메뉴 건너뛰기




Volumn 45, Issue 1, 2017, Pages 195-209

State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering

Author keywords

Bioink; Heart valve; Hydrogel; Organ Bioprinting; Vascularization

Indexed keywords

3D PRINTERS; BIOMATERIALS; HYDROGELS; TISSUE;

EID: 84962886228     PISSN: 00906964     EISSN: 15739686     Source Type: Journal    
DOI: 10.1007/s10439-016-1607-5     Document Type: Review
Times cited : (241)

References (105)
  • 1
    • 84914689347 scopus 로고    scopus 로고
    • Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution
    • PID: 25215452
    • Ali, M., E. Pages, A. Ducom, A. Fontaine, and F. Guillemot. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 6:045001, 2014.
    • (2014) Biofabrication , vol.6 , pp. 045001
    • Ali, M.1    Pages, E.2    Ducom, A.3    Fontaine, A.4    Guillemot, F.5
  • 2
    • 84924362842 scopus 로고    scopus 로고
    • The influence of the aortic root geometry on flow characteristics of a prosthetic heart valve
    • PID: 25661845
    • Barannyk, O., and P. Oshkai. The influence of the aortic root geometry on flow characteristics of a prosthetic heart valve. J. Biomech. Eng. 137:051005, 2015.
    • (2015) J. Biomech. Eng. , vol.137 , pp. 051005
    • Barannyk, O.1    Oshkai, P.2
  • 5
    • 84887016191 scopus 로고    scopus 로고
    • The 3d printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
    • COI: 1:CAS:528:DC%2BC3sXhsFOltLzK, PID: 24112804
    • Billiet, T., E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel. The 3d printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62, 2014.
    • (2014) Biomaterials , vol.35 , pp. 49-62
    • Billiet, T.1    Gevaert, E.2    De Schryver, T.3    Cornelissen, M.4    Dubruel, P.5
  • 6
    • 84862869528 scopus 로고    scopus 로고
    • A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
    • COI: 1:CAS:528:DC%2BC38XotFKmu78%3D, PID: 22681979
    • Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.
    • (2012) Biomaterials , vol.33 , pp. 6020-6041
    • Billiet, T.1    Vandenhaute, M.2    Schelfhout, J.3    Van Vlierberghe, S.4    Dubruel, P.5
  • 8
    • 79957869196 scopus 로고    scopus 로고
    • Aortic valve disease and treatment: The need for naturally engineered solutions
    • COI: 1:CAS:528:DC%2BC3MXntV2ntrs%3D, PID: 21281685
    • Butcher, J. T., G. J. Mahler, and L. A. Hockaday. Aortic valve disease and treatment: The need for naturally engineered solutions. Adv. Drug Deliv. Rev. 63:242–268, 2011.
    • (2011) Adv. Drug Deliv. Rev. , vol.63 , pp. 242-268
    • Butcher, J.T.1    Mahler, G.J.2    Hockaday, L.A.3
  • 10
    • 79958074853 scopus 로고    scopus 로고
    • Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies
    • COI: 1:CAS:528:DC%2BC3MXmvVejurk%3D
    • Chang, C. C., E. D. Boland, S. K. Williams, and J. B. Hoying. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J. Biomed. Mater. Res. B 98B:160–170, 2011.
    • (2011) J. Biomed. Mater. Res. B , vol.98B , pp. 160-170
    • Chang, C.C.1    Boland, E.D.2    Williams, S.K.3    Hoying, J.B.4
  • 11
    • 79958828890 scopus 로고    scopus 로고
    • Cell-matrix interactions in the pathobiology of calcific aortic valve disease critical roles for matricellular, matricrine, and matrix mechanics cues
    • COI: 1:CAS:528:DC%2BC3MXntF2htrY%3D, PID: 21659654
    • Chen, J. H., and C. A. Simmons. Cell-matrix interactions in the pathobiology of calcific aortic valve disease critical roles for matricellular, matricrine, and matrix mechanics cues. Circ. Res. 108:1510–1524, 2011.
