
Wang, X.1
Long, T.2
Ford, R.M.3
-
136
-
-
84948157772
-
One-step fabrication of inorganic/organic hybrid microspheres with tunable surface texture for controlled drug release application
-
Dong H, Tang G, Ma T, Cao X. One-step fabrication of inorganic/organic hybrid microspheres with tunable surface texture for controlled drug release application. J Mater Sci Mater Med. 2016;27:1–8.
-
(2016)
J Mater Sci Mater Med.
, vol.27
, pp. 1-8
-
-
Dong, H.1
Tang, G.2
Ma, T.3
Cao, X.4
-
137
-
-
43149111583
-
Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms
-
Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Köster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 2008;15:427–437.
-
(2008)
Chem Biol
, vol.15
, pp. 427-437
-
-
Clausell-Tormos, J.1
Lieber, D.2
Baret, J.C.3
El-Harrak, A.4
Miller, O.J.5
Frenz, L.6
Blouwolff, J.7
Humphry, K.J.8
Köster, S.9
Duan, H.10
Holtze, C.11
Weitz, D.A.12
Griffiths, A.D.13
Merten, C.A.14
-
138
-
-
84862212456
-
Droplet microfluidics for high-throughput biological assays
-
Guo MT, Rotem A, Heyman JA, Weitz DA. Droplet microfluidics for high-throughput biological assays. Lab Chip 2012;12:2146–2155.
-
(2012)
Lab Chip
, vol.12
, pp. 2146-2155
-
-
Guo, M.T.1
Rotem, A.2
Heyman, J.A.3
Weitz, D.A.4
-
140
-
-
84855675958
-
Surfactants in droplet-based microfluidics
-
Baret J-C. Surfactants in droplet-based microfluidics. Lab Chip 2012;12:422–433.
-
(2012)
Lab Chip
, vol.12
, pp. 422-433
-
-
Baret, J.-C.1
-
141
-
-
51949096580
-
Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics
-
Srisa-Art M, Dyson EC, DeMello AJ, Edel JB. Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics. Anal Chem. 2008;80:7063–7067.
-
(2008)
Anal Chem.
, vol.80
, pp. 7063-7067
-
-
Srisa-Art, M.1
Dyson, E.C.2
DeMello, A.J.3
Edel, J.B.4
-
142
-
-
80755158894
-
Simple and cheap microfluidic devices for the preparation of monodisperse emulsions
-
Deng N-N, Meng Z-J, Xie R, Ju X-J, Mou C-L, Wang W, Chu L-Y. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions. Lab Chip 2011;11:3963–3969.
-
(2011)
Lab Chip
, vol.11
, pp. 3963-3969
-
-
Deng, N.-N.1
Meng, Z.-J.2
Xie, R.3
Ju, X.-J.4
Mou, C.-L.5
Wang, W.6
Chu, L.-Y.7
-
143
-
-
34748901356
-
Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation
-
Tan W-H, Takeuchi S. Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation. Adv Mater. 2007;19:2696–2701.
-
(2007)
Adv Mater.
, vol.19
, pp. 2696-2701
-
-
Tan, W.-H.1
Takeuchi, S.2
-
144
-
-
84872510026
-
Droplet microfluidics driven by gradients of confinement
-
Dangla R, Kayi SC, Baroud CN. Droplet microfluidics driven by gradients of confinement. Proc Natl Acad Sci USA 2013;110:853–858.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 853-858
-
-
Dangla, R.1
Kayi, S.C.2
Baroud, C.N.3
-
145
-
-
0037455351
-
Formation of dispersions using “flow focusing” in microchannels
-
Anna SL, Bontoux N, Stone HA. Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett. 2003;82:364–366.
-
(2003)
Appl Phys Lett.
, vol.82
, pp. 364-366
-
-
Anna, S.L.1
Bontoux, N.2
Stone, H.A.3
-
146
-
-
4544366400
-
Dynamic pattern formation in a vesicle-generating microfluidic device
-
Thorsen T, Roberts RW, Arnold FH, Quake SR. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett. 2001;86:4163–4166.
