메뉴 건너뛰기




Volumn 34, Issue 3, 2016, Pages 312-319

A 3D bioprinting system to produce human-scale tissue constructs with structural integrity

Author keywords

[No Author keywords available]

Indexed keywords

3D PRINTERS; BIODEGRADABLE POLYMERS; CELLS; CYTOLOGY; HISTOLOGY; HYDROGELS; MECHANICAL STABILITY; MEDICAL IMAGING; PRINTERS (COMPUTER); PRINTING MACHINERY; PRINTING PRESSES; PROGRAM TRANSLATORS; STRUCTURAL INTEGRITY; TISSUE ENGINEERING;

EID: 84960905071     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/nbt.3413     Document Type: Article
Times cited : (2102)

References (64)
  • 1
    • 33845955655 scopus 로고    scopus 로고
    • Engineering complex tissues
    • Mikos, A.G. et al. Engineering complex tissues. Tissue Eng. 12, 3307-3339 (2006).
    • (2006) Tissue Eng. , vol.12 , pp. 3307-3339
    • Mikos, A.G.1
  • 3
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy, S.V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773-785 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 4
    • 60549108145 scopus 로고    scopus 로고
    • Organ printing: Tissue spheroids as building blocks
    • Mironov, V. et al. Organ printing: tissue spheroids as building blocks. Biomaterials 30, 2164-2174 (2009).
    • (2009) Biomaterials , vol.30 , pp. 2164-2174
    • Mironov, V.1
  • 5
    • 84863493694 scopus 로고    scopus 로고
    • Science in three dimensions: The print revolution
    • Jones, N. Science in three dimensions: the print revolution. Nature 487, 22-23 (2012).
    • (2012) Nature , vol.487 , pp. 22-23
    • Jones, N.1
  • 7
    • 84868125762 scopus 로고    scopus 로고
    • Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology
    • Xu, T. et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34, 130-139 (2013).
    • (2013) Biomaterials , vol.34 , pp. 130-139
    • Xu, T.1
  • 8
    • 84879222783 scopus 로고    scopus 로고
    • Bioprinting: Functional droplet networks
    • Durmus, N.G., Tasoglu, S. & Demirci, U. Bioprinting: Functional droplet networks. Nat. Mater. 12, 478-479 (2013).
    • (2013) Nat. Mater. , vol.12 , pp. 478-479
    • Durmus, N.G.1    Tasoglu, S.2    Demirci, U.3
  • 9
    • 77953827622 scopus 로고    scopus 로고
    • Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation
    • Cooper, G.M. et al. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng. Part A 16, 1749-1759 (2010).
    • (2010) Tissue Eng. Part A , vol.16 , pp. 1749-1759
    • Cooper, G.M.1
  • 10
    • 0042360407 scopus 로고    scopus 로고
    • Creating alignment and anisotropy in engineered heart tissue: Role of boundary conditions in a model three-dimensional culture system
    • Costa, K.D., Lee, E.J. & Holmes, J.W. Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9, 567-577 (2003).
    • (2003) Tissue Eng. , vol.9 , pp. 567-577
    • Costa, K.D.1    Lee, E.J.2    Holmes, J.W.3
  • 11
    • 84861826955 scopus 로고    scopus 로고
    • Direct human cartilage repair using three-dimensional bioprinting technology
    • Cui, X., Breitenkamp, K., Finn, M.G., Lotz, M. & D'Lima, D.D. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A 18, 1304-1312 (2012).
    • (2012) Tissue Eng. Part A , vol.18 , pp. 1304-1312
    • Cui, X.1    Breitenkamp, K.2    Finn, M.G.3    Lotz, M.4    D'Lima, D.D.5
  • 13
    • 84884211629 scopus 로고    scopus 로고
    • Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
    • Duan, B., Hockaday, L.A., Kang, K.H. & Butcher, J.T. III. Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. A 101, 1255-1264 (2013).
    • (2013) J. Biomed. Mater. Res. A , vol.101 , pp. 1255-1264
    • Duan, B.1    Hockaday, L.A.2    Kang, K.H.3    Butcher, J.T.4
  • 14
    • 34447260532 scopus 로고    scopus 로고
    • Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation
    • Ilkhanizadeh, S., Teixeira, A.I. & Hermanson, O. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28, 3936-3943 (2007).