    • (2011) Circ. Res. , vol.108 , pp. 1510-1524
    • Chen, J.H.1    Simmons, C.A.2
  • 12
    • 69649100202 scopus 로고    scopus 로고
    • Human microvasculature fabrication using thermal inkjet printing technology
    • COI: 1:CAS:528:DC%2BD1MXhtFWltbzL, PID: 19695697
    • Cui, X. F., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.
    • (2009) Biomaterials , vol.30 , pp. 6221-6227
    • Cui, X.F.1    Boland, T.2
  • 13
    • 84861698425 scopus 로고    scopus 로고
    • Thermal inkjet printing in tissue engineering and regenerative medicine
    • COI: 1:CAS:528:DC%2BC38XhtFSgtbrL, PID: 22436025
    • Cui, X. F., T. Boland, D. D. D’Lima, and M. K. Lotz. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat. Drug Deliv. Formul. 6:149–155, 2012.
    • (2012) Recent Pat. Drug Deliv. Formul. , vol.6 , pp. 149-155
    • Cui, X.F.1    Boland, T.2    D’Lima, D.D.3    Lotz, M.K.4
  • 14
    • 84869131568 scopus 로고    scopus 로고
    • Printing and prototyping of tissues and scaffolds
    • COI: 1:CAS:528:DC%2BC38Xhs1GntL%2FF, PID: 23161993
    • Derby, B. Printing and prototyping of tissues and scaffolds. Science 338:921–926, 2012.
    • (2012) Science , vol.338 , pp. 921-926
    • Derby, B.1
  • 15
    • 84937859614 scopus 로고    scopus 로고
    • Comparison of mesenchymal stem cell source differentiation towards human pediatric aortic valve interstitial cells within 3d engineered matrices
    • COI: 1:CAS:528:DC%2BC2MXht1Ons7vM
    • Duan, B., L. A. Hockaday, S. Das, C. Y. Xu, and J. T. Butcher. Comparison of mesenchymal stem cell source differentiation towards human pediatric aortic valve interstitial cells within 3d engineered matrices. Tissue Eng. C 21:795–807, 2015.
    • (2015) Tissue Eng. C , vol.21 , pp. 795-807
    • Duan, B.1    Hockaday, L.A.2    Das, S.3    Xu, C.Y.4    Butcher, J.T.5
  • 16
    • 84884211629 scopus 로고    scopus 로고
    • 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
    • COI: 1:CAS:528:DC%2BC3sXksFWns74%3D
    • Duan, B., L. A. Hockaday, K. H. Kang, and J. T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res., Part A 101A:1255–1264, 2013.
    • (2013) J. Biomed. Mater. Res., Part A , vol.101A , pp. 1255-1264
    • Duan, B.1    Hockaday, L.A.2    Kang, K.H.3    Butcher, J.T.4
  • 17
    • 84891684495 scopus 로고    scopus 로고
    • Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels
    • COI: 1:CAS:528:DC%2BC3sXoslWlsLY%3D, PID: 23648571
    • Duan, B., L. A. Hockaday, E. Kapetanovic, K. H. Kang, and J. T. Butcher. Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels. Acta Biomater. 9:7640–7650, 2013.
    • (2013) Acta Biomater. , vol.9 , pp. 7640-7650
    • Duan, B.1    Hockaday, L.A.2    Kapetanovic, E.3    Kang, K.H.4    Butcher, J.T.5
  • 18
    • 84898059103 scopus 로고    scopus 로고
    • Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
    • COI: 1:CAS:528:DC%2BC2cXksVyksQ%3D%3D, PID: 24334142
    • Duan, B., E. Kapetanovic, L. A. Hockaday, and J. T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10:1836–1846, 2014.
