-
1
-
-
84978136514
-
Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel. Ann. Biomed
-
Ahlfeld, T., A.R. Akkineni, Y. Förster, T. Köhler, S. Knaack, M. Gelinsky, and A. Lode. Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1685-4.
-
(2016)
Eng
-
-
Ahlfeld, T.1
Akkineni, A.R.2
Förster, Y.3
Köhler, T.4
Knaack, S.5
Gelinsky, M.6
Lode, A.7
-
2
-
-
84894312534
-
Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells
-
COI: 1:CAS:528:DC%2BC2cXnsFers7o%3D, PID: 24566381
-
Ahmadi, S., G. Campoli, S. A. Yavari, B. Sajadi, R. Wauthlé, J. Schrooten, H. Weinans, and A. Zadpoor. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J. Mech. Behav. Biomed. Mater. 34:106–115, 2014.
-
(2014)
J. Mech. Behav. Biomed. Mater.
, vol.34
, pp. 106-115
-
-
Ahmadi, S.1
Campoli, G.2
Yavari, S.A.3
Sajadi, B.4
Wauthlé, R.5
Schrooten, J.6
Weinans, H.7
Zadpoor, A.8
-
3
-
-
84900337106
-
Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials
-
COI: 1:CAS:528:DC%2BC2cXhtVWrsLfI, PID: 24831611
-
Amin Yavari, S., S. Ahmadi, J. van der Stok, R. Wauthlé, A. Riemslag, M. Janssen, J. Schrooten, H. Weinans, and A. A. Zadpoor. Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials. J. Mech. Behav. Biomed. Mater. 36:109–119, 2014.
-
(2014)
J. Mech. Behav. Biomed. Mater.
, vol.36
, pp. 109-119
-
-
Amin Yavari, S.1
Ahmadi, S.2
van der Stok, J.3
Wauthlé, R.4
Riemslag, A.5
Janssen, M.6
Schrooten, J.7
Weinans, H.8
Zadpoor, A.A.9
-
4
-
-
84921450736
-
Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials
-
COI: 1:CAS:528:DC%2BC2MXhvVWqtbw%3D, PID: 25579495
-
Amin Yavari, S., S. Ahmadi, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, and A. Zadpoor. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J. Mech. Behav. Biomed. Mater. 43:91–100, 2015.
-
(2015)
J. Mech. Behav. Biomed. Mater.
, vol.43
, pp. 91-100
-
-
Amin Yavari, S.1
Ahmadi, S.2
Wauthle, R.3
Pouran, B.4
Schrooten, J.5
Weinans, H.6
Zadpoor, A.7
-
5
-
-
84978843000
-
Antibacterial behavior of additively manufactured porous titanium with nanotubular surfaces releasing silver ions
-
COI: 1:CAS:528:DC%2BC28Xps1Oqt7k%3D, PID: 27300485
-
Amin Yavari, S., L. Loozen, F. L. Paganelli, S. Bakhshandeh, K. Lietaert, J. de Groot, A. C. Fluit, C. E. Boel, J. Alblas, C. Vogely, H. Weinans, and A. Zadpoor. Antibacterial behavior of additively manufactured porous titanium with nanotubular surfaces releasing silver ions. ACS Appl. Mater. Interfaces 8:17080–17089, 2016.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 17080-17089
-
-
Amin Yavari, S.1
Loozen, L.2
Paganelli, F.L.3
Bakhshandeh, S.4
Lietaert, K.5
de Groot, J.6
Fluit, A.C.7
Boel, C.E.8
Alblas, J.9
Vogely, C.10
Weinans, H.11
Zadpoor, A.12
-
6
-
-
33751183754
-
Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems
-
COI: 1:CAS:528:DC%2BD28Xht1CnsLzO, PID: 17097189
-
Arifin, D. Y., L. Y. Lee, and C.-H. Wang. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv. Drug Deliv. Rev. 58:1274–1325, 2006.
-
(2006)
Adv. Drug Deliv. Rev.
, vol.58
, pp. 1274-1325
-
-
Arifin, D.Y.1
Lee, L.Y.2
Wang, C.-H.3
-
7
-
-
84969375488
-
3D-printed microfluidics
-
Au, A.K., W. Huynh, L.F. Horowitz, and A. Folch. 55(12):3862–3881
-
Au, A.K., W. Huynh, L.F. Horowitz, and A. Folch. 3D-printed microfluidics. Angew. Chem. Int. Ed. Engl. 55(12):3862–3881, 2016. doi:10.1002/anie.201504382.
-
(2016)
Angew. Chem. Int. Ed. Engl.
-
-
-
8
-
-
76949097204
-
Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants
-
COI: 1:CAS:528:DC%2BC3cXkvVOqsbc%3D, PID: 19913643
-
Bandyopadhyay, A., F. Espana, V. K. Balla, S. Bose, Y. Ohgami, and N. M. Davies. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 6:1640–1648, 2010.
-
(2010)
Acta Biomater.
, vol.6
, pp. 1640-1648
-
-
Bandyopadhyay, A.1
Espana, F.2
Balla, V.K.3
Bose, S.4
Ohgami, Y.5
Davies, N.M.6
-
9
-
-
84974814477
-
In vivo response of laser processed porous titanium implants for load-bearing implants
-
Bandyopadhyay, A., A. Shivaram, S. Tarafder, H. Sahasrabudhe, D. Banerjee, and S. Bose
-
Bandyopadhyay, A., A. Shivaram, S. Tarafder, H. Sahasrabudhe, D. Banerjee, and S. Bose. In vivo response of laser processed porous titanium implants for load-bearing implants. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1673-8.
