메뉴 건너뛰기




Volumn 33, Issue 5, 2015, Pages 302-314

Microscale technology and biocatalytic processes: Opportunities and challenges for synthesis

Author keywords

Biocatalytic process; Enzymatic microreactors; Flow synthesis; Microscale technology; Miniaturized production; Process intensification

Indexed keywords

CHEMICAL ANALYSIS;

EID: 84928050748     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2015.02.010     Document Type: Review
Times cited : (181)

References (95)
  • 3
    • 84880034053 scopus 로고    scopus 로고
    • Applying flow chemistry: methods, materials, and multistep synthesis
    • McQuade D.T., Seeberger P.H. Applying flow chemistry: methods, materials, and multistep synthesis. J. Org. Chem. 2013, 78:6384-6389.
    • (2013) J. Org. Chem. , vol.78 , pp. 6384-6389
    • McQuade, D.T.1    Seeberger, P.H.2
  • 4
    • 84883261619 scopus 로고    scopus 로고
    • The role of flow in green chemistry and engineering
    • Newman S.G., Jensen K.F. The role of flow in green chemistry and engineering. Green Chem. 2013, 15:1456-1472.
    • (2013) Green Chem. , vol.15 , pp. 1456-1472
    • Newman, S.G.1    Jensen, K.F.2
  • 5
    • 79961218749 scopus 로고    scopus 로고
    • Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis
    • Hartman R.L., et al. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50:7502-7519.
    • (2011) Angew. Chem. Int. Ed. Engl. , vol.50 , pp. 7502-7519
    • Hartman, R.L.1
  • 6
    • 84878096407 scopus 로고    scopus 로고
    • Latest highlights in liquid-phase reactions for organic synthesis in microreactors
    • Protasova L.N., et al. Latest highlights in liquid-phase reactions for organic synthesis in microreactors. Org. Proc. Res. Dev. 2013, 17:760-791.
    • (2013) Org. Proc. Res. Dev. , vol.17 , pp. 760-791
    • Protasova, L.N.1
  • 7
    • 84878337476 scopus 로고    scopus 로고
    • Novel process windows for enabling, accelerating, and uplifting flow chemistry
    • Hessel V., et al. Novel process windows for enabling, accelerating, and uplifting flow chemistry. ChemSusChem 2013, 6:746-789.
    • (2013) ChemSusChem , vol.6 , pp. 746-789
    • Hessel, V.1
  • 10
    • 84860741240 scopus 로고    scopus 로고
    • Engineering the third wave of biocatalysis
    • Bornscheuer U.T., et al. Engineering the third wave of biocatalysis. Nature 2012, 485:185-194.
    • (2012) Nature , vol.485 , pp. 185-194
    • Bornscheuer, U.T.1
  • 11
    • 84870921311 scopus 로고    scopus 로고
    • The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC)
    • Meyer H.P., et al. The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC). Catal. Sci. Technol. 2013, 3:29-40.
    • (2013) Catal. Sci. Technol. , vol.3 , pp. 29-40
    • Meyer, H.P.1
  • 12
    • 79953689274 scopus 로고    scopus 로고
    • Molecular and engineering perspectives of the biocatalysis interface to chemical synthesis
    • Wohlgemuth R. Molecular and engineering perspectives of the biocatalysis interface to chemical synthesis. Chem. Biochem. Eng. Q. 2011, 25:125-134.
    • (2011) Chem. Biochem. Eng. Q. , vol.25 , pp. 125-134
    • Wohlgemuth, R.1
  • 13
    • 79960496475 scopus 로고    scopus 로고
    • Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers
    • Jiménez-González C., et al. Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers. Org. Proc. Res. Dev. 2011, 15:900-911.
    • (2011) Org. Proc. Res. Dev. , vol.15 , pp. 900-911
    • Jiménez-González, C.1
  • 14
    • 84899835060 scopus 로고    scopus 로고
    • Biocatalytic process development using microfluidic miniaturized systems
    • Krühne U., et al. Biocatalytic process development using microfluidic miniaturized systems. Green Process. Synth. 2014, 3:23-31.
    • (2014) Green Process. Synth. , vol.3 , pp. 23-31
    • Krühne, U.1
  • 15
    • 84890812545 scopus 로고    scopus 로고
    • Continuous flow synthesis of toxic ethyl diazoacetate for utilization in an integrated microfluidic system
    • Maurya R.M., et al. Continuous flow synthesis of toxic ethyl diazoacetate for utilization in an integrated microfluidic system. Green Chem. 2014, 16:116-120.
    • (2014) Green Chem. , vol.16 , pp. 116-120
    • Maurya, R.M.1
  • 16
    • 84860718410 scopus 로고    scopus 로고
    • Continuous processing in the pharmaceutical industry
    • Wiley, P. Dunn (Ed.)
