-
1
-
-
84877902360
-
Flocking multiple microparticles with automatically controlled optical tweezers: solutions and experiments
-
Chen H., Wang C., Lou Y. Flocking multiple microparticles with automatically controlled optical tweezers: solutions and experiments. IEEE Trans. Biomed. Eng. 2013, 60:1518-1527.
-
(2013)
IEEE Trans. Biomed. Eng.
, vol.60
, pp. 1518-1527
-
-
Chen, H.1
Wang, C.2
Lou, Y.3
-
2
-
-
84867009063
-
Theoretical models for the regulation of DNA replication in fast-growing bacteria
-
Creutziger M., Schmidt M., Lenz P. Theoretical models for the regulation of DNA replication in fast-growing bacteria. New J. Phys. 2012, 14:095016.
-
(2012)
New J. Phys.
, vol.14
, pp. 095016
-
-
Creutziger, M.1
Schmidt, M.2
Lenz, P.3
-
3
-
-
33750478294
-
Dynamic single cell culture array
-
Di Carlo D., Wu L.Y., Lee L.P. Dynamic single cell culture array. Lab Chip 2006, 6:1445-1449.
-
(2006)
Lab Chip
, vol.6
, pp. 1445-1449
-
-
Di Carlo, D.1
Wu, L.Y.2
Lee, L.P.3
-
4
-
-
79953175999
-
Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments
-
Dochow S., Krafft C., Neugebauer U., Bocklitz T., Henkel T., Mayer G., Albert J., Popp J. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 2011, 11:1484-1490.
-
(2011)
Lab Chip
, vol.11
, pp. 1484-1490
-
-
Dochow, S.1
Krafft, C.2
Neugebauer, U.3
Bocklitz, T.4
Henkel, T.5
Mayer, G.6
Albert, J.7
Popp, J.8
-
5
-
-
33845753548
-
A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes
-
Eriksson E., Enger J., Nordlander B., Erjavec N., Ramser K., Goksor M., Hohmann S., Nystrom T., Hanstorp D. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 2007, 7:71-76.
-
(2007)
Lab Chip
, vol.7
, pp. 71-76
-
-
Eriksson, E.1
Enger, J.2
Nordlander, B.3
Erjavec, N.4
Ramser, K.5
Goksor, M.6
Hohmann, S.7
Nystrom, T.8
Hanstorp, D.9
-
6
-
-
84862166539
-
A disposable picoliter bioreactor for cultivation and investigation of industrially relevant bacteria on single cell level
-
Grünberger A., Paczia N., Probst C., Schendzielorz G., Eggeling L., Wiechert W., Kohlheyer D. A disposable picoliter bioreactor for cultivation and investigation of industrially relevant bacteria on single cell level. Lab Chip 2012, 12:2060-2068.
-
(2012)
Lab Chip
, vol.12
, pp. 2060-2068
-
-
Grünberger, A.1
Paczia, N.2
Probst, C.3
Schendzielorz, G.4
Eggeling, L.5
Wiechert, W.6
Kohlheyer, D.7
-
7
-
-
84869889713
-
Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments
-
Grünberger A., van Ooyen J., Paczia N., Rohe P., Schiendzielorz G., Eggeling L., Wiechert W., Kohlheyer D., Noack S. Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments. Biotechnol. Bioeng. 2013, 110:220-228.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 220-228
-
-
Grünberger, A.1
van Ooyen, J.2
Paczia, N.3
Rohe, P.4
Schiendzielorz, G.5
Eggeling, L.6
Wiechert, W.7
Kohlheyer, D.8
Noack, S.9
-
8
-
-
84889099159
-
Microfluidic Picoliter Bioreactor For Microbial Single-Cell Analysis: fabrication, System Setup And Operation
-
Gruenberger A., Probst C., Heyer A., Wiechert W., Frunzke J., Kohlheyer D. Microfluidic Picoliter Bioreactor For Microbial Single-Cell Analysis: fabrication, System Setup And Operation. J. Vis. Exp. 2013, e50560. 10.3791/50560.
-
(2013)
J. Vis. Exp.
-
-
Gruenberger, A.1
Probst, C.2
Heyer, A.3
Wiechert, W.4
Frunzke, J.5
Kohlheyer, D.6
-
9
-
-
79551625650
-
A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment
-
Honarmandi P., Lee H., Lang M.J., Kamm R.D. A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment. Lab Chip 2011, 11:684-694.
-
(2011)
Lab Chip
, vol.11
, pp. 684-694
-
-
Honarmandi, P.1
Lee, H.2
Lang, M.J.3
Kamm, R.D.4
-
10
-
-
38349050376
-
Morphological plasticity as a bacterial survival strategy
-
Justice S.S., Hunstad D.A., Cegelski L., Hultgren S.J. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 2008, 6:162-168.
-
(2008)
Nat. Rev. Microbiol.
, vol.6
, pp. 162-168
-
-
Justice, S.S.1
Hunstad, D.A.2
Cegelski, L.3
Hultgren, S.J.4
-
11
-
-
37249018503
-
Intuitive, image-based cell sorting using optofluidic cell sorting
-
Kovac J.R., Voldman J. Intuitive, image-based cell sorting using optofluidic cell sorting. Anal. Chem. 2007, 79:9321-9330.
-
(2007)
Anal. Chem.