-
(2016)
Ann. Biomed. Eng.
-
-
-
10
-
-
84973601877
-
Effect of chemistry on osteogenesis and angiogenesis towards bone tissue engineering using 3D printed scaffolds. Ann. Biomed
-
Bose, S., S. Tarafder, and A. Bandyopadhyay. Effect of chemistry on osteogenesis and angiogenesis towards bone tissue engineering using 3D printed scaffolds. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1646-y.
-
(2016)
Eng
-
-
Bose, S.1
Tarafder, S.2
Bandyopadhyay, A.3
-
11
-
-
84959865842
-
Three-dimensional printing of prosthetic hands for children
-
Burn, M. B., A. Ta, and G. R. Gogola. Three-dimensional printing of prosthetic hands for children. J. Hand Surg. 41:e103–e109, 2016.
-
(2016)
J. Hand Surg.
, vol.41
, pp. e103-e109
-
-
Burn, M.B.1
Ta, A.2
Gogola, G.R.3
-
12
-
-
85008447915
-
Additive biomanufacturing: an advanced approach for periodontal tissue regeneration
-
Carter, S.-S.D., P.F. Costa, C. Vaquette, S. Ivanovski, D.W. Hutmacher, and J. Malda. Additive biomanufacturing: an advanced approach for periodontal tissue regeneration. Ann. Biomed. Eng. 1–11, 2016.
-
(2016)
Ann. Biomed. Eng
, pp. 1-11
-
-
Carter, S.-S.D.1
Costa, P.F.2
Vaquette, C.3
Ivanovski, S.4
Hutmacher, D.W.5
Malda, J.6
-
13
-
-
79251568316
-
Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems
-
COI: 1:CAS:528:DC%2BC3MXht12hsb4%3D, PID: 20937415
-
Chen, Y., S. Zhou, and Q. Li. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater. 7:1140–1149, 2011.
-
(2011)
Acta Biomater.
, vol.7
, pp. 1140-1149
-
-
Chen, Y.1
Zhou, S.2
Li, Q.3
-
14
-
-
79956106147
-
Microstructure design of biodegradable scaffold and its effect on tissue regeneration
-
COI: 1:CAS:528:DC%2BC3MXmtlehsLs%3D, PID: 21529933
-
Chen, Y., S. Zhou, and Q. Li. Microstructure design of biodegradable scaffold and its effect on tissue regeneration. Biomaterials 32:5003–5014, 2011.
-
(2011)
Biomaterials
, vol.32
, pp. 5003-5014
-
-
Chen, Y.1
Zhou, S.2
Li, Q.3
-
15
-
-
84887478311
-
3D printing of microscopic bacterial communities
-
COI: 1:CAS:528:DC%2BC3sXhvVygsLvL, PID: 24101503
-
Connell, J. L., E. T. Ritschdorff, M. Whiteley, and J. B. Shear. 3D printing of microscopic bacterial communities. Proc. Natl. Acad. Sci. 110:18380–18385, 2013.
-
(2013)
Proc. Natl. Acad. Sci.
, vol.110
, pp. 18380-18385
-
-
Connell, J.L.1
Ritschdorff, E.T.2
Whiteley, M.3
Shear, J.B.4
-
16
-
-
84879222539
-
Gait assessment during the initial fitting of customized selective laser sintering ankle foot orthoses in subjects with drop foot
-
PID: 22833516
-
Creylman, V., L. Muraru, J. Pallari, H. Vertommen, and L. Peeraer. Gait assessment during the initial fitting of customized selective laser sintering ankle foot orthoses in subjects with drop foot. Prosthet. Orthot. Int. 37:132–138, 2013.
-
(2013)
Prosthet. Orthot. Int.
, vol.37
, pp. 132-138
-
-
Creylman, V.1
Muraru, L.2
Pallari, J.3
Vertommen, H.4
Peeraer, L.5
-
17
-
-
84941308426
-
Functionalization of Ti6Al4V scaffolds produced by direct metal laser for biomedical applications
-
de Damborenea, J. J., M. A. Larosa, M. A. Arenas, J. M. Hernández-López, A. L. Jardini, M. C. F. Ierardi, C. A. Zavaglia, R. Maciel Filho, and A. Conde. Functionalization of Ti6Al4V scaffolds produced by direct metal laser for biomedical applications. Mater. Des. 83:6–13, 2015.
-
(2015)
Mater. Des.
, vol.83
, pp. 6-13
-
-
de Damborenea, J.J.1
Larosa, M.A.2
Arenas, M.A.3
Hernández-López, J.M.4
Jardini, A.L.5
Ierardi, M.C.F.6
Zavaglia, C.A.7
Maciel Filho, R.8
Conde, A.9
-
18
-
-
84970954326
-
Controlled and sequential delivery of fluorophores from 3D printed alginate-PLGA tubes. Ann. Biomed
-
Do, A.-V., A. Akkouch, B. Green, I. Ozbolat, A. Debabneh, S. Geary, and A.K. Salem. Controlled and sequential delivery of fluorophores from 3D printed alginate-PLGA tubes. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1648-9.