    • (2014) Acta Biomater. , vol.10 , pp. 1836-1846
    • Duan, B.1    Kapetanovic, E.2    Hockaday, L.A.3    Butcher, J.T.4
  • 19
    • 77957147532 scopus 로고    scopus 로고
    • Customized ca-p/phbv nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor
    • COI: 1:CAS:528:DC%2BC3cXht1Wgsr%2FP, PID: 20504805
    • Duan, B., and M. Wang. Customized ca-p/phbv nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. R. Soc. Interface 7:S615–S629, 2010.
    • (2010) J. R. Soc. Interface , vol.7 , pp. S615-S629
    • Duan, B.1    Wang, M.2
  • 20
    • 83755207612 scopus 로고    scopus 로고
    • Selective laser sintering and its application in biomedical engineering
    • COI: 1:CAS:528:DC%2BC38Xht1ahsrw%3D
    • Duan, B., and M. Wang. Selective laser sintering and its application in biomedical engineering. MRS Bull. 36:998–1005, 2011.
    • (2011) MRS Bull. , vol.36 , pp. 998-1005
    • Duan, B.1    Wang, M.2
  • 21
    • 77958101381 scopus 로고    scopus 로고
    • Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering
    • COI: 1:CAS:528:DC%2BC3cXht12ksbbE, PID: 20601244
    • Duan, B., M. Wang, W. Y. Zhou, W. L. Cheung, Z. Y. Li, and W. W. Lu. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6:4495–4505, 2010.
    • (2010) Acta Biomater. , vol.6 , pp. 4495-4505
    • Duan, B.1    Wang, M.2    Zhou, W.Y.3    Cheung, W.L.4    Li, Z.Y.5    Lu, W.W.6
  • 22
    • 80053604735 scopus 로고    scopus 로고
    • Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration
    • COI: 1:CAS:528:DC%2BC3MXht1OqurfN, PID: 21911255
    • Gaebel, R., N. Ma, J. Liu, J. J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. W. Wang, and P. Mark. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230, 2011.
    • (2011) Biomaterials , vol.32 , pp. 9218-9230
    • Gaebel, R.1    Ma, N.2    Liu, J.3    Guan, J.J.4    Koch, L.5    Klopsch, C.6    Gruene, M.7    Toelk, A.8    Wang, W.W.9    Mark, P.10
  • 23
    • 83555177196 scopus 로고    scopus 로고
    • Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
    • COI: 1:CAS:528:DC%2BC3MXhs1ejt7fI, PID: 22136718
    • Gaetani, R., P. A. Doevendans, C. H. G. Metz, J. Alblas, E. Messina, A. Giacomello, and J. P. G. Sluijtera. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790, 2012.
    • (2012) Biomaterials , vol.33 , pp. 1782-1790
    • Gaetani, R.1    Doevendans, P.A.2    Metz, C.H.G.3    Alblas, J.4    Messina, E.5    Giacomello, A.6    Sluijtera, J.P.G.7
  • 24
    • 84939161281 scopus 로고    scopus 로고
    • Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction
    • COI: 1:CAS:528:DC%2BC2MXotFCqtL8%3D, PID: 26043062
    • Gaetani, R., D. A. M. Feyen, V. Verhage, R. Slaats, E. Messina, K. L. Christman, A. Giacomello, P. A. F. M. Doevendans, and J. P. G. Sluijter. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348, 2015.
    • (2015) Biomaterials , vol.61 , pp. 339-348
    • Gaetani, R.1    Feyen, D.A.M.2    Verhage, V.3    Slaats, R.4    Messina, E.5    Christman, K.L.6    Giacomello, A.7    Doevendans, P.A.F.M.8    Sluijter, J.P.G.9
  • 25
    • 84939125652 scopus 로고    scopus 로고
    • Coaxial nozzle-assisted 3d bioprinting with built-in microchannels for nutrients delivery
    • COI: 1:CAS:528:DC%2BC2MXos1CjtbY%3D, PID: 26004235
    • Gao, Q., Y. He, J. Z. Fu, A. Liu, and L. Ma. Coaxial nozzle-assisted 3d bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215, 2015.