    • Proctor L., et al. Continuous processing in the pharmaceutical industry. Green Chemistry in the Pharmaceutical Industry 2010, 221. Wiley. P. Dunn (Ed.).
    • (2010) Green Chemistry in the Pharmaceutical Industry , pp. 221
    • Proctor, L.1
  • 17
    • 39549099538 scopus 로고    scopus 로고
    • Enzymatic enantioselective C-C-bond formation in microreactors
    • Koch K., et al. Enzymatic enantioselective C-C-bond formation in microreactors. Biotechnol. Bioeng. 2008, 99:1028-1033.
    • (2008) Biotechnol. Bioeng. , vol.99 , pp. 1028-1033
    • Koch, K.1
  • 18
    • 79959316650 scopus 로고    scopus 로고
    • Biotransformations in microstructured reactors: more than flowing with the stream?
    • Bolivar J.M., et al. Biotransformations in microstructured reactors: more than flowing with the stream?. Trends Biotechnol. 2011, 29:333-342.
    • (2011) Trends Biotechnol. , vol.29 , pp. 333-342
    • Bolivar, J.M.1
  • 19
    • 80054963800 scopus 로고    scopus 로고
    • Microfluidic devices: useful tools for bioprocess intensification
    • Marques M.P.C., Fernandes P. Microfluidic devices: useful tools for bioprocess intensification. Molecules 2011, 16:8368-8401.
    • (2011) Molecules , vol.16 , pp. 8368-8401
    • Marques, M.P.C.1    Fernandes, P.2
  • 20
    • 79751471817 scopus 로고    scopus 로고
    • Fundamentals and applications of immobilized microfluidic enzymatic reactors
    • Matosevic S., et al. Fundamentals and applications of immobilized microfluidic enzymatic reactors. J. Chem. Technol. Biotechnol. 2011, 8:325-334.
    • (2011) J. Chem. Technol. Biotechnol. , vol.8 , pp. 325-334
    • Matosevic, S.1
  • 21
    • 84882322140 scopus 로고    scopus 로고
    • Smart enzyme immobilization in microstructured reactors
    • Bolivar J.M., Nidetzky B. Smart enzyme immobilization in microstructured reactors. Chem. Today 2013, 31:50-55.
    • (2013) Chem. Today , vol.31 , pp. 50-55
    • Bolivar, J.M.1    Nidetzky, B.2
  • 22
    • 78650192703 scopus 로고    scopus 로고
    • A novel enzymatic microreactor with Aspergillus oryzae β-galactosidase immobilized on silicon dioxide nanosprings
    • Schilke K.F., et al. A novel enzymatic microreactor with Aspergillus oryzae β-galactosidase immobilized on silicon dioxide nanosprings. Biotechnol. Prog. 2010, 26:1597-1605.
    • (2010) Biotechnol. Prog. , vol.26 , pp. 1597-1605
    • Schilke, K.F.1
  • 23
    • 84866885647 scopus 로고    scopus 로고
    • Threonine aldolase immobilization on different supports for engineering of productive, cost-efficient enzymatic microreactors
    • Fu H., et al. Threonine aldolase immobilization on different supports for engineering of productive, cost-efficient enzymatic microreactors. Chem. Eng. J. 2012, 207:564-576.
    • (2012) Chem. Eng. J. , vol.207 , pp. 564-576
    • Fu, H.1
  • 24
    • 84883750164 scopus 로고    scopus 로고
    • Membrane microreactors for catalytic reactions
    • Tan X., Li K. Membrane microreactors for catalytic reactions. J. Chem. Technol. Biotechnol. 2013, 88:1771-1779.
    • (2013) J. Chem. Technol. Biotechnol. , vol.88 , pp. 1771-1779
    • Tan, X.1    Li, K.2
  • 25
    • 84855801679 scopus 로고    scopus 로고
    • Continuous steroid biotransformations in microchannel reactors
    • Marques M.P.C., et al. Continuous steroid biotransformations in microchannel reactors. N. Biotechnol. 2012, 29:227-234.
    • (2012) N. Biotechnol. , vol.29 , pp. 227-234
    • Marques, M.P.C.1
  • 26
    • 84895547179 scopus 로고    scopus 로고
    • Multiphase biotransformations in microstructured reactors: opportunities for biocatalytic process intensification and smart flow processing
    • Bolivar J.M., Nidetzky B. Multiphase biotransformations in microstructured reactors: opportunities for biocatalytic process intensification and smart flow processing. Green Proc. Synth. 2013, 2:541-559.