-
(2016)
Eng
-
-
Do, A.-V.1
Akkouch, A.2
Green, B.3
Ozbolat, I.4
Debabneh, A.5
Geary, S.6
Salem, A.K.7
-
19
-
-
84962886228
-
Biomed
-
Duan, B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1607-5.
-
(2016)
Eng
-
-
-
20
-
-
79960631568
-
Getting in touch—3D printing in Forensic Imaging
-
PID: 21602004
-
Ebert, L. C., M. J. Thali, and S. Ross. Getting in touch—3D printing in Forensic Imaging. Forensic Sci. Int. 211:e1–e6, 2011.
-
(2011)
Forensic Sci. Int.
, vol.211
, pp. e1-e6
-
-
Ebert, L.C.1
Thali, M.J.2
Ross, S.3
-
21
-
-
84866749387
-
Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses
-
COI: 1:CAS:528:DC%2BC38XhtVWgsbbN
-
Emons, M., K. Obata, T. Binhammer, A. Ovsianikov, B. N. Chichkov, and U. Morgner. Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses. Opt. Mater. Express 2:942–947, 2012.
-
(2012)
Opt. Mater. Express
, vol.2
, pp. 942-947
-
-
Emons, M.1
Obata, K.2
Binhammer, T.3
Ovsianikov, A.4
Chichkov, B.N.5
Morgner, U.6
-
22
-
-
84873197336
-
Modelling the role of surface stress on the kinetics of tissue growth in confined geometries
-
PID: 23099300
-
Gamsjäger, E., C. Bidan, F. Fischer, P. Fratzl, and J. Dunlop. Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomater. 9:5531–5543, 2013.
-
(2013)
Acta Biomater.
, vol.9
, pp. 5531-5543
-
-
Gamsjäger, E.1
Bidan, C.2
Fischer, F.3
Fratzl, P.4
Dunlop, J.5
-
23
-
-
34548404586
-
Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices
-
COI: 1:CAS:528:DC%2BD2sXhtVSktbnL, PID: 17655962
-
Gbureck, U., E. Vorndran, F. A. Müller, and J. E. Barralet. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J. Control. Release 122:173–180, 2007.
-
(2007)
J. Control. Release
, vol.122
, pp. 173-180
-
-
Gbureck, U.1
Vorndran, E.2
Müller, F.A.3
Barralet, J.E.4
-
24
-
-
65049086820
-
Additive fabrication technologies applied to medicine and health care: a review
-
Giannatsis, J., and V. Dedoussis. Additive fabrication technologies applied to medicine and health care: a review. Int. J. Adv. Manuf. Technol. 40:116–127, 2009.
-
(2009)
Int. J. Adv. Manuf. Technol.
, vol.40
, pp. 116-127
-
-
Giannatsis, J.1
Dedoussis, V.2
-
25
-
-
84975885806
-
3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems
-
COI: 1:CAS:528:DC%2BC28XhtVKhs7%2FK, PID: 27189134
-
Goyanes, A., U. Det-Amornrat, J. Wang, A. W. Basit, and S. Gaisford. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J. Control. Release 234:41–48, 2016.
-
(2016)
J. Control. Release
, vol.234
, pp. 41-48
-
-
Goyanes, A.1
Det-Amornrat, U.2
Wang, J.3
Basit, A.W.4
Gaisford, S.5
-
26
-
-
84943582104
-
Effect of geometry on drug release from 3D printed tablets
-
COI: 1:CAS:528:DC%2BC2MXntlWku7c%3D, PID: 25934428
-
Goyanes, A., P. R. Martinez, A. Buanz, A. W. Basit, and S. Gaisford. Effect of geometry on drug release from 3D printed tablets. Int. J. Pharm. 494:657–663, 2015.
-
(2015)
Int. J. Pharm.
, vol.494
, pp. 657-663
-
-
Goyanes, A.1
Martinez, P.R.2
Buanz, A.3
Basit, A.W.4
Gaisford, S.5
-
27
-
-
84946407425
-
3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics
-
COI: 1:CAS:528:DC%2BC2MXhs1ekurjJ, PID: 26473653
-
Goyanes, A., J. Wang, A. Buanz, R. Martínez-Pacheco, R. Telford, S. Gaisford, and A. W. Basit. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol. Pharm. 12:4077–4084, 2015.
-
(2015)
Mol. Pharm.
, vol.12
, pp. 4077-4084
-
-
Goyanes, A.1
Wang, J.2
Buanz, A.3
Martínez-Pacheco, R.4
Telford, R.5
Gaisford, S.6
Basit, A.W.7
-
28
-
-
84958191158
-
Biofabrication: reappraising the definition of an evolving field
-
PID: 26744832
-
Groll, J., T. Boland, T. Blunk, J. A. Burdick, D.-W. Cho, P. D. Dalton, B. Derby, G. Forgacs, Q. Li, and V. A. Mironov. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8:013001, 2016.
-
(2016)
Biofabrication
, vol.8
, pp. 013001
-
-
Groll, J.1
Boland, T.2
Blunk, T.3
Burdick, J.A.4
Cho, D.-W.5
Dalton, P.D.6
Derby, B.7
Forgacs, G.8
Li, Q.9
Mironov, V.A.10
-
29
-
-
84937905931
-
Fabrication of low cost soft tissue prostheses with the desktop 3D printer
-
PID: 25427880
-
He, Y., G.-H. Xue, and J.-Z. Fu. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Sci. Rep. 4:6973, 2014.