    • (2015) Biomaterials , vol.61 , pp. 203-215
    • Gao, Q.1    He, Y.2    Fu, J.Z.3    Liu, A.4    Ma, L.5
  • 26
    • 84942504047 scopus 로고    scopus 로고
    • Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in peg-gelma
    • COI: 1:CAS:528:DC%2BC2MXht1SnsLbL, PID: 26198849
    • Gao, G. F., A. F. Schilling, K. Hubbell, T. Yonezawa, D. Truong, Y. Hong, G. H. Dai, and X. F. Cui. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in peg-gelma. Biotechnol. Lett. 37:2349–2355, 2015.
    • (2015) Biotechnol. Lett. , vol.37 , pp. 2349-2355
    • Gao, G.F.1    Schilling, A.F.2    Hubbell, K.3    Yonezawa, T.4    Truong, D.5    Hong, Y.6    Dai, G.H.7    Cui, X.F.8
  • 27
    • 84893530723 scopus 로고    scopus 로고
    • A plastic surgery application in evolution: Three-dimensional printing
    • COI: 1:CAS:528:DC%2BC2cXht12qtLo%3D, PID: 24469175
    • Gerstle, T. L., A. M. S. Ibrahim, P. S. Kim, B. T. Lee, and S. J. Lin. A plastic surgery application in evolution: Three-dimensional printing. Plast. Reconstr. Surg. 133:446–451, 2014.
    • (2014) Plast. Reconstr. Surg. , vol.133 , pp. 446-451
    • Gerstle, T.L.1    Ibrahim, A.M.S.2    Kim, P.S.3    Lee, B.T.4    Lin, S.J.5
  • 29
    • 84900000967 scopus 로고    scopus 로고
    • Bio-inspired detoxification using 3d-printed hydrogel nanocomposites
    • COI: 1:CAS:528:DC%2BC2cXitVShs7nE, PID: 24805923
    • Gou, M. L., X. Qu, W. Zhu, M. L. Xiang, J. Yang, K. Zhang, Y. Q. Wei, and S. C. Chen. Bio-inspired detoxification using 3d-printed hydrogel nanocomposites. Nat. Commun. 5:3774, 2014.
    • (2014) Nat. Commun. , vol.5 , pp. 3774
    • Gou, M.L.1    Qu, X.2    Zhu, W.3    Xiang, M.L.4    Yang, J.5    Zhang, K.6    Wei, Y.Q.7    Chen, S.C.8
  • 30
    • 78650267994 scopus 로고    scopus 로고
    • Bioprinting is coming of age: Report from the international conference on bioprinting and biofabrication in bordeaux (3b’09)
    • PID: 20811115
    • Guillemot, F., V. Mironov, and M. Nakamura. Bioprinting is coming of age: Report from the international conference on bioprinting and biofabrication in bordeaux (3b’09). Biofabrication 2:010201, 2010.
    • (2010) Biofabrication , vol.2 , pp. 010201
    • Guillemot, F.1    Mironov, V.2    Nakamura, M.3
  • 32
    • 84871428717 scopus 로고    scopus 로고
    • Concise review: cell therapy and tissue engineering for cardiovascular disease
    • COI: 1:CAS:528:DC%2BC38Xns12ltbY%3D
    • Haraguchi, Y., T. Shimizu, M. Yamato, and T. Okano. Concise review: cell therapy and tissue engineering for cardiovascular disease. Stem Cells and Translational Medicine. 1:136–141, 2012.
    • (2012) Stem Cells and Translational Medicine. , vol.1 , pp. 136-141
    • Haraguchi, Y.1    Shimizu, T.2    Yamato, M.3    Okano, T.4
  • 35
    • 84895473350 scopus 로고    scopus 로고
    • Cardiac tissue engineering state of the art
    • COI: 1:CAS:528:DC%2BC2cXhvVSkurc%3D, PID: 24436431
    • Hirt, M. N., A. Hansen, and T. Eschenhagen. Cardiac tissue engineering state of the art. Circ. Res. 114:354–367, 2014.