-
(2001)
Phys Rev Lett.
, vol.86
, pp. 4163-4166
-
-
Thorsen, T.1
Roberts, R.W.2
Arnold, F.H.3
Quake, S.R.4
-
147
-
-
84904488850
-
Encapsulation of acetyl ginsenoside Rb 1 within monodisperse poly(DL-lactide-co-glycolide) microspheres using a microfluidic device
-
Samimi R, Salarian M, Xu WZ, Lui EMK, Charpentier PA. Encapsulation of acetyl ginsenoside Rb 1 within monodisperse poly(DL-lactide-co-glycolide) microspheres using a microfluidic device. Ind Eng Chem Res. 2014;53:11333–11344.
-
(2014)
Ind Eng Chem Res.
, vol.53
, pp. 11333-11344
-
-
Samimi, R.1
Salarian, M.2
Xu, W.Z.3
Lui, E.M.K.4
Charpentier, P.A.5
-
148
-
-
84954129615
-
Droplets and bubbles in microfluidic devices
-
Anna SL. Droplets and bubbles in microfluidic devices. Annu Rev Fluid Mech. 2016;48:285–309.
-
(2016)
Annu Rev Fluid Mech.
, vol.48
, pp. 285-309
-
-
Anna, S.L.1
-
149
-
-
79955614470
-
Encapsulating bacteria in agarose microparticles using
-
Eun Y, Utada AS, Copeland MF, Takeuchi S, Weibel DB. Encapsulating bacteria in agarose microparticles using. ACS Chem Biol. 2011;6:260–266.
-
(2011)
ACS Chem Biol.
, vol.6
, pp. 260-266
-
-
Eun, Y.1
Utada, A.S.2
Copeland, M.F.3
Takeuchi, S.4
Weibel, D.B.5
-
151
-
-
84877736912
-
Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting
-
Wu L, Chen P, Dong Y, Feng X, Liu B-F. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Biomed Microdevices 2013;15:553–560.
-
(2013)
Biomed Microdevices
, vol.15
, pp. 553-560
-
-
Wu, L.1
Chen, P.2
Dong, Y.3
Feng, X.4
Liu, B.-F.5
-
152
-
-
33947184356
-
Quantitative detection of protein expression in single cells using droplet microfluidics
-
Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, DeMello AJ, Edel JB. Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun. 2007;2:1218–1220.
-
(2007)
Chem Commun.
, vol.2
, pp. 1218-1220
-
-
Huebner, A.1
Srisa-Art, M.2
Holt, D.3
Abell, C.4
Hollfelder, F.5
DeMello, A.J.6
Edel, J.B.7
-
153
-
-
84900315204
-
Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption
-
Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR, Stephanopoulos G. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol. 2014;32:473–478.
-
(2014)
Nat Biotechnol.
, vol.32
, pp. 473-478
-
-
Wang, B.L.1
Ghaderi, A.2
Zhou, H.3
Agresti, J.4
Weitz, D.A.5
Fink, G.R.6
Stephanopoulos, G.7
-
154
-
-
79952147403
-
Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient
-
Bui M-PN, Li CA, Han KN, Choo J, Lee EK, Seong GH. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal Chem. 2011;83:1603–1608.
-
(2011)
Anal Chem.
, vol.83
, pp. 1603-1608
-
-
Bui, M.-P.N.1
Li, C.A.2
Han, K.N.3
Choo, J.4
Lee, E.K.5
Seong, G.H.6
-
155
-
-
84908637041
-
Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets
-
Piao Y, Han DJ, Azad MR, Park M, Seo TS. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets. Biosens Bioelectron. 2015;65:220–225.
-
(2015)
Biosens Bioelectron.