-
(2014)
Sci. Rep.
, vol.4
, pp. 6973
-
-
He, Y.1
Xue, G.-H.2
Fu, J.-Z.3
-
30
-
-
84940047332
-
3D printed microfluidics for biological applications
-
COI: 1:CAS:528:DC%2BC2MXht1SnsL7L, PID: 26237523
-
Ho, C. M. B., S. H. Ng, K. H. H. Li, and Y.-J. Yoon. 3D printed microfluidics for biological applications. Lab Chip. 15:3627–3637, 2015.
-
(2015)
Lab Chip.
, vol.15
, pp. 3627-3637
-
-
Ho, C.M.B.1
Ng, S.H.2
Li, K.H.H.3
Yoon, Y.-J.4
-
31
-
-
53549117470
-
A mathematical model for predicting drug release from a biodurable drug-eluting stent coating
-
PID: 18186043
-
Hossainy, S., and S. Prabhu. A mathematical model for predicting drug release from a biodurable drug-eluting stent coating. J. Biomed. Mater. Res. A 87:487–493, 2008.
-
(2008)
J. Biomed. Mater. Res. A
, vol.87
, pp. 487-493
-
-
Hossainy, S.1
Prabhu, S.2
-
32
-
-
84963780775
-
Indirect rapid prototyping: opening up unprecedented opportunities in scaffold design and applications. Ann. Biomed
-
Houben, A., J. Van Hoorick, J. Van Erps, H. Thienpont, S. Van Vlierberghe, and P. Dubruel. Indirect rapid prototyping: opening up unprecedented opportunities in scaffold design and applications. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1610-x.
-
(2016)
Eng
-
-
Houben, A.1
Van Hoorick, J.2
Van Erps, J.3
Thienpont, H.4
Van Vlierberghe, S.5
Dubruel, P.6
-
33
-
-
34250836847
-
Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique
-
COI: 1:CAS:528:DC%2BD2sXntFejsLk%3D, PID: 17412538
-
Huang, W., Q. Zheng, W. Sun, H. Xu, and X. Yang. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int. J. Pharm. 339:33–38, 2007.
-
(2007)
Int. J. Pharm.
, vol.339
, pp. 33-38
-
-
Huang, W.1
Zheng, Q.2
Sun, W.3
Xu, H.4
Yang, X.5
-
34
-
-
84944202049
-
Design for additive manufacture of fine medical instrumentation—DragonFlex case study
-
Jelínek, F., and P. Breedveld. Design for additive manufacture of fine medical instrumentation—DragonFlex case study. J. Mech. Des. 137:111416, 2015.
-
(2015)
J. Mech. Des.
, vol.137
, pp. 111416
-
-
Jelínek, F.1
Breedveld, P.2
-
35
-
-
84994680319
-
DragonFlex smart steerable laparoscopic instrument
-
Jelínek, F., R. Pessers, and P. Breedveld. DragonFlex smart steerable laparoscopic instrument. J. Med. Devices 8(1):015001, 2014.
-
(2014)
J. Med. Devices
, vol.8
, Issue.1
, pp. 015001
-
-
Jelínek, F.1
Pessers, R.2
Breedveld, P.3
-
36
-
-
84960905071
-
A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
-
COI: 1:CAS:528:DC%2BC28XisFKhsbg%3D, PID: 26878319
-
Kang, H.-W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34:312–319, 2016.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 312-319
-
-
Kang, H.-W.1
Lee, S.J.2
Ko, I.K.3
Kengla, C.4
Yoo, J.J.5
Atala, A.6
-
37
-
-
84885049600
-
On demand additive manufacturing of a basic surgical kit
-
Kondor, S., C. G. Grant, P. Liacouras, M. J. R. Schmid, L. M. Parsons, V. K. Rastogi, L. S. Smith, B. Macy, B. Sabart, and C. Macedonia. On demand additive manufacturing of a basic surgical kit. J. Med. Devices 7:030916, 2013.
-
(2013)
J. Med. Devices
, vol.7
, pp. 030916
-
-
Kondor, S.1
Grant, C.G.2
Liacouras, P.3
Schmid, M.J.R.4
Parsons, L.M.5
Rastogi, V.K.6
Smith, L.S.7
Macy, B.8
Sabart, B.9
Macedonia, C.10
-
38
-
-
84870049108
-
A review of rapid prototyped surgical guides for patient-specific total knee replacement
-
COI: 1:STN:280:DC%2BC3s%2Fpt1WlsA%3D%3D, PID: 23109622
-
Krishnan, S., A. Dawood, R. Richards, J. Henckel, and A. Hart. A review of rapid prototyped surgical guides for patient-specific total knee replacement. J. Bone Joint Surg. Br. 94:1457–1461, 2012.
-
(2012)
J. Bone Joint Surg. Br.
, vol.94
, pp. 1457-1461
-
-
Krishnan, S.1
Dawood, A.2
Richards, R.3
Henckel, J.4
Hart, A.5
-
39
-
-
84962858637
-
Printing of three-dimensional tissue analogs for regenerative medicine
-
Biomed, Eng
-
Lee, V.K., and G. Dai. Printing of three-dimensional tissue analogs for regenerative medicine. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1613-7.
-
(2016)
Ann. Biomed. Eng.