    • (2014) Circ. Res. , vol.114 , pp. 354-367
    • Hirt, M.N.1    Hansen, A.2    Eschenhagen, T.3
  • 36
    • 84991794169 scopus 로고    scopus 로고
    • 3D printed hydrogel technologies for tissue engineered heart valves
    • Hockaday, L. A., B. Duan, K. H. Kang, and J. T. Butcher. 3D printed hydrogel technologies for tissue engineered heart valves. 3D Print. Addit. Manuf. 1:122–136, 2014.
    • (2014) 3D Print. Addit. Manuf. , vol.1 , pp. 122-136
    • Hockaday, L.A.1    Duan, B.2    Kang, K.H.3    Butcher, J.T.4
  • 38
    • 84861538254 scopus 로고    scopus 로고
    • Tissue engineering and regenerative medicine—where do we stand?
    • COI: 1:CAS:528:DC%2BC38Xht1SjsbzN, PID: 22436120
    • Horch, R. E., U. Kneser, E. Polykandriotis, V. J. Schmidt, J. M. Sun, and A. Arkudas. Tissue engineering and regenerative medicine—where do we stand? J. Cell Mol. Med. 16:1157–1165, 2012.
    • (2012) J. Cell Mol. Med. , vol.16 , pp. 1157-1165
    • Horch, R.E.1    Kneser, U.2    Polykandriotis, E.3    Schmidt, V.J.4    Sun, J.M.5    Arkudas, A.6
  • 40
    • 84890404273 scopus 로고    scopus 로고
    • Light-assisted direct-write of 3D functional biomaterials
    • COI: 1:CAS:528:DC%2BC3sXhvV2lsL%2FN, PID: 24257507
    • Hribar, K. C., P. Soman, J. Warner, P. Chung, and S. C. Chen. Light-assisted direct-write of 3D functional biomaterials. Lab Chip 14:268–275, 2014.
    • (2014) Lab Chip , vol.14 , pp. 268-275
    • Hribar, K.C.1    Soman, P.2    Warner, J.3    Chung, P.4    Chen, S.C.5
  • 42
    • 84939150480 scopus 로고    scopus 로고
    • Bioprinting a cardiac valve
    • PID: 26254880
    • Jana, S., and A. Lerman. Bioprinting a cardiac valve. Biotechnol. Adv. 33:1503–1521, 2015.
    • (2015) Biotechnol. Adv. , vol.33 , pp. 1503-1521
    • Jana, S.1    Lerman, A.2
  • 43
    • 84901798498 scopus 로고    scopus 로고
    • Scaffolds for tissue engineering of cardiac valves
    • COI: 1:CAS:528:DC%2BC2cXnslehu70%3D, PID: 24675108
    • Jana, S., B. J. Tefft, D. B. Spoon, and R. D. Simari. Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 10:2877–2893, 2014.
    • (2014) Acta Biomater. , vol.10 , pp. 2877-2893
    • Jana, S.1    Tefft, B.J.2    Spoon, D.B.3    Simari, R.D.4
  • 45
    • 84883110864 scopus 로고    scopus 로고
    • Quantitative optimization of solid freeform deposition of aqueous hydrogels
    • COI: 1:STN:280:DC%2BC3sngtVChsA%3D%3D, PID: 23636927
    • Kang, K. H., L. A. Hockaday, and J. T. Butcher. Quantitative optimization of solid freeform deposition of aqueous hydrogels. Biofabrication 5:035001, 2013.
    • (2013) Biofabrication , vol.5 , pp. 035001
    • Kang, K.H.1    Hockaday, L.A.2    Butcher, J.T.3
  • 46
    • 84929224464 scopus 로고    scopus 로고
    • An overview of the suitability of hydrogel-forming polymers for extrusion-based 3d-printing
    • COI: 1:CAS:528:DC%2BC2MXntlGmt7Y%3D
    • Kirchmajer, D. M., R. Gorkin, and M. I. H. Panhuis. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3d-printing. J. Mater. Chem. B 3:4105–4117, 2015.