, vol.65
, pp. 220-225
-
-
Piao, Y.1
Han, D.J.2
Azad, M.R.3
Park, M.4
Seo, T.S.5
-
156
-
-
85007124337
-
-
U.S. 8,367,370, Feb. 5,, US 367,370
-
Wheeler AR, Barbulovic-Nad I. Droplet-based cell culture and cell assay using digital microfluidics. U.S. Patent Number 8,367,370. Feb. 5, 2013. US Patent 8,367,370.
-
(2013)
Droplet-based cell culture and cell assay using digital microfluidics
-
-
Wheeler, A.R.1
Barbulovic-Nad, I.2
-
157
-
-
79751527622
-
Integrated microbioreactor for culture and analysis of bacteria, algae and yeast
-
Au SH, Shih SCC, Wheeler AR. Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomed Microdevices 2011;13:41–50.
-
(2011)
Biomed Microdevices
, vol.13
, pp. 41-50
-
-
Au, S.H.1
Shih, S.C.C.2
Wheeler, A.R.3
-
158
-
-
84973141722
-
A droplet microfluidic platform for automating genetic engineering
-
Gach PC, Shih SCC, Sustarich J, Keasling JD, Hillson NJ, Adams PD, Singh AK. A droplet microfluidic platform for automating genetic engineering. ACS Synth Biol. 2016;5:426–433.
-
(2016)
ACS Synth Biol.
, vol.5
, pp. 426-433
-
-
Gach, P.C.1
Shih, S.C.C.2
Sustarich, J.3
Keasling, J.D.4
Hillson, N.J.5
Adams, P.D.6
Singh, A.K.7
-
159
-
-
84861458369
-
A three-dimensional microfluidic approach to scaling up microencapsulation of cells
-
Tendulkar S, Childers C, Saul J, Opara EC, Ramasubramanian MK. A three-dimensional microfluidic approach to scaling up microencapsulation of cells. Biomed Microdevices 2012;14:461–469.
-
(2012)
Biomed Microdevices
, vol.14
, pp. 461-469
-
-
Tendulkar, S.1
Childers, C.2
Saul, J.3
Opara, E.C.4
Ramasubramanian, M.K.5
-
160
-
-
84874506976
-
Large-scale droplet production in microfluidic devices—an industrial perspective
-
Holtze C. Large-scale droplet production in microfluidic devices—an industrial perspective. J Phys D Appl Phys. 2013;46:114008.
-
(2013)
J Phys D Appl Phys.
, vol.46
, pp. 114008
-
-
Holtze, C.1
-
161
-
-
70349887672
-
Novel parallel integration of microfluidic device network for emulsion formation
-
Tetradis-Meris G, Rossetti D, Pulido de Torres C, Cao R, Lian G, Janes R. Novel parallel integration of microfluidic device network for emulsion formation. Ind Eng Chem Res. 2009;48:8881–8889.
-
(2009)
Ind Eng Chem Res.
, vol.48
, pp. 8881-8889
-
-
Tetradis-Meris, G.1
Rossetti, D.2
Pulido de Torres, C.3
Cao, R.4
Lian, G.5
Janes, R.6
-
162
-
-
38849164275
-
Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles
-
Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 2008;8:287–293.
-
(2008)
Lab Chip
, vol.8
, pp. 287-293
-
-
Nisisako, T.1
Torii, T.2
-
163
-
-
84904290904
-
Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions
-
Conchouso D, Castro D, Khan SA, Foulds IG. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab Chip 2014;14:3011–3020.
-
(2014)
Lab Chip
, vol.14
, pp. 3011-3020
-
-
Conchouso, D.1
Castro, D.2
Khan, S.A.3
Foulds, I.G.4
-
164
-
-
85007112979
-
-
US, 2012/0121481 A1, June,, US Patent 2012/0121481 A1
-
Romanowsky M, Abate AR, Weitz DA. Scale-up of flow-focusing microfluidic devices. Patent Number US 2012/0121481 A1. June, 2012. US Patent 2012/0121481 A1.