    • (2007) Biomaterials , vol.28 , pp. 3936-3943
    • Ilkhanizadeh, S.1    Teixeira, A.I.2    Hermanson, O.3
  • 15
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte, C., Marga, F.S., Niklason, L.E. & Forgacs, G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30, 5910-5917 (2009).
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 16
    • 77953651709 scopus 로고    scopus 로고
    • Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
    • Skardal, A., Zhang, J. & Prestwich, G.D. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31, 6173-6181 (2010).
    • (2010) Biomaterials , vol.31 , pp. 6173-6181
    • Skardal, A.1    Zhang, J.2    Prestwich, G.D.3
  • 17
    • 84870316597 scopus 로고    scopus 로고
    • Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
    • Xu, T. et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5, 015001 (2013).
    • (2013) Biofabrication , vol.5 , pp. 015001
    • Xu, T.1
  • 18
    • 84869131568 scopus 로고    scopus 로고
    • Printing and prototyping of tissues and scaffolds
    • Derby, B. Printing and prototyping of tissues and scaffolds. Science 338, 921-926 (2012).
    • (2012) Science , vol.338 , pp. 921-926
    • Derby, B.1
  • 20
    • 69649100202 scopus 로고    scopus 로고
    • Human microvasculature fabrication using thermal inkjet printing technology
    • Cui, X. & Boland, T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30, 6221-6227 (2009).
    • (2009) Biomaterials , vol.30 , pp. 6221-6227
    • Cui, X.1    Boland, T.2
  • 21
    • 77954494231 scopus 로고    scopus 로고
    • Bioprinting endothelial cells with alginate for 3D tissue constructs
    • Khalil, S. & Sun, W. Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 131, 111002 (2009).
    • (2009) J. Biomech. Eng. , vol.131 , pp. 111002
    • Khalil, S.1    Sun, W.2
  • 22
    • 58249093214 scopus 로고    scopus 로고
    • Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication
    • Lee, W. et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30, 1587-1595 (2009).
    • (2009) Biomaterials , vol.30 , pp. 1587-1595
    • Lee, W.1
  • 23
    • 79952108545 scopus 로고    scopus 로고
    • Fabrication and characterization of bio-engineered cardiac pseudo tissues
    • Xu, T., Baicu, C., Aho, M., Zile, M. & Boland, T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1, 035001 (2009).
    • (2009) Biofabrication , vol.1 , pp. 035001
    • Xu, T.1    Baicu, C.2    Aho, M.3    Zile, M.4    Boland, T.5
  • 24
    • 79958074853 scopus 로고    scopus 로고
    • Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies
    • Chang, C.C., Boland, E.D., Williams, S.K. & Hoying, J.B. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J. Biomed. Mater. Res. B Appl. Biomater. 98, 160-170 (2011).
    • (2011) J. Biomed. Mater. Res. B Appl. Biomater , vol.98 , pp. 160-170
    • Chang, C.C.1    Boland, E.D.2    Williams, S.K.3    Hoying, J.B.4
  • 25
    • 38349195609 scopus 로고    scopus 로고
    • Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing
    • Fedorovich, N.E., De Wijn, J.R., Verbout, A.J., Alblas, J. & Dhert, W.J. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A 14, 127-133 (2008).
    • (2008) Tissue Eng. Part A , vol.14 , pp. 127-133
    • Fedorovich, N.E.1    De Wijn, J.R.2    Verbout, A.J.3    Alblas, J.4    Dhert, W.J.5
  • 26
    • 1542267824 scopus 로고    scopus 로고
    • Engineering biological structures of prescribed shape using self-assembling multicellular systems
    • Jakab, K., Neagu, A., Mironov, V., Markwald, R.R. & Forgacs, G. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. USA 101, 2864-2869 (2004).
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 2864-2869
    • Jakab, K.1    Neagu, A.2    Mironov, V.3    Markwald, R.R.4    Forgacs, G.5
  • 27
    • 0346634885 scopus 로고    scopus 로고
    • Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering
    • Landers, R., Hübner, U., Schmelzeisen, R. & Mülhaupt, R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23, 4437-4447 (2002).
    • (2002) Biomaterials , vol.23 , pp. 4437-4447
    • Landers, R.1    Hübner, U.2    Schmelzeisen, R.3    Mülhaupt, R.4
  • 28
    • 0037122675 scopus 로고    scopus 로고
    • Hydrogels for biomedical applications
    • Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3-12 (2002).