    • (2015) J. Mater. Chem. B , vol.3 , pp. 4105-4117
    • Kirchmajer, D.M.1    Gorkin, R.2    Panhuis, M.I.H.3
  • 47
    • 84900988712 scopus 로고    scopus 로고
    • 3d bioprinting of vascularized, heterogeneous cell-laden tissue constructs
    • COI: 1:CAS:528:DC%2BC2cXis1Wqtbw%3D, PID: 24550124
    • Kolesky, D. B., R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis. 3d bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26:3124–3130, 2014.
    • (2014) Adv. Mater. , vol.26 , pp. 3124-3130
    • Kolesky, D.B.1    Truby, R.L.2    Gladman, A.S.3    Busbee, T.A.4    Homan, K.A.5    Lewis, J.A.6
  • 48
    • 84924527252 scopus 로고    scopus 로고
    • 3d bioprinting of biomimetic aortic vascular constructs with self-supporting cells
    • COI: 1:CAS:528:DC%2BC2MXjsFGgsL4%3D, PID: 25384685
    • Kucukgul, C., S. B. Ozler, I. Inci, E. Karakas, S. Irmak, D. Gozuacik, A. Taralp, and B. Koc. 3d bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol. Bioeng. 112:811–821, 2015.
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 811-821
    • Kucukgul, C.1    Ozler, S.B.2    Inci, I.3    Karakas, E.4    Irmak, S.5    Gozuacik, D.6    Taralp, A.7    Koc, B.8
  • 49
    • 84864237663 scopus 로고    scopus 로고
    • Rapid prototyping for biomedical engineering: current capabilities and challenges
    • COI: 1:CAS:528:DC%2BC38Xht1Oks73O, PID: 22524389
    • Lantada, A. D., and P. L. Morgado. Rapid prototyping for biomedical engineering: current capabilities and challenges. Annu. Rev. Biomed. Eng. 14:73–96, 2012.
    • (2012) Annu. Rev. Biomed. Eng. , vol.14 , pp. 73-96
    • Lantada, A.D.1    Morgado, P.L.2
  • 50
    • 84903737158 scopus 로고    scopus 로고
    • Creating perfused functional vascular channels using 3d bio-printing technology
    • COI: 1:CAS:528:DC%2BC2cXhtV2qt7jM, PID: 24965886
    • Lee, V. K., D. Y. Kim, H. G. Ngo, Y. Lee, L. Seo, S. S. Yoo, P. A. Vincent, and G. H. Dai. Creating perfused functional vascular channels using 3d bio-printing technology. Biomaterials 35:8092–8102, 2014.
    • (2014) Biomaterials , vol.35 , pp. 8092-8102
    • Lee, V.K.1    Kim, D.Y.2    Ngo, H.G.3    Lee, Y.4    Seo, L.5    Yoo, S.S.6    Vincent, P.A.7    Dai, G.H.8
  • 51
    • 84906938147 scopus 로고    scopus 로고
    • Generation of multi-scale vascular network system within 3d hydrogel using 3d bio-printing technology
    • COI: 1:CAS:528:DC%2BC2cXpvFGmtL8%3D, PID: 25484989
    • Lee, V. K., A. M. Lanzi, H. Ngo, S. S. Yoo, P. A. Vincent, and G. H. Dai. Generation of multi-scale vascular network system within 3d hydrogel using 3d bio-printing technology. Cell. Mol. Bioeng. 7:460–472, 2014.