-
-
Lee, V.K.1
Dai, G.2
-
40
-
-
33751195735
-
Hydrogels in controlled release formulations: network design and mathematical modeling
-
COI: 1:CAS:528:DC%2BD28Xht1CnsLzJ, PID: 17081649
-
Lin, C.-C., and A. T. Metters. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58:1379–1408, 2006.
-
(2006)
Adv. Drug Deliv. Rev.
, vol.58
, pp. 1379-1408
-
-
Lin, C.-C.1
Metters, A.T.2
-
41
-
-
84884903697
-
25th anniversary article: engineering hydrogels for biofabrication
-
COI: 1:CAS:528:DC%2BC3sXhtlansLrK, PID: 24038336
-
Malda, J., J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.
-
(2013)
Adv. Mater.
, vol.25
, pp. 5011-5028
-
-
Malda, J.1
Visser, J.2
Melchels, F.P.3
Jüngst, T.4
Hennink, W.E.5
Dhert, W.J.6
Groll, J.7
Hutmacher, D.W.8
-
42
-
-
77953651502
-
A review on stereolithography and its applications in biomedical engineering
-
COI: 1:CAS:528:DC%2BC3cXnt12rt7k%3D, PID: 20478613
-
Melchels, F. P., J. Feijen, and D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 6121-6130
-
-
Melchels, F.P.1
Feijen, J.2
Grijpma, D.W.3
-
43
-
-
85008455547
-
Mechanical properties, cytocompatibility and manufacturability of chitosan:PEGDA hybrid-gel scaffolds by stereolithography
-
Morris, V.B., S. Nimbalkar, M. Younesi, P. McClellan, and O. Akkus. Mechanical properties, cytocompatibility and manufacturability of chitosan:PEGDA hybrid-gel scaffolds by stereolithography. Ann. Biomed. Eng. 1–11, 2016.
-
(2016)
Ann. Biomed. Eng
, pp. 1-11
-
-
Morris, V.B.1
Nimbalkar, S.2
Younesi, M.3
McClellan, P.4
Akkus, O.5
-
44
-
-
85008459564
-
-
Müller, M., E. Öztürk, Ø. Arlov, P. Gatenholm, and M. Zenobi-Wong. Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications. Ann. Biomed. Eng. 1–14, 2016.
-
(2016)
Biomed. Eng
, pp. 1-14
-
-
Müller, M.1
Öztürk, E.2
Arlov, Ø.3
Gatenholm, P.4
-
45
-
-
84872681726
-
Evaluation of hydrogels for bio-printing applications
-
PID: 22941807
-
Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101:272–284, 2013.
-
(2013)
J. Biomed. Mater. Res. A
, vol.101
, pp. 272-284
-
-
Murphy, S.V.1
Skardal, A.2
Atala, A.3
-
46
-
-
77951848161
-
Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays
-
COI: 1:CAS:528:DC%2BC3cXls1Wnur8%3D, PID: 20308113
-
Murr, L., S. Gaytan, F. Medina, H. Lopez, E. Martinez, B. Machado, D. Hernandez, L. Martinez, M. Lopez, and R. Wicker. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos. Trans. A Math. Phys. Eng. Sci. 368:1999–2032, 2010.
-
(2010)
Philos. Trans. A Math. Phys. Eng. Sci.
, vol.368
, pp. 1999-2032
-
-
Murr, L.1
Gaytan, S.2
Medina, F.3
Lopez, H.4
Martinez, E.5
Machado, B.6
Hernandez, D.7
Martinez, L.8
Lopez, M.9
Wicker, R.10
-
47
-
-
84866249590
-
Next generation orthopaedic implants by additive manufacturing using electron beam melting
-
245727
-
Murr, L.E., S.M. Gaytan, E. Martinez, F. Medina, and R.B. Wicker. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int. J. Biomater. 2012:245727, 2012. doi:10.1155/2012/245727.
-
(2012)
Int. J. Biomater
, pp. 2012
-
-
Murr, L.E.1
Gaytan, S.M.2
Martinez, E.3
Medina, F.4
Wicker, R.B.5
-
48
-
-
84964389231
-
Liquid-phase laser induced forward transfer for complex organic inks and tissue engineering. Ann. Biomed
-
Nguyen, A.K., and R.J. Narayan. Liquid-phase laser induced forward transfer for complex organic inks and tissue engineering. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1617-3.
-
(2016)
Eng
-
-
Nguyen, A.K.1
Narayan, R.J.2
-
49
-
-
84961955670
-
A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv
-
Norman, J., R.D. Madurawe, C.M. Moore, M.A. Khan, and A. Khairuzzaman. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv. Rev. 2016. doi:10.1016/j.addr.2016.03.001.
-
(2016)
Rev
-
-
Norman, J.1
Madurawe, R.D.2
Moore, C.M.3
Khan, M.A.4
Khairuzzaman, A.5
-
50
-
-
85008459561
-
3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration
-
Nyberg, E.L., A.L. Farris, B.P. Hung, M. Dias, J.R. Garcia, A.H. Dorafshar, and W.L. Grayson. 3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration. Ann. Biomed. Eng. 1–13, 2016.