    • (2002) Adv. Drug Deliv. Rev. , vol.54 , pp. 3-12
    • Hoffman, A.S.1
  • 29
    • 45249104205 scopus 로고    scopus 로고
    • Cell encapsulation in biodegradable hydrogels for tissue engineering applications
    • Nicodemus, G.D. & Bryant, S.J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149-165 (2008).
    • (2008) Tissue Eng. Part B Rev. , vol.14 , pp. 149-165
    • Nicodemus, G.D.1    Bryant, S.J.2
  • 30
    • 77953627302 scopus 로고    scopus 로고
    • Recent trends and challenges in complex organ manufacturing
    • Wang, X., Yan, Y. & Zhang, R. Recent trends and challenges in complex organ manufacturing. Tissue Eng. Part B Rev. 16, 189-197 (2010).
    • (2010) Tissue Eng. Part B Rev. , vol.16 , pp. 189-197
    • Wang, X.1    Yan, Y.2    Zhang, R.3
  • 31
    • 79952700142 scopus 로고    scopus 로고
    • Cell patterning technologies for organotypic tissue fabrication
    • Guillotin, B. & Guillemot, F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29, 183-190 (2011).
    • (2011) Trends Biotechnol. , vol.29 , pp. 183-190
    • Guillotin, B.1    Guillemot, F.2
  • 32
    • 33846120651 scopus 로고    scopus 로고
    • Isolation of amniotic stem cell lines with potential for therapy
    • De Coppi, P. et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100-106 (2007).
    • (2007) Nat. Biotechnol. , vol.25 , pp. 100-106
    • De Coppi, P.1
  • 33
    • 84873133677 scopus 로고    scopus 로고
    • In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering
    • Kim, J. et al. In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering. Biomed. Mater. 8, 014107 (2013).
    • (2013) Biomed. Mater. , vol.8 , pp. 014107
    • Kim, J.1
  • 34
    • 84860531673 scopus 로고    scopus 로고
    • Local tissue geometry determines contractile force generation of engineered muscle networks
    • Bian, W., Juhas, M., Pfeiler, T.W. & Bursac, N. Local tissue geometry determines contractile force generation of engineered muscle networks. Tissue Eng. Part A 18, 957-967 (2012).
    • (2012) Tissue Eng. Part A , vol.18 , pp. 957-967
    • Bian, W.1    Juhas, M.2    Pfeiler, T.W.3    Bursac, N.4
  • 35
    • 84874306090 scopus 로고    scopus 로고
    • In situ bioprinting of the skin for burns
    • Binder, K.W. et al. In situ bioprinting of the skin for burns. J. Am. Coll. Surg. 211, 7 (2010).
    • (2010) J. Am. Coll. Surg. , vol.211 , pp. 7
    • Binder, K.W.1
  • 36
    • 84858779329 scopus 로고    scopus 로고
    • Toward engineering functional organ modules by additive manufacturing
    • Marga, F. et al. Toward engineering functional organ modules by additive manufacturing. Biofabrication 4, 022001 (2012).
    • (2012) Biofabrication , vol.4 , pp. 022001
    • Marga, F.1
  • 37
    • 82055196987 scopus 로고    scopus 로고
    • Bioprinting of hybrid tissue constructs with tailorable mechanical properties
    • Schuurman, W. et al. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3, 021001 (2011).
    • (2011) Biofabrication , vol.3 , pp. 021001
    • Schuurman, W.1
  • 38
    • 84864459017 scopus 로고    scopus 로고
    • Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system
    • Shim, J.-H., Lee, J.-S., Kim, J.Y. & Cho, D.-W. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J. Micromech. Microeng. 22, 085014 (2012).
    • (2012) J. Micromech. Microeng. , vol.22 , pp. 085014
    • Shim, J.-H.1    Lee, J.-S.2    Kim, J.Y.3    Cho, D.-W.4
  • 39
    • 2542467091 scopus 로고    scopus 로고
    • In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using L929 mouse fibroblasts
    • Serrano, M.C. et al. In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using L929 mouse fibroblasts. Biomaterials 25, 5603-5611 (2004).
    • (2004) Biomaterials , vol.25 , pp. 5603-5611
    • Serrano, M.C.1
  • 40
    • 28744438866 scopus 로고    scopus 로고
    • The in vivo degradation, absorption and excretion of PCL-based implant
    • Sun, H., Mei, L., Song, C., Cui, X. & Wang, P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 27, 1735-1740 (2006).