    • (2014) Cell. Mol. Bioeng. , vol.7 , pp. 460-472
    • Lee, V.K.1    Lanzi, A.M.2    Ngo, H.3    Yoo, S.S.4    Vincent, P.A.5    Dai, G.H.6
  • 54
    • 84880042055 scopus 로고    scopus 로고
    • Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves
    • COI: 1:STN:280:DC%2BC3sjks1Cjtw%3D%3D, PID: 23786664
    • Loerakker, S., G. Argento, C. W. J. Oomens, and F. P. T. Baaijens. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J. Biomech. 46:1792–1800, 2013.
    • (2013) J. Biomech. , vol.46 , pp. 1792-1800
    • Loerakker, S.1    Argento, G.2    Oomens, C.W.J.3    Baaijens, F.P.T.4
  • 55
    • 84944406931 scopus 로고    scopus 로고
    • Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures
    • COI: 1:CAS:528:DC%2BC2MXht1altb%2FP, PID: 26214046
    • Loo, Y. H., A. Lakshmanan, M. Ni, L. L. Toh, S. Wang, and C. A. E. Hauser. Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures. Nano Lett. 15:6919–6925, 2015.
    • (2015) Nano Lett. , vol.15 , pp. 6919-6925
    • Loo, Y.H.1    Lakshmanan, A.2    Ni, M.3    Toh, L.L.4    Wang, S.5    Hauser, C.A.E.6
  • 56
    • 84876396674 scopus 로고    scopus 로고
    • Cardiovascular tissue engineering research support at the national heart, lung, and blood institute
    • COI: 1:CAS:528:DC%2BC3sXlslansrw%3D, PID: 23580772
    • Lundberg, M. S. Cardiovascular tissue engineering research support at the national heart, lung, and blood institute. Circ. Res. 112:1097–1103, 2013.
    • (2013) Circ. Res. , vol.112 , pp. 1097-1103
    • Lundberg, M.S.1
  • 57
    • 84929176653 scopus 로고    scopus 로고
    • 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
    • COI: 1:CAS:528:DC%2BC2MXltFSnurc%3D, PID: 25806996
    • Markstedt, K., A. Mantas, I. Tournier, H. M. Avila, D. Hagg, and P. Gatenholm. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496, 2015.
    • (2015) Biomacromolecules , vol.16 , pp. 1489-1496
    • Markstedt, K.1    Mantas, A.2    Tournier, I.3    Avila, H.M.4    Hagg, D.5    Gatenholm, P.6
  • 60
    • 77953651502 scopus 로고    scopus 로고
    • A review on stereolithography and its applications in biomedical engineering
    • COI: 1:CAS:528:DC%2BC3cXnt12rt7k%3D, PID: 20478613
    • Melchels, F. P. W., J. Feijen, and D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130, 2010.
    • (2010) Biomaterials , vol.31 , pp. 6121-6130
    • Melchels, F.P.W.1    Feijen, J.2    Grijpma, D.W.3
  • 62
    • 33646567447 scopus 로고    scopus 로고
    • Bioprinting: a beginning
    • PID: 16674278
    • Mironov, V., N. Reis, and B. Derby. Bioprinting: a beginning. Tissue Eng. 12:631–634, 2006.
    • (2006) Tissue Eng. , vol.12 , pp. 631-634
    • Mironov, V.1    Reis, N.2    Derby, B.3
  • 64
    • 84933049575 scopus 로고    scopus 로고
    • Current progress in 3d printing for cardiovascular tissue engineering
    • PID: 25775166
    • Mosadegh, B., G. L. Xiong, S. Dunham, and J. K. Min. Current progress in 3d printing for cardiovascular tissue engineering. Biomed. Mater. 10:034002, 2015.
    • (2015) Biomed. Mater. , vol.10 , pp. 034002
    • Mosadegh, B.1    Xiong, G.L.2    Dunham, S.3    Min, J.K.4
  • 65
    • 84905725612 scopus 로고    scopus 로고
    • 3d bioprinting of tissues and organs
    • COI: 1:CAS:528:DC%2BC2cXht1OqtbfK, PID: 25093879
    • Murphy, S. V., and