    • (2013) Green Proc. Synth. , vol.2 , pp. 541-559
    • Bolivar, J.M.1    Nidetzky, B.2
  • 27
    • 84897732139 scopus 로고    scopus 로고
    • Enzymatic microreactors utilizing non-aqueous media
    • Žnidaršič-Plazl P. Enzymatic microreactors utilizing non-aqueous media. Catal. Today 2014, 32:55-61.
    • (2014) Catal. Today , vol.32 , pp. 55-61
    • Žnidaršič-Plazl, P.1
  • 28
    • 84890829791 scopus 로고    scopus 로고
    • Pharmaceutical roundtable study demonstrates the value of continuous manufacturing in the design of greener processes
    • Pöchlauer P., et al. Pharmaceutical roundtable study demonstrates the value of continuous manufacturing in the design of greener processes. Org. Proc. Res. Dev. 2013, 17:1472-1478.
    • (2013) Org. Proc. Res. Dev. , vol.17 , pp. 1472-1478
    • Pöchlauer, P.1
  • 29
    • 84865478162 scopus 로고    scopus 로고
    • On being green: can flow chemistry help?
    • Ley S.V. On being green: can flow chemistry help?. Chem. Rec. 2012, 12:378-390.
    • (2012) Chem. Rec. , vol.12 , pp. 378-390
    • Ley, S.V.1
  • 30
    • 84896953509 scopus 로고    scopus 로고
    • Development of a multi-step synthesis and workup sequence for an integrated, continuous manufacturing process of a pharmaceutical
    • Heider P.L., et al. Development of a multi-step synthesis and workup sequence for an integrated, continuous manufacturing process of a pharmaceutical. Org. Proc. Res. Dev. 2014, 18:402-409.
    • (2014) Org. Proc. Res. Dev. , vol.18 , pp. 402-409
    • Heider, P.L.1
  • 31
    • 84866012269 scopus 로고    scopus 로고
    • Micro reactor and flow chemistry for industrial applications in drug discovery and development
    • Baraldi P.T., Hessel V. Micro reactor and flow chemistry for industrial applications in drug discovery and development. Green Proc. Synth. 2012, 1:149-167.
    • (2012) Green Proc. Synth. , vol.1 , pp. 149-167
    • Baraldi, P.T.1    Hessel, V.2
  • 32
    • 79954497692 scopus 로고    scopus 로고
    • Continuous flow enzyme-catalyzed polymerization in a microreactor
    • Kundu S., et al. Continuous flow enzyme-catalyzed polymerization in a microreactor. J. Am. Chem. Soc. 2011, 133:6006-6011.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 6006-6011
    • Kundu, S.1
  • 33
    • 78649430254 scopus 로고    scopus 로고
    • Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control
    • Yoshida J-I. Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control. Chem. Rec. 2010, 10:332-341.
    • (2010) Chem. Rec. , vol.10 , pp. 332-341
    • Yoshida, J.-I.1
  • 34
    • 17844380524 scopus 로고    scopus 로고
    • Analysis of microstructured reactor characteristics for process miniaturization and intensification
    • Commenge J.M., et al. Analysis of microstructured reactor characteristics for process miniaturization and intensification. Chem. Eng. Technol. 2005, 28:446-458.
    • (2005) Chem. Eng. Technol. , vol.28 , pp. 446-458
    • Commenge, J.M.1
  • 35
    • 33746284567 scopus 로고    scopus 로고
    • The Barton reaction using a microreactor and black light. Continuous-flow synthesis of a key steroid intermediate for an endothelin receptor antagonist
    • Sugimoto A., et al. The Barton reaction using a microreactor and black light. Continuous-flow synthesis of a key steroid intermediate for an endothelin receptor antagonist. Tetrahedron Lett. 2006, 47:6197-6200.
    • (2006) Tetrahedron Lett. , vol.47 , pp. 6197-6200
    • Sugimoto, A.1
  • 36
    • 84899874916 scopus 로고    scopus 로고
    • Integrated lipase-catalyzed isoamyl acetate synthesis in a miniaturized system with enzyme and ionic liquid recycle
    • Novak U., Žnidaršič-Plazl P. Integrated lipase-catalyzed isoamyl acetate synthesis in a miniaturized system with enzyme and ionic liquid recycle. Green Proc. Synth. 2013, 2:561-568.
    • (2013) Green Proc. Synth. , vol.2 , pp. 561-568
    • Novak, U.1    Žnidaršič-Plazl, P.2
  • 37
    • 84865492433 scopus 로고    scopus 로고
    • Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution
    • Kintses B., et al. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol. 2012, 19:1001-1009.
    • (2012) Chem. Biol. , vol.19 , pp. 1001-1009
    • Kintses, B.1
  • 38
    • 79952834668 scopus 로고    scopus 로고
    • Rapid determination of reaction kinetics with an automated microfluidic system
    • McMullen J.P., Jensen K.F. Rapid determination of reaction kinetics with an automated microfluidic system. Org. Proc. Res. Dev. 2011, 15:398-407.