-
(2016)
Ann. Biomed. Eng
, pp. 1-13
-
-
Nyberg, E.L.1
Farris, A.L.2
Hung, B.P.3
Dias, M.4
Garcia, J.R.5
Dorafshar, A.H.6
Grayson, W.L.7
-
51
-
-
84867310389
-
Three-dimensional microfabrication by two-photon polymerization technique
-
COI: 1:CAS:528:DC%2BC3sXhsVWqur4%3D
-
Ovsianikov, A., and B. N. Chichkov. Three-dimensional microfabrication by two-photon polymerization technique. Comput. Aided Tissue Eng. 868:311–325, 2012.
-
(2012)
Comput. Aided Tissue Eng.
, vol.868
, pp. 311-325
-
-
Ovsianikov, A.1
Chichkov, B.N.2
-
52
-
-
77953785691
-
Mass customization of foot orthoses for rheumatoid arthritis using selective laser sintering
-
PID: 20211798
-
Pallari, J. H., K. W. Dalgarno, and J. Woodburn. Mass customization of foot orthoses for rheumatoid arthritis using selective laser sintering. IEEE Trans. Biomed. Eng. 57:1750–1756, 2010.
-
(2010)
IEEE Trans. Biomed. Eng.
, vol.57
, pp. 1750-1756
-
-
Pallari, J.H.1
Dalgarno, K.W.2
Woodburn, J.3
-
53
-
-
84963774978
-
Three-dimensional printing of tissue/organ analogues containing living cells
-
and D.-W. Cho
-
Park, J.H., J. Jang, J.-S. Lee, and D.-W. Cho. Three-dimensional printing of tissue/organ analogues containing living cells. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1611-9.
-
(2016)
Ann. Biomed. Eng.
-
-
Park, J.H.1
Jang, J.2
Lee, J.-S.3
-
54
-
-
70349996385
-
Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices
-
COI: 1:CAS:528:DC%2BD1MXksVWnt70%3D
-
Park, S. H., D. Y. Yang, and K. S. Lee. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photon. Rev. 3:1–11, 2009.
-
(2009)
Laser Photon. Rev.
, vol.3
, pp. 1-11
-
-
Park, S.H.1
Yang, D.Y.2
Lee, K.S.3
-
55
-
-
84964663218
-
Development and characterization of a 3D printed, keratin-based hydrogel. Ann. Biomed
-
Placone, J.K., J. Navarro, G.W. Laslo, M.J. Lerman, A.R. Gabard, G.J. Herendeen, E.E. Falco, S. Tomblyn, L. Burnett, and J.P. Fisher. Development and characterization of a 3D printed, keratin-based hydrogel. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1621-7.
-
(2016)
Eng
-
-
Placone, J.K.1
Navarro, J.2
Laslo, G.W.3
Lerman, M.J.4
Gabard, A.R.5
Herendeen, G.J.6
Falco, E.E.7
Tomblyn, S.8
Burnett, L.9
Fisher, J.P.10
-
56
-
-
84982261604
-
3D bioprinting for vascularized tissue fabrication
-
and Y. Mei
-
Richards, D., J. Jia, M. Yost, R. Markwald, and Y. Mei. 3D bioprinting for vascularized tissue fabrication. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1653-z.
-
(2016)
Ann. Biomed. Eng.
-
-
Richards, D.1
Jia, J.2
Yost, M.3
Markwald, R.4
-
57
-
-
49949086830
-
The effect of geometry on three-dimensional tissue growth
-
PID: 18348957
-
Rumpler, M., A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl. The effect of geometry on three-dimensional tissue growth. J. R. Soc. Interface 5:1173–1180, 2008.
-
(2008)
J. R. Soc. Interface
, vol.5
, pp. 1173-1180
-
-
Rumpler, M.1
Woesz, A.2
Dunlop, J.W.3
van Dongen, J.T.4
Fratzl, P.5
-
58
-
-
84963647595
-
Modular tissue assembly strategies for biofabrication of engineered cartilage
-
Schon, B. S., G. J. Hooper, and T. B. Woodfield. Modular tissue assembly strategies for biofabrication of engineered cartilage. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1609-3.
-
(2016)
Ann. Biomed. Eng.
-
-
Schon, B.S.1
Hooper, G.J.2
-
59
-
-
84925745420
-
Biomaterials for integration with 3-D bioprinting
-
PID: 25476164
-
Skardal, A., and A. Atala. Biomaterials for integration with 3-D bioprinting. Ann. Biomed. Eng. 43:730–746, 2015.
-
(2015)
Ann. Biomed. Eng.
, vol.43
, pp. 730-746
-
-
Skardal, A.1
Atala, A.2
-
60
-
-
79251617418
-
Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency
-
COI: 1:CAS:528:DC%2BC3MXht12hs7k%3D, PID: 21056125
-
Sobral, J. M., S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7:1009–1018, 2011.
-
(2011)
Acta Biomater.
, vol.7
, pp. 1009-1018
-
-
Sobral, J.M.1
Caridade, S.G.2
Sousa, R.A.3
Mano, J.F.4
Reis, R.L.5
-
61
-
-
84874244712
-
Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning
-
COI: 1:STN:280:DC%2BC3svhvVeisg%3D%3D, PID: 23446024
-
Spottiswoode, B., D. Van den Heever, Y. Chang, S. Engelhardt, S. Du Plessis, F. Nicolls, H. Hartzenberg, and A. Gretschel. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact. Funct. Neurosurg. 91:162–169, 2013.
-
(2013)
Stereotact. Funct. Neurosurg.