    • (2006) Biomaterials , vol.27 , pp. 1735-1740
    • Sun, H.1    Mei, L.2    Song, C.3    Cui, X.4    Wang, P.5
  • 41
    • 0030131059 scopus 로고    scopus 로고
    • In vitro biocompatibility of bioresorbable polymers: Poly(L, DL-lactide) and poly(L-lactide-co-glycolide)
    • Ignatius, A.A. & Claes, L.E. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials 17, 831-839 (1996).
    • (1996) Biomaterials , vol.17 , pp. 831-839
    • Ignatius, A.A.1    Claes, L.E.2
  • 42
    • 0034043991 scopus 로고    scopus 로고
    • Improved biocompatibility of a viscous bioerodible poly(ortho ester) by controlling the environmental pH during degradation
    • Zignani, M. et al. Improved biocompatibility of a viscous bioerodible poly(ortho ester) by controlling the environmental pH during degradation. Biomaterials 21, 1773-1778 (2000).
    • (2000) Biomaterials , vol.21 , pp. 1773-1778
    • Zignani, M.1
  • 43
    • 84873638779 scopus 로고    scopus 로고
    • Cell survival and proliferation after encapsulation in a chemically modified pluronic(R) F127 hydrogel
    • Lippens, E. et al. Cell survival and proliferation after encapsulation in a chemically modified Pluronic(R) F127 hydrogel. J. Biomater. Appl. 27, 828-839 (2013).
    • (2013) J. Biomater. Appl. , vol.27 , pp. 828-839
    • Lippens, E.1
  • 45
    • 84862954450 scopus 로고    scopus 로고
    • The tissue-engineered auricle: Past, present, and future
    • Bichara, D.A. et al. The tissue-engineered auricle: past, present, and future. Tissue Eng. Part B Rev. 18, 51-61 (2012).
    • (2012) Tissue Eng. Part B Rev. , vol.18 , pp. 51-61
    • Bichara, D.A.1
  • 46
    • 84901450772 scopus 로고    scopus 로고
    • Skeletal muscle tissue engineering: Methods to form skeletal myotubes and their applications
    • Ostrovidov, S. et al. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng. Part B Rev. 20, 403-436 (2014).
    • (2014) Tissue Eng. Part B Rev. , vol.20 , pp. 403-436
    • Ostrovidov, S.1
  • 47
    • 80052347083 scopus 로고    scopus 로고
    • Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment
    • Ker, E.D. et al. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32, 8097-8107 (2011).
    • (2011) Biomaterials , vol.32 , pp. 8097-8107
    • Ker, E.D.1
  • 48
    • 38349076688 scopus 로고    scopus 로고
    • Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations
    • Phillippi, J.A. et al. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26, 127-134 (2008).
    • (2008) Stem Cells , vol.26 , pp. 127-134
    • Phillippi, J.A.1
  • 49
    • 42249097419 scopus 로고    scopus 로고
    • The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes
    • Choi, J.S., Lee, S.J., Christ, G.J., Atala, A. & Yoo, J.J. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29, 2899-2906 (2008).
    • (2008) Biomaterials , vol.29 , pp. 2899-2906
    • Choi, J.S.1    Lee, S.J.2    Christ, G.J.3    Atala, A.4    Yoo, J.J.5
  • 50
    • 0022426155 scopus 로고
    • The fusion of myoblasts
    • Wakelam, M.J. The fusion of myoblasts. Biochem. J. 228, 1-12 (1985).
    • (1985) Biochem. J. , vol.228 , pp. 1-12
    • Wakelam, M.J.1
  • 52
    • 33751182499 scopus 로고    scopus 로고
    • Application of inkjet printing to tissue engineering
    • Boland, T., Xu, T., Damon, B. & Cui, X. Application of inkjet printing to tissue engineering. Biotechnol. J. 1, 910-917 (2006).
    • (2006) Biotechnol. J. , vol.1 , pp. 910-917
    • Boland, T.1    Xu, T.2    Damon, B.3    Cui, X.4
  • 53
    • 77952545276 scopus 로고    scopus 로고
    • Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture
    • Lee, Y.-B. et al. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223, 645-652 (2010).
    • (2010) Exp. Neurol. , vol.223 , pp. 645-652
    • Lee, Y.-B.1
  • 54
    • 26444583298 scopus 로고    scopus 로고
    • A microfluidic biomaterial
    • Cabodi, M. et al. A microfluidic biomaterial. J. Am. Chem. Soc. 127, 13788-13789 (2005).