    • (2011) Org. Proc. Res. Dev. , vol.15 , pp. 398-407
    • McMullen, J.P.1    Jensen, K.F.2
  • 39
    • 33846929148 scopus 로고    scopus 로고
    • High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel
    • Garcia E., et al. High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel. Lab Chip 2007, 7:249-255.
    • (2007) Lab Chip , vol.7 , pp. 249-255
    • Garcia, E.1
  • 40
    • 77954560039 scopus 로고    scopus 로고
    • Enzyme catalysis in an aqueous/organic segment flow microreactor: ways to stabilize enzyme activity
    • Karande R., et al. Enzyme catalysis in an aqueous/organic segment flow microreactor: ways to stabilize enzyme activity. Langmuir 2010, 26:9152-9159.
    • (2010) Langmuir , vol.26 , pp. 9152-9159
    • Karande, R.1
  • 41
    • 84861330547 scopus 로고    scopus 로고
    • Continuous synthesis of L-malic acid using whole-cell microreactor
    • Stojkovič G., Žnidaršič-Plazl P. Continuous synthesis of L-malic acid using whole-cell microreactor. Proc. Biochem. 2012, 47:1102-1107.
    • (2012) Proc. Biochem. , vol.47 , pp. 1102-1107
    • Stojkovič, G.1    Žnidaršič-Plazl, P.2
  • 43
    • 80053052924 scopus 로고    scopus 로고
    • Dissolving carbon dioxide in high viscous substrates to accelerate biocatalytic reactions
    • Brummund J., et al. Dissolving carbon dioxide in high viscous substrates to accelerate biocatalytic reactions. Biotechnol. Bioeng. 2011, 108:2765-2769.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 2765-2769
    • Brummund, J.1
  • 44
    • 84885125331 scopus 로고    scopus 로고
    • Reagents in microfluidics: an 'in' and 'out' challenge
    • Hitzbleck M., Delamarche E. Reagents in microfluidics: an 'in' and 'out' challenge. Chem. Soc. Rev. 2013, 42:8494-8516.
    • (2013) Chem. Soc. Rev. , vol.42 , pp. 8494-8516
    • Hitzbleck, M.1    Delamarche, E.2
  • 45
    • 84899885901 scopus 로고    scopus 로고
    • Biotechnical micro-flow processing at the EDGE - lessons to be learnt for a young discipline
    • Hessel V., et al. Biotechnical micro-flow processing at the EDGE - lessons to be learnt for a young discipline. Chem. Biochem. Eng. Q. 2014, 28:167-188.
    • (2014) Chem. Biochem. Eng. Q. , vol.28 , pp. 167-188
    • Hessel, V.1
  • 46
    • 84919393190 scopus 로고    scopus 로고
    • Novel manufacturing techniques for microstructured reactors in industrial dimensions
    • Krtschil U., et al. Novel manufacturing techniques for microstructured reactors in industrial dimensions. Green Proc. Synth. 2013, 2:451-463.
    • (2013) Green Proc. Synth. , vol.2 , pp. 451-463
    • Krtschil, U.1
  • 47
    • 84858685351 scopus 로고    scopus 로고
    • Recent changes in patenting behavior in microprocess technology and its possible use for gas-liquid reactions and the oxidation of glucose
    • Denčić I., et al. Recent changes in patenting behavior in microprocess technology and its possible use for gas-liquid reactions and the oxidation of glucose. ChemSusChem 2012, 5:232-245.
    • (2012) ChemSusChem , vol.5 , pp. 232-245
    • Denčić, I.1
  • 48
    • 84907236859 scopus 로고    scopus 로고
    • Recent progress in nanobiocatalysis for enzyme immobilization and its application
    • Min K., Koo Y.J. Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnol. Bioprocess Eng. 2014, 19:553-567.
    • (2014) Biotechnol. Bioprocess Eng. , vol.19 , pp. 553-567
    • Min, K.1    Koo, Y.J.2
  • 49
    • 84856392871 scopus 로고    scopus 로고
    • Modeling and kinetic parameter estimation of alcohol dehydrogenase-catalyzed hexanol oxidation in a microreactor
    • Tušek A., et al. Modeling and kinetic parameter estimation of alcohol dehydrogenase-catalyzed hexanol oxidation in a microreactor. Eng. Life Sci. 2012, 12:49-56.
    • (2012) Eng. Life Sci. , vol.12 , pp. 49-56
    • Tušek, A.1
  • 50
    • 84882628377 scopus 로고    scopus 로고
    • Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor
    • Tušek A., et al. Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor. Biotechnol. Bioprocess Eng. 2013, 18:686-696.