, vol.79
, pp. 9321-9330
-
-
Kovac, J.R.1
Voldman, J.2
-
12
-
-
0026802192
-
Behavioral analysis of Vibrio parahaemolyticus variants in high- and low-viscosity microenvironments by use of digital image processing
-
Lawrence J.R., Korber D.R., Caldwell D.E. Behavioral analysis of Vibrio parahaemolyticus variants in high- and low-viscosity microenvironments by use of digital image processing. J. Bacteriol. 1992, 174:5732-5739.
-
(1992)
J. Bacteriol.
, vol.174
, pp. 5732-5739
-
-
Lawrence, J.R.1
Korber, D.R.2
Caldwell, D.E.3
-
13
-
-
79956088611
-
Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip
-
Maruyama H., Kotani K., Masuda T., Honda A., Takahata T., Arai F. Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip. Microfluid. Nanofluid. 2011, 10:1109-1117.
-
(2011)
Microfluid. Nanofluid.
, vol.10
, pp. 1109-1117
-
-
Maruyama, H.1
Kotani, K.2
Masuda, T.3
Honda, A.4
Takahata, T.5
Arai, F.6
-
14
-
-
77956928837
-
Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle
-
Matsumura K., Yagi T., Hattori A., Soloviev M., Yasuda K. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle. J. Nanobiotechnol. 2010, 8:23.
-
(2010)
J. Nanobiotechnol.
, vol.8
, pp. 23
-
-
Matsumura, K.1
Yagi, T.2
Hattori, A.3
Soloviev, M.4
Yasuda, K.5
-
15
-
-
84858979136
-
The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities
-
Moffitt J.R., Lee J.B., Cluzel P. The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab Chip 2012, 12:1487-1494.
-
(2012)
Lab Chip
, vol.12
, pp. 1487-1494
-
-
Moffitt, J.R.1
Lee, J.B.2
Cluzel, P.3
-
16
-
-
84862193202
-
The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids
-
Mustafi N., Grünberger A., Kohlheyer D., Bott M., Frunzke J. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab. Eng. 2012, 14:449-457.
-
(2012)
Metab. Eng.
, vol.14
, pp. 449-457
-
-
Mustafi, N.1
Grünberger, A.2
Kohlheyer, D.3
Bott, M.4
Frunzke, J.5
-
18
-
-
79952668680
-
A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection
-
Salehi-Reyhani A., Kaplinsky J., Burgin E., Novakova M., Demello A.J., Templer R.H., Parker P., Neil M.A.A., Ces O., French P., Willison K.R., Klug D. A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection. Lab Chip 2011, 11:1256-1261.
-
(2011)
Lab Chip
, vol.11
, pp. 1256-1261
-
-
Salehi-Reyhani, A.1
Kaplinsky, J.2
Burgin, E.3
Novakova, M.4
Demello, A.J.5
Templer, R.H.6
Parker, P.7
Neil, M.A.A.8
Ces, O.9
French, P.10
Willison, K.R.11
Klug, D.12
-
19
-
-
84902679527
-
Taking Control over Control: use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways, ACS Synth
-
Schendzielorz G., Dippong M., Grünberger A., Kohlheyer D., Yoshida A., Binder S., Nishiyama C., Nishiyama M., Bott M., Eggeling L. Taking Control over Control: use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways, ACS Synth. Biol. 2013, 10.1021/sb400059y.
-
(2013)
Biol.
-
-
Schendzielorz, G.1
Dippong, M.2
Grünberger, A.3
Kohlheyer, D.4
Yoshida, A.5
Binder, S.6
Nishiyama, C.7
Nishiyama, M.8
Bott, M.9
Eggeling, L.10
-
20
-
-
0016134276
-
Control of cell division in bacteria
-
Slater M., Schaechter M. Control of cell division in bacteria. Bacteriol. Rev. 1974, 38:199-221.
-
(1974)
Bacteriol. Rev.
, vol.38
, pp. 199-221
-
-
Slater, M.1
Schaechter, M.2
-
22
-
-
84890794264
-
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium
-
Unthan S., Grünberger A., van Ooyen J., Gätgens J., Heinrich J., Paczia N., Wiechert W., Kohlheyer D., Noack S. Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotech. Bioeng. 2013, 10.1002/bit.25103.
-
(2013)
Biotech. Bioeng.
-
-
Unthan, S.1
Grünberger, A.2
van Ooyen, J.3
Gätgens, J.4
Heinrich, J.5
Paczia, N.6
Wiechert, W.7
Kohlheyer, D.8
Noack, S.9
-
23
-
-
77955715329
-
Robust growth of Escherichia coil
-
Wang P., Robert L., Pelletier J., Dang W.L., Taddei F., Wright A., Jun S. Robust growth of Escherichia coil. Curr. Biol. 2010, 20:1099-1103.
-
(2010)
Curr. Biol.
, vol.20
, pp. 1099-1103
-
-
Wang, P.1
Robert, L.2
Pelletier, J.3
Dang, W.L.4
Taddei, F.5
Wright, A.6
Jun, S.7
-
24
-
-
79954432727
-
Optical tweezers directed one-bead one-sequence synthesis of oligonucleotides
-
Wang T., Oehrlein S., Somoza M.M., Perez J.R.S., Kershner R., Cerrina F. Optical tweezers directed one-bead one-sequence synthesis of oligonucleotides. Lab Chip 2011, 11:1629-1637.
-
(2011)
Lab Chip
, vol.11
, pp. 1629-1637
-
-
Wang, T.1
Oehrlein, S.2
Somoza, M.M.3
Perez, J.R.S.4
Kershner, R.5
Cerrina, F.6
|