, vol.91
, pp. 162-169
-
-
Spottiswoode, B.1
Van den Heever, D.2
Chang, Y.3
Engelhardt, S.4
Du Plessis, S.5
Nicolls, F.6
Hartzenberg, H.7
Gretschel, A.8
-
62
-
-
84968584136
-
Thiol-ene clickable poly(glycidol) hydrogels for biofabrication
-
Stichler, S., T. Jungst, M. Schamel, I. Zilkowski, M. Kuhlmann, T. Böck, T. Blunk, J. Teßmar, and J. Groll. Thiol-ene clickable poly(glycidol) hydrogels for biofabrication. Ann. Biomed. Eng. 1–13, 2016.
-
(2016)
Ann. Biomed. Eng
, pp. 1-13
-
-
Stichler, S.1
Jungst, T.2
Schamel, M.3
Zilkowski, I.4
Kuhlmann, M.5
Böck, T.6
Blunk, T.7
Teßmar, J.8
Groll, J.9
-
63
-
-
84861475464
-
Embracing additive manufacture: implications for foot and ankle orthosis design
-
Telfer, S., J. Pallari, J. Munguia, K. Dalgarno, M. McGeough, and J. Woodburn. Embracing additive manufacture: implications for foot and ankle orthosis design. BMC Musculoskelet. Disord. 13:1, 2012.
-
(2012)
BMC Musculoskelet. Disord.
, vol.13
, pp. 1
-
-
Telfer, S.1
Pallari, J.2
Munguia, J.3
Dalgarno, K.4
McGeough, M.5
Woodburn, J.6
-
64
-
-
84975297327
-
3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed
-
Trombetta, R., J.A. Inzana, E.M. Schwarz, S.L. Kates, and H.A. Awad. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1678-3.
-
(2016)
Eng
-
-
Trombetta, R.1
Inzana, J.A.2
Schwarz, E.M.3
Kates, S.L.4
Awad, H.A.5
-
65
-
-
84973889193
-
Folch. 3D-printing of transparent bio-microfluidic devices in PEG-DA
-
Urrios, A., C. Parra-Cabrera, N. Bhattacharjee, A.M. Gonzalez-Suarez, L.G. Rigat-Brugarolas, U. Nallapatti, J. Samitier, C.A. DeForest, F. Posas, J.L. Garcia-Cordero, and A. Folch. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 2016. doi:10.1039/C6LC00153J.
-
(2016)
Lab Chip
-
-
Urrios, A.1
Parra-Cabrera, C.2
Bhattacharjee, N.3
Gonzalez-Suarez, A.M.4
Rigat-Brugarolas, L.G.5
Nallapatti, U.6
Samitier, J.7
DeForest, C.A.8
Posas, F.9
Garcia-Cordero, J.L.10
-
66
-
-
84886431235
-
A review on 3D micro-additive manufacturing technologies
-
Vaezi, M., H. Seitz, and S. Yang. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 67:1721–1754, 2013.
-
(2013)
Int. J. Adv. Manuf. Technol.
, vol.67
, pp. 1721-1754
-
-
Vaezi, M.1
Seitz, H.2
Yang, S.3
-
67
-
-
84906662210
-
Immobilisation of an antibacterial drug to Ti6Al4V components fabricated using selective laser melting
-
COI: 1:CAS:528:DC%2BC2cXht1OqurzN
-
Vaithilingam, J., S. Kilsby, R. D. Goodridge, S. D. Christie, S. Edmondson, and R. J. Hague. Immobilisation of an antibacterial drug to Ti6Al4V components fabricated using selective laser melting. Appl. Surf. Sci. 314:642–654, 2014.
-
(2014)
Appl. Surf. Sci.
, vol.314
, pp. 642-654
-
-
Vaithilingam, J.1
Kilsby, S.2
Goodridge, R.D.3
Christie, S.D.4
Edmondson, S.5
Hague, R.J.6
-
68
-
-
84908073207
-
Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound
-
COI: 1:CAS:528:DC%2BC2cXhs1yhu7%2FP
-
Vaithilingam, J., S. Kilsby, R. D. Goodridge, S. D. Christie, S. Edmondson, and R. J. Hague. Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound. Mater. Sci. Eng. C 46:52–61, 2015.
-
(2015)
Mater. Sci. Eng. C
, vol.46
, pp. 52-61
-
-
Vaithilingam, J.1
Kilsby, S.2
Goodridge, R.D.3
Christie, S.D.4
Edmondson, S.5
Hague, R.J.6
-
69
-
-
84861603798
-
The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds
-
PID: 22487930
-
Van Bael, S., Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J.-P. Kruth, and J. Schrooten. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 8:2824–2834, 2012.
-
(2012)
Acta Biomater.
, vol.8
, pp. 2824-2834
-
-
Van Bael, S.1
Chai, Y.C.2
Truscello, S.3
Moesen, M.4
Kerckhofs, G.5
Van Oosterwyck, H.6
Kruth, J.-P.7
Schrooten, J.8
-
70
-
-
84924407038
-
Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels
-
van der Stok, J., M. Koolen, M. de Maat, S. AMin Yavari, J. Alblas, P. Patka, J. Verhaar, E. van Lieshout, A. A. Zadpoor, and H. Weinans. Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels. Eur. Cells Mater. 2015:141–154, 2015.
-
(2015)
Eur. Cells Mater.