    • (2013) Biotechnol. Bioprocess Eng. , vol.18 , pp. 686-696
    • Tušek, A.1
  • 51
    • 84896801763 scopus 로고    scopus 로고
    • Continuous enzymatic carboligation of benzaldehyde and acetaldehyde in an enzyme ultrafiltration membrane reactor and laminar flow microreactors
    • Valinger D., et al. Continuous enzymatic carboligation of benzaldehyde and acetaldehyde in an enzyme ultrafiltration membrane reactor and laminar flow microreactors. J. Mol. Catal. B: Enzym. 2014, 102:132-137.
    • (2014) J. Mol. Catal. B: Enzym. , vol.102 , pp. 132-137
    • Valinger, D.1
  • 52
    • 84857861459 scopus 로고    scopus 로고
    • Modular microfluidic reactor and inline filtration system for the biocatalytic synthesis of chiral metabolites
    • O'Sullivan B., et al. Modular microfluidic reactor and inline filtration system for the biocatalytic synthesis of chiral metabolites. J. Mol. Catal. B: Enzym. 2012, 77:1-8.
    • (2012) J. Mol. Catal. B: Enzym. , vol.77 , pp. 1-8
    • O'Sullivan, B.1
  • 53
    • 79952449009 scopus 로고    scopus 로고
    • A continuous membrane microbioreactor system for development of integrated pectin modification and separation processes
    • Zainal-Alam M.N.H., et al. A continuous membrane microbioreactor system for development of integrated pectin modification and separation processes. Chem. Eng. J. 2011, 167:418-426.
    • (2011) Chem. Eng. J. , vol.167 , pp. 418-426
    • Zainal-Alam, M.N.H.1
  • 54
    • 79955971581 scopus 로고    scopus 로고
    • L-Malic acid production within a microreactor with surface immobilised fumarase
    • Stojkovič G., et al. L-Malic acid production within a microreactor with surface immobilised fumarase. Microfluid. Nanofluid. 2011, 10:627-635.
    • (2011) Microfluid. Nanofluid. , vol.10 , pp. 627-635
    • Stojkovič, G.1
  • 55
    • 80052354312 scopus 로고    scopus 로고
    • Immobilised enzyme microreactor for screening of multi-step bioconversions: characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols
    • Matosevic S., et al. Immobilised enzyme microreactor for screening of multi-step bioconversions: characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols. J. Biotechnol. 2011, 155:320-329.
    • (2011) J. Biotechnol. , vol.155 , pp. 320-329
    • Matosevic, S.1
  • 56
    • 84863452401 scopus 로고    scopus 로고
    • basic2 as a highly efficient silica binding module: opportunities for enzyme immobilization on unmodified silica supports
    • basic2 as a highly efficient silica binding module: opportunities for enzyme immobilization on unmodified silica supports. Langmuir 2012, 28:10040-10049.
    • (2012) Langmuir , vol.28 , pp. 10040-10049
    • Bolivar, J.M.1    Nidetzky, B.2
  • 57
    • 78650817018 scopus 로고    scopus 로고
    • CBSA-147 for the preparation of bacterial biofilms in a microchannel reactor
    • Ng J.F., et al. cBSA-147 for the preparation of bacterial biofilms in a microchannel reactor. Biointerphases 2010, 5:FA41-FA47.
    • (2010) Biointerphases , vol.5 , pp. FA41-FA47
    • Ng, J.F.1
  • 58
    • 84919363363 scopus 로고    scopus 로고
    • Surface cell immobilization within perfluoroalkoxy microchannels
    • Stojkovič G., et al. Surface cell immobilization within perfluoroalkoxy microchannels. Appl. Surf. Sci. 2014, 320:810-817.
    • (2014) Appl. Surf. Sci. , vol.320 , pp. 810-817
    • Stojkovič, G.1
  • 59
    • 17644383311 scopus 로고    scopus 로고
    • Bioprocess intensification in flow-through monolithic micro-bioreactors with immobilised bacteria
    • Akay G., et al. Bioprocess intensification in flow-through monolithic micro-bioreactors with immobilised bacteria. Biotechnol. Bioeng. 2005, 90:180-190.
    • (2005) Biotechnol. Bioeng. , vol.90 , pp. 180-190
    • Akay, G.1
  • 60
    • 84906830216 scopus 로고    scopus 로고
    • A multienzyme bioreactor based on a chitinase complex
    • Vlakh E.G., et al. A multienzyme bioreactor based on a chitinase complex. Appl. Biochem. Microbiol. 2014, 50:441-446.