-
(2012)
Scale-up of flow-focusing microfluidic devices
-
-
Romanowsky, M.1
Abate, A.R.2
Weitz, D.A.3
-
165
-
-
84928923328
-
Parallelized ultra-high throughput microfluidic emulsifier for multiplex kinetic assays
-
Lim J, Caen O, Vrignon J, Konrad M, Taly V, Baret JC. Parallelized ultra-high throughput microfluidic emulsifier for multiplex kinetic assays. Biomicrofluidics 2015;9:034101 1–11.
-
(2015)
Biomicrofluidics
, vol.9
-
-
Lim, J.1
Caen, O.2
Vrignon, J.3
Konrad, M.4
Taly, V.5
Baret, J.C.6
-
166
-
-
79151469953
-
Microfluidic melt emulsification for encapsulation and release of actives
-
Sun BJ, Shum HC, Holtze C, Weitz DA. Microfluidic melt emulsification for encapsulation and release of actives. ACS Appl Mater Interfaces 2010;2:3411–3416.
-
(2010)
ACS Appl Mater Interfaces
, vol.2
, pp. 3411-3416
-
-
Sun, B.J.1
Shum, H.C.2
Holtze, C.3
Weitz, D.A.4
-
167
-
-
77956650292
-
Microfluidic reactor for continuous cultivation of Saccharomyces cerevisiae
-
Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Kähler C, Radespiel R, Büttgenbach S, Franco-Lara E, Krull R. Microfluidic reactor for continuous cultivation of Saccharomyces cerevisiae. Biotechnol Prog 2010;26:1259–1270.
-
(2010)
Biotechnol Prog
, vol.26
, pp. 1259-1270
-
-
Edlich, A.1
Magdanz, V.2
Rasch, D.3
Demming, S.4
Aliasghar Zadeh, S.5
Segura, R.6
Kähler, C.7
Radespiel, R.8
Büttgenbach, S.9
Franco-Lara, E.10
Krull, R.11
-
169
-
-
84877574899
-
Dynamic trapping and manipulation of biological cells with optical tweezers
-
Li X, Cheah CC, Hu S, Sun D. Dynamic trapping and manipulation of biological cells with optical tweezers. Automatica 2013;49:1614–1625.
-
(2013)
Automatica
, vol.49
, pp. 1614-1625
-
-
Li, X.1
Cheah, C.C.2
Hu, S.3
Sun, D.4
-
170
-
-
84889084264
-
Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes
-
Probst C, Grünberger A, Wiechert W, Kohlheyer D. Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes. J Microbiol Methods 2013;95:470–476.
-
(2013)
J Microbiol Methods
, vol.95
, pp. 470-476
-
-
Probst, C.1
Grünberger, A.2
Wiechert, W.3
Kohlheyer, D.4
-
171
-
-
84863033996
-
Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry
-
Chen Q, Wu J, Zhang Y, Lin J-M. Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry. Anal Chem. 2012;84:1695–1701.
-
(2012)
Anal Chem.
, vol.84
, pp. 1695-1701
-
-
Chen, Q.1
Wu, J.2
Zhang, Y.3
Lin, J.-M.4
-
172
-
-
80053562185
-
Optofluidic microsystems for chemical and biological analysis
-
Fan X, White IM. Optofluidic microsystems for chemical and biological analysis. Nat Photonics 2011;5:591–597.
-
(2011)
Nat Photonics
, vol.5
, pp. 591-597
-
-
Fan, X.1
White, I.M.2
-
173
-
-
84945444868
-
Compartmented microfluidic bioreactor system using magnetic enzyme immobilisates for fast small-scale biotransformation studies
-
Hübner J, Brakowaski R, Wohlgemuth J, Brenner-weiß G, Franzreb M. Compartmented microfluidic bioreactor system using magnetic enzyme immobilisates for fast small-scale biotransformation studies. Eng Life Sci. 2015;15:721–726.