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 13788-13789
    • Cabodi, M.1
  • 55
    • 34249794264 scopus 로고    scopus 로고
    • A cell-laden microfluidic hydrogel
    • Ling, Y. et al. A cell-laden microfluidic hydrogel. Lab Chip 7, 756-762 (2007).
    • (2007) Lab Chip , vol.7 , pp. 756-762
    • Ling, Y.1
  • 56
    • 14844286184 scopus 로고    scopus 로고
    • Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties
    • Stachowiak, A.N., Bershteyn, A., Tzatzalos, E. & Irvine, D.J. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv. Mater. 17, 399-403 (2005).
    • (2005) Adv. Mater. , vol.17 , pp. 399-403
    • Stachowiak, A.N.1    Bershteyn, A.2    Tzatzalos, E.3    Irvine, D.J.4
  • 57
    • 33646052556 scopus 로고    scopus 로고
    • Tissue-engineered autologous bladders for patients needing cystoplasty
    • Atala, A., Bauer, S.B., Soker, S., Yoo, J.J. & Retik, A.B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241-1246 (2006).
    • (2006) Lancet , vol.367 , pp. 1241-1246
    • Atala, A.1    Bauer, S.B.2    Soker, S.3    Yoo, J.J.4    Retik, A.B.5
  • 58
    • 79953283872 scopus 로고    scopus 로고
    • Tissue-engineered autologous urethras for patients who need reconstruction: An observational study
    • Raya-Rivera, A. et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377, 1175-1182 (2011).
    • (2011) Lancet , vol.377 , pp. 1175-1182
    • Raya-Rivera, A.1
  • 59
    • 84904857420 scopus 로고    scopus 로고
    • Tissue-engineered autologous vaginal organs in patients: A pilot cohort study
    • Raya-Rivera, A.M. et al. Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet 384, 329-336 (2014).
    • (2014) Lancet , vol.384 , pp. 329-336
    • Raya-Rivera, A.M.1
  • 60
    • 0035169708 scopus 로고    scopus 로고
    • A new slicing procedure for rapid prototyping systems
    • Liao, Y.S. & Chiu, Y.Y. A new slicing procedure for rapid prototyping systems. Int. J. Adv. Manuf. Technol. 18, 579-585 (2001).
    • (2001) Int. J. Adv. Manuf. Technol. , vol.18 , pp. 579-585
    • Liao, Y.S.1    Chiu, Y.Y.2
  • 61
    • 0033878947 scopus 로고    scopus 로고
    • Tool-path planning for direction-parallel area milling
    • Park, S.C. & Choi, B.K. Tool-path planning for direction-parallel area milling. Comput. Aided Des. 32, 17-25 (2000).
    • (2000) Comput. Aided Des. , vol.32 , pp. 17-25
    • Park, S.C.1    Choi, B.K.2
  • 62
    • 79951589998 scopus 로고    scopus 로고
    • Engineered cartilage covered ear implants for auricular cartilage reconstruction
    • Lee, S.J., Broda, C., Atala, A. & Yoo, J.J. Engineered cartilage covered ear implants for auricular cartilage reconstruction. Biomacromolecules 12, 306-313 (2011).
    • (2011) Biomacromolecules , vol.12 , pp. 306-313
    • Lee, S.J.1    Broda, C.2    Atala, A.3    Yoo, J.J.4
  • 63
    • 1342302203 scopus 로고    scopus 로고
    • Analysis of bending behavior of native and engineered auricular and costal cartilage
    • Roy, R. et al. Analysis of bending behavior of native and engineered auricular and costal cartilage. J. Biomed. Mater. Res. A 68, 597-602 (2004).
    • (2004) J. Biomed. Mater. Res. A , vol.68 , pp. 597-602
    • Roy, R.1
  • 64
    • 84874278618 scopus 로고    scopus 로고
    • The effect of in vitro formation of acetylcholine receptor (AChR) clusters in engineered muscle fibers on subsequent innervation of constructs in vivo
    • Ko, I.K. et al. The effect of in vitro formation of acetylcholine receptor (AChR) clusters in engineered muscle fibers on subsequent innervation of constructs in vivo. Biomaterials 34, 3246-3255 (2013).
    • (2013) Biomaterials , vol.34 , pp. 3246-3255
    • Ko, I.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.