    • (2014) Appl. Biochem. Microbiol. , vol.50 , pp. 441-446
    • Vlakh, E.G.1
  • 61
    • 84872070490 scopus 로고    scopus 로고
    • Immobilization of invertase on silica monoliths with hierarchical pore structure to obtain continuous flow enzymatic microreactors of high performance
    • Szymańska K., et al. Immobilization of invertase on silica monoliths with hierarchical pore structure to obtain continuous flow enzymatic microreactors of high performance. Microporous Mesoporous Mater. 2013, 170:75-82.
    • (2013) Microporous Mesoporous Mater. , vol.170 , pp. 75-82
    • Szymańska, K.1
  • 62
    • 75949110372 scopus 로고    scopus 로고
    • The development and evaluation of a continuous flow process for the lipase-mediated oxidation of alkenes
    • Wiles C., et al. The development and evaluation of a continuous flow process for the lipase-mediated oxidation of alkenes. Beilstein J. Org. Chem. 2009, 5:27.
    • (2009) Beilstein J. Org. Chem. , vol.5 , pp. 27
    • Wiles, C.1
  • 63
    • 80052794860 scopus 로고    scopus 로고
    • Novel sol-gel lipases by designed bioimprinting for continuous-flow kinetic resolutions
    • Hellner G., et al. Novel sol-gel lipases by designed bioimprinting for continuous-flow kinetic resolutions. Adv. Synth. Catal. 2011, 353:2481-2491.
    • (2011) Adv. Synth. Catal. , vol.353 , pp. 2481-2491
    • Hellner, G.1
  • 64
    • 77951022179 scopus 로고    scopus 로고
    • Lipase-catalyzed kinetic resolution of 2-methylene-substituted cycloalkanols in batch and continuous-flow modes
    • Tomin A., et al. Lipase-catalyzed kinetic resolution of 2-methylene-substituted cycloalkanols in batch and continuous-flow modes. Proc. Biochem. 2010, 45:859-865.
    • (2010) Proc. Biochem. , vol.45 , pp. 859-865
    • Tomin, A.1
  • 65
    • 84861844263 scopus 로고    scopus 로고
    • Integrated system of a microbioreactor and a miniaturized continuous separator for enzyme catalyzed reactions
    • 376-382
    • Pohar A., et al. Integrated system of a microbioreactor and a miniaturized continuous separator for enzyme catalyzed reactions. Chem. Eng. J. 2012, 189-190. 376-382.
    • (2012) Chem. Eng. J. , pp. 189-190
    • Pohar, A.1
  • 66
    • 84862854717 scopus 로고    scopus 로고
    • Isoamyl acetate synthesis in imidazolium-based ionic liquids using packed bed enzyme microreactor
    • Cvjetko M., et al. Isoamyl acetate synthesis in imidazolium-based ionic liquids using packed bed enzyme microreactor. Process Biochem. 2012, 47:1344-1355.
    • (2012) Process Biochem. , vol.47 , pp. 1344-1355
    • Cvjetko, M.1
  • 67
    • 84915782103 scopus 로고    scopus 로고
    • Continuous flow synthesis of chiral amines in organic solvents: immobilization of E. coli cells containing both ω-transaminase and PLP
    • Andrade L.H., et al. Continuous flow synthesis of chiral amines in organic solvents: immobilization of E. coli cells containing both ω-transaminase and PLP. Org. Lett. 2014, 16:6092-6095.
    • (2014) Org. Lett. , vol.16 , pp. 6092-6095
    • Andrade, L.H.1
  • 68
    • 84888840135 scopus 로고    scopus 로고
    • Characterization and multi-step transketolase-ω-transaminase bioconversions in an immobilized enzyme microreactor (IEMR) with packed tube
    • Halim A.A., et al. Characterization and multi-step transketolase-ω-transaminase bioconversions in an immobilized enzyme microreactor (IEMR) with packed tube. J. Biotechnol. 2013, 168:567-575.
    • (2013) J. Biotechnol. , vol.168 , pp. 567-575
    • Halim, A.A.1
  • 70
    • 84891355862 scopus 로고    scopus 로고
    • Applications, benefits and challenges of flow chemistry
    • Mitić A., et al. Applications, benefits and challenges of flow chemistry. Chem. Today 2013, 31:4-8.
    • (2013) Chem. Today , vol.31 , pp. 4-8
    • Mitić, A.1
  • 71
    • 84876719442 scopus 로고    scopus 로고
    • Online oxygen measurements inside a microreactor with modeling of transport phenomena
    • Ungerböck B., et al. Online oxygen measurements inside a microreactor with modeling of transport phenomena. Microfluid. Nanofluid. 2013, 14:565-574.
    • (2013) Microfluid. Nanofluid. , vol.14 , pp. 565-574
    • Ungerböck, B.1
  • 72
    • 84876719760 scopus 로고    scopus 로고
    • Microfluidic oxygen imaging using integrated optical sensor layers and a color camera
    • Ungerböck B., et al. Microfluidic oxygen imaging using integrated optical sensor layers and a color camera. Lab Chip 2013, 13:1593-1601.
    • (2013) Lab Chip , vol.13 , pp. 1593-1601
    • Ungerböck, B.1
  • 73
    • 79251544510 scopus 로고    scopus 로고
    • An automated microfluidic system for online optimization in chemical synthesis
    • McMullen J.P., Jensen K.F. An automated microfluidic system for online optimization in chemical synthesis. Org. Proc. Res. Dev. 2010, 14:1169-1176.
    • (2010) Org. Proc. Res. Dev. , vol.14 , pp. 1169-1176
    • McMullen, J.P.1    Jensen, K.F.2
  • 74
    • 84896526099 scopus 로고    scopus 로고
    • Thermostatted micro-reactor NMR probe head for monitoring fast reactions
    • Brächer A., et al. Thermostatted micro-reactor NMR probe head for monitoring fast reactions. J. Magn. Res. 2014, 242:155-161.
    • (2014) J. Magn. Res. , vol.242 , pp. 155-161
    • Brächer, A.1
  • 75
    • 84879266310 scopus 로고    scopus 로고
    • Mesoscale modeling: solving complex flows in biology and biotechnology
    • Mills Z.G., et al. Mesoscale modeling: solving complex flows in biology and biotechnology. Trends Biotechnol. 2013, 31:426-434.
    • (2013) Trends Biotechnol. , vol.31 , pp. 426-434
    • Mills, Z.G.1
  • 76
    • 77956928557 scopus 로고    scopus 로고
    • Molecular and multiscale modeling: review on the theories and applications in chemical engineering
    • Medina G.M., Rey R.M. Molecular and multiscale modeling: review on the theories and applications in chemical engineering. Cienc. Tecn. Fut. 2009, 3:205-224.
    • (2009) Cienc. Tecn. Fut. , vol.3 , pp. 205-224
    • Medina, G.M.1    Rey, R.M.2
  • 78
    • 84861048815 scopus 로고    scopus 로고
    • Continuous flow synthesis. A pharma perspective
    • Malet-Sanz L., Susanne F. Continuous flow synthesis. A pharma perspective. J. Med. Chem. 2012, 55:4062-4098.
    • (2012) J. Med. Chem. , vol.55 , pp. 4062-4098
    • Malet-Sanz, L.1    Susanne, F.2
  • 79
    • 79955568705 scopus 로고    scopus 로고
    • Microfluidic chips for chirality exploration
    • Nagl S., et al. Microfluidic chips for chirality exploration. Anal. Chem. 2011, 83:3232-3323.
    • (2011) Anal. Chem. , vol.83 , pp. 3232-3323
    • Nagl, S.1
  • 80
    • 80053136203 scopus 로고    scopus 로고
    • Asymmetric organocatalysis and analysis on a single microfluidic nanospray chip
    • Fritzsche S., et al. Asymmetric organocatalysis and analysis on a single microfluidic nanospray chip. Angew. Chem. Int. Ed. Engl. 2011, 50:9467-9470.
    • (2011) Angew. Chem. Int. Ed. Engl. , vol.50 , pp. 9467-9470
    • Fritzsche, S.1
  • 81
    • 84878443886 scopus 로고    scopus 로고
    • Strategies for using microreactors and flow chemistry: drivers and tools
    • Kirschneck D., et al. Strategies for using microreactors and flow chemistry: drivers and tools. Chem. Eng. Technol. 2013, 36:1061-1066.
    • (2013) Chem. Eng. Technol. , vol.36 , pp. 1061-1066
    • Kirschneck, D.1
  • 82
    • 84877063612 scopus 로고    scopus 로고
    • Consistent development of bioprocesses from microliter cultures to the industrial scale
    • Neubauer P., et al. Consistent development of bioprocesses from microliter cultures to the industrial scale. Eng. Life Sci. 2013, 13:224-238.
    • (2013) Eng. Life Sci. , vol.13 , pp. 224-238
    • Neubauer, P.1
  • 83
    • 84880065438 scopus 로고    scopus 로고
    • Micro reaction technology for valorization of biomolecules using enzymes and metal catalysts
    • Hessel V., et al. Micro reaction technology for valorization of biomolecules using enzymes and metal catalysts. Eng. Life Sci. 2013, 13:326-343.
    • (2013) Eng. Life Sci. , vol.13 , pp. 326-343
    • Hessel, V.1
  • 84
    • 79251471098 scopus 로고    scopus 로고
    • Guidelines and cost analysis for catalyst production in biocatalytic processes
    • Tufvesson P., et al. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org. Proc. Res. Dev. 2011, 15:266-274.