-
(2015)
Eng Life Sci.
, vol.15
, pp. 721-726
-
-
Hübner, J.1
Brakowaski, R.2
Wohlgemuth, J.3
Brenner-weiß, G.4
Franzreb, M.5
-
174
-
-
0036240479
-
Development of novel microscale system as immobilized enzyme bioreactor
-
Jones F, Lu Z, Elmore BB. Development of novel microscale system as immobilized enzyme bioreactor. Appl Biochem Biotechnol. 2002;98–100:627–640.
-
(2002)
Appl Biochem Biotechnol.
, vol.98-100
, pp. 627-640
-
-
Jones, F.1
Lu, Z.2
Elmore, B.B.3
-
175
-
-
84896115265
-
Single-cell microfluidics: opportunity for bioprocess development
-
Grunberger A, Wiechert W, Kohlheyer D. Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol. 2014;29:15–23.
-
(2014)
Curr Opin Biotechnol.
, vol.29
, pp. 15-23
-
-
Grunberger, A.1
Wiechert, W.2
Kohlheyer, D.3
-
176
-
-
37349052007
-
A microfluidic bioreactor for increased active retrovirus output
-
Vu HN, Li Y, Casali M, Irimia D, Megeed Z, Yarmush ML. A microfluidic bioreactor for increased active retrovirus output. Lab Chip 2008;8:75–80.
-
(2008)
Lab Chip
, vol.8
, pp. 75-80
-
-
Vu, H.N.1
Li, Y.2
Casali, M.3
Irimia, D.4
Megeed, Z.5
Yarmush, M.L.6
-
177
-
-
84887706104
-
The past, present and potential for microfluidic reactor technology in chemical synthesis
-
Elvira KS, Solvas i, Wootton XC, Andrew RCR, deMello J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem. 2013;5:905–915.
-
(2013)
Nat Chem.
, vol.5
, pp. 905-915
-
-
Elvira, K.S.1
Solvas, I.2
Wootton, X.C.3
Andrew, R.C.R.4
deMello, J.5
-
178
-
-
84916629473
-
High-efficiency nano/micro-reactors for protein analysis
-
Li Y, Yan L, Liu Y, Qian K, Liu B, Yang P, Liu B. High-efficiency nano/micro-reactors for protein analysis. RSC Adv. 2015;5:1331–1342.
-
(2015)
RSC Adv.
, vol.5
, pp. 1331-1342
-
-
Li, Y.1
Yan, L.2
Liu, Y.3
Qian, K.4
Liu, B.5
Yang, P.6
Liu, B.7
-
179
-
-
84924268731
-
Hydrogel-based microfluidic incubator for microorganism cultivation and analyses
-
Puchberger-Enengl D, van den Driesche S, Krutzler C, Keplinger F, Vellekoop MJ. Hydrogel-based microfluidic incubator for microorganism cultivation and analyses. Biomicrofluidics 2015;9:014127.
-
(2015)
Biomicrofluidics
, vol.9
, pp. 014127
-
-
Puchberger-Enengl, D.1
van den Driesche, S.2
Krutzler, C.3
Keplinger, F.4
Vellekoop, M.J.5
-
180
-
-
85007057480
-
-
US 7 507 579 B2, Mar. 23,, US 507 579 B2
-
Boccazzi P, Chen AY, Jensen KF, Szita N, Zanzotto A, Zhang Z. Apparatus and methods for simultaneous operation of miniaturized reactors. Patent Number US 7 507 579 B2. Mar. 23, 2009. US Patent 7 507 579 B2.
-
(2009)
Apparatus and methods for simultaneous operation of miniaturized reactors.