, vol.2015
, pp. 141-154
-
-
van der Stok, J.1
Koolen, M.2
de Maat, M.3
Amin Yavari, S.4
Alblas, J.5
Patka, P.6
Verhaar, J.7
van Lieshout, E.8
Zadpoor, A.A.9
Weinans, H.10
-
71
-
-
84966696718
-
3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening. Ann. Biomed
-
Vanderburgh, J., J.A. Sterling, and S.A. Guelcher. 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1640-4.
-
(2016)
Eng
-
-
Vanderburgh, J.1
Sterling, J.A.2
Guelcher, S.A.3
-
72
-
-
84899513546
-
Three-dimensional in vitro cancer models: a short review
-
PID: 24727833
-
Wang, C., Z. Tang, Y. Zhao, R. Yao, L. Li, and W. Sun. Three-dimensional in vitro cancer models: a short review. Biofabrication 6:022001, 2014.
-
(2014)
Biofabrication
, vol.6
, pp. 022001
-
-
Wang, C.1
Tang, Z.2
Zhao, Y.3
Yao, R.4
Li, L.5
Sun, W.6
-
73
-
-
84958063695
-
Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review
-
COI: 1:CAS:528:DC%2BC28Xks1WktQ%3D%3D, PID: 26773669
-
Wang, X., S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y. M. Xie. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141, 2016.
-
(2016)
Biomaterials
, vol.83
, pp. 127-141
-
-
Wang, X.1
Xu, S.2
Zhou, S.3
Xu, W.4
Leary, M.5
Choong, P.6
Qian, M.7
Brandt, M.8
Xie, Y.M.9
-
74
-
-
84893339828
-
Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons: technical note
-
PID: 24321044
-
Waran, V., V. Narayanan, R. Karuppiah, S. L. Owen, and T. Aziz. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons: technical note. J. Neurosurg. 120:489–492, 2014.
-
(2014)
J. Neurosurg.
, vol.120
, pp. 489-492
-
-
Waran, V.1
Narayanan, V.2
Karuppiah, R.3
Owen, S.L.4
Aziz, T.5
-
75
-
-
84921653663
-
Bone tissue regeneration: the role of scaffold geometry
-
COI: 1:CAS:528:DC%2BC2cXhvVemtLvL, PID: 26218114
-
Zadpoor, A. A. Bone tissue regeneration: the role of scaffold geometry. Biomater. Sci. 3:231–245, 2015.
-
(2015)
Biomater. Sci.
, vol.3
, pp. 231-245
-
-
Zadpoor, A.A.1
-
76
-
-
84983611481
-
-
Zadpoor, A.A. Mechanical meta-materials. Mater. Horiz. 3:371–381, 2016. doi:10.1039/C6MH00065G.
-
(2016)
Horiz
, vol.3
, pp. 371-381
-
-
Zadpoor, A.A.M.M.-M.M.1
-
77
-
-
84889080620
-
Three-dimensional print of a liver for preoperative planning in living donor liver transplantation
-
Zein, N. N., I. A. Hanouneh, P. D. Bishop, M. Samaan, B. Eghtesad, C. Quintini, C. Miller, L. Yerian, and R. Klatte. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transplant. 19:1304–1310, 2013.
-
(2013)
Liver Transplant.
, vol.19
, pp. 1304-1310
-
-
Zein, N.N.1
Hanouneh, I.A.2
Bishop, P.D.3
Samaan, M.4
Eghtesad, B.5
Quintini, C.6
Miller, C.7
Yerian, L.8
Klatte, R.9
-
78
-
-
84871928117
-
Effect of porosity on long-term degradation of poly (ε-caprolactone) scaffolds and their cellular response
-
COI: 1:CAS:528:DC%2BC38Xhs1SqurrP
-
Zhang, Q., Y. Jiang, Y. Zhang, Z. Ye, W. Tan, and M. Lang. Effect of porosity on long-term degradation of poly (ε-caprolactone) scaffolds and their cellular response. Polym. Degrad. Stab. 98:209–218, 2013.
-
(2013)
Polym. Degrad. Stab.
, vol.98
, pp. 209-218
-
-
Zhang, Q.1
Jiang, Y.2
Zhang, Y.3
Ye, Z.4
Tan, W.5
Lang, M.6
-
79
-
-
85008505266
-
3D bioprinting for tissue and organ fabrication
-
Zhang, Y.S., K. Yue, J. Aleman, K. Mollazadeh-Moghaddam, S.M. Bakht, J. Yang, W. Jia, V. Dell’Erba, P. Assawes, and S.R. Shin. 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 1–16, 2016.
-
(2016)
Ann. Biomed. Eng
, pp. 1-16
-
-
Zhang, Y.S.1
Yue, K.2
Aleman, J.3
Mollazadeh-Moghaddam, K.4
Bakht, S.M.5
Yang, J.6
Jia, W.7
Dell’Erba, V.8
Assawes, P.9
Shin, S.R.10
-
80
-
-
84961288580
-
Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences
-
Zuniga, J., D. Katsavelis, J. Peck, J. Stollberg, M. Petrykowski, A. Carson, and C. Fernandez. Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences. BMC Res. Notes 8:1, 2015.
-
(2015)
BMC Res. Notes
, vol.8
, pp. 1
-
-
Zuniga, J.1
Katsavelis, D.2
Peck, J.3
Stollberg, J.4
Petrykowski, M.5
Carson, A.6
Fernandez, C.7
|