    • (2011) Org. Proc. Res. Dev. , vol.15 , pp. 266-274
    • Tufvesson, P.1
  • 85
    • 84887553366 scopus 로고    scopus 로고
    • End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation
    • Mascia S., et al. End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew. Chem. Int. Ed. Engl. 2013, 52:12359-12363.
    • (2013) Angew. Chem. Int. Ed. Engl. , vol.52 , pp. 12359-12363
    • Mascia, S.1
  • 86
    • 84961869081 scopus 로고    scopus 로고
    • A three-minute synthesis and purification of ibuprofen: pushing the limits of continuous-flow processing
    • Snead D.R., Jamison T.F. A three-minute synthesis and purification of ibuprofen: pushing the limits of continuous-flow processing. Angew. Chem. Int. Ed. Engl. 2014, 126:1-6.
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.126 , pp. 1-6
    • Snead, D.R.1    Jamison, T.F.2
  • 87
    • 84905365781 scopus 로고    scopus 로고
    • Continuous flow synthesis of ketones from carbon dioxide and organolithium or Grignard reagents
    • Wu J., et al. Continuous flow synthesis of ketones from carbon dioxide and organolithium or Grignard reagents. Angew. Chem. Int. Ed. Engl. 2014, 53:8416-8420.
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 8416-8420
    • Wu, J.1
  • 88
    • 84893492955 scopus 로고    scopus 로고
    • 2 and olefins to cyclic carbonates
    • 2 and olefins to cyclic carbonates. Chem. Sci. 2014, 5:1227-1231.
    • (2014) Chem. Sci. , vol.5 , pp. 1227-1231
    • Wu, J.1
  • 89
    • 77954581148 scopus 로고    scopus 로고
    • Continuous two-phase flow miniaturised bioreactor for monitoring anaerobic biocatalysis by pentaerythritol tetranitrate reductase
    • Mohr S., et al. Continuous two-phase flow miniaturised bioreactor for monitoring anaerobic biocatalysis by pentaerythritol tetranitrate reductase. Lab Chip 2010, 10:1929-1936.
    • (2010) Lab Chip , vol.10 , pp. 1929-1936
    • Mohr, S.1
  • 90
    • 80052804710 scopus 로고    scopus 로고
    • Miniaturizing biocatalysis: enzyme-catalyzed reactions in an aqueous/organic segmented flow capillary microreactor
    • Karande R., et al. Miniaturizing biocatalysis: enzyme-catalyzed reactions in an aqueous/organic segmented flow capillary microreactor. Adv. Synth. Catal. 2011, 363:2511-2521.
    • (2011) Adv. Synth. Catal. , vol.363 , pp. 2511-2521
    • Karande, R.1
  • 91
    • 84904900447 scopus 로고    scopus 로고
    • Hydration of acrylonitrile to produce acrylamide using biocatalyst in a membrane dispersion microreactor
    • Li J., et al. Hydration of acrylonitrile to produce acrylamide using biocatalyst in a membrane dispersion microreactor. Bioresour. Technol. 2014, 169:416-420.
    • (2014) Bioresour. Technol. , vol.169 , pp. 416-420
    • Li, J.1
  • 92
    • 84902297983 scopus 로고    scopus 로고
    • A falling-film microreactor for enzymatic oxidation of glucose
    • Illner S., et al. A falling-film microreactor for enzymatic oxidation of glucose. ChemCatChem. 2014, 6:1748-1754.
    • (2014) ChemCatChem. , vol.6 , pp. 1748-1754
    • Illner, S.1
  • 93
    • 85047677949 scopus 로고    scopus 로고
    • The use of windows of operation as a bioprocess design tool
    • Woodley J.M., Titchener-Hooker N.J. The use of windows of operation as a bioprocess design tool. Bioprocess Eng. 1996, 14:263-268.
    • (1996) Bioprocess Eng. , vol.14 , pp. 263-268
    • Woodley, J.M.1    Titchener-Hooker, N.J.2
  • 94
    • 84879831868 scopus 로고    scopus 로고
    • Microfluidic multi-input reactor for biocatalytic synthesis using transketolase
    • Lawrence J., et al. Microfluidic multi-input reactor for biocatalytic synthesis using transketolase. J. Mol. Catal. B: Enzym. 2013, 95:111-117.
    • (2013) J. Mol. Catal. B: Enzym. , vol.95 , pp. 111-117
    • Lawrence, J.1
  • 95
    • 36749033782 scopus 로고    scopus 로고
    • Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations
    • Gross R., et al. Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations. Biotechnol. Bioeng. 2007, 98:1123-1134.
    • (2007) Biotechnol. Bioeng. , vol.98 , pp. 1123-1134
    • Gross, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.