-
-
Boccazzi, P.1
Chen, A.Y.2
Jensen, K.F.3
Szita, N.4
Zanzotto, A.5
Zhang, Z.6
-
181
-
-
85007032086
-
-
US 9 068 281 B2, Jan. 30,, US 068281 B2
-
Wu M-H, Wang S-S, Tsai W-C, Chang Y-H, Hsieh C-H, Liu Y-T, Cui Z. Microfluidic chip for high-throughput perfusion-based three-dimensional cell culture. Patent Number US 9 068 281 B2. Jan. 30, 2015. US Patent 9 068281 B2.
-
(2015)
Microfluidic chip for high-throughput perfusion-based three-dimensional cell culture
-
-
Wu, M.-H.1
Wang, S.-S.2
Tsai, W.-C.3
Chang, Y.-H.4
Hsieh, C.-H.5
Liu, Y.-T.6
Cui, Z.7
-
182
-
-
84877644505
-
Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation
-
Hegab HM, Elmekawy A, Stakenborg T. Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics 2013;7:21502.
-
(2013)
Biomicrofluidics
, vol.7
, pp. 21502
-
-
Hegab, H.M.1
Elmekawy, A.2
Stakenborg, T.3
-
183
-
-
84944908864
-
Application of multivariate analysis and mass transfer principles for refinement of a 3-L bioreactor scale-down model-when shake flasks mimic 15,000-L bioreactors better
-
Ahuja S, Jain S, Ram K. Application of multivariate analysis and mass transfer principles for refinement of a 3-L bioreactor scale-down model-when shake flasks mimic 15,000-L bioreactors better. Biotechnol Prog. 2015;31:1370–1380.
-
(2015)
Biotechnol Prog.
, vol.31
, pp. 1370-1380
-
-
Ahuja, S.1
Jain, S.2
Ram, K.3
-
184
-
-
84947997194
-
Scale-down of continuous protein producing Saccharomyces cerevisiae cultivations using a two-compartment system
-
Risager Wright N, Rønnest NP, Thykaer J. Scale-down of continuous protein producing Saccharomyces cerevisiae cultivations using a two-compartment system. Biotechnol Prog. 2016;32:152–159.
-
(2016)
Biotechnol Prog.
, vol.32
, pp. 152-159
-
-
Risager Wright, N.1
Rønnest, N.P.2
Thykaer, J.3
-
185
-
-
84893794827
-
Development of a scale down cell culture model using multivariate analysis as a qualification tool
-
Tsang VL, Wang AX, Yusuf-Makagiansar H, Ryll T. Development of a scale down cell culture model using multivariate analysis as a qualification tool. Biotechnol Prog. 2014;30:152–160.
-
(2014)
Biotechnol Prog.
, vol.30
, pp. 152-160
-
-
Tsang, V.L.1
Wang, A.X.2
Yusuf-Makagiansar, H.3
Ryll, T.4
-
186
-
-
84911408436
-
Application of bioreactor design principles and multivariate analysis for development of cell culture scale down models
-
Tescione L, Lambropoulos J, Paranandi MR, Makagiansar H, Ryll T. Application of bioreactor design principles and multivariate analysis for development of cell culture scale down models. Biotechnol Bioeng. 2015;112:84–97.
-
(2015)
Biotechnol Bioeng.
, vol.112
, pp. 84-97
-
-
Tescione, L.1
Lambropoulos, J.2
Paranandi, M.R.3
Makagiansar, H.4
Ryll, T.5
-
187
-
-
77952527887
-
From microfluidic application to nanofluidic phenomena issue
-
Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. From microfluidic application to nanofluidic phenomena issue. Chem Soc Rev. 2010;39:1153–1182.
-
(2010)
Chem Soc Rev.
, vol.39
, pp. 1153-1182
-
-
Mark, D.1
Haeberle, S.2
Roth, G.3
von Stetten, F.4
Zengerle, R.5
-
188
-
-
84862231072
-
Commercialization of microfluidic point-of-care diagnostic devices
-
Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012;12:2118–2134.
-
(2012)
Lab Chip
, vol.12
, pp. 2118-2134
-
-
Chin, C.D.1
Linder, V.2
Sia, S.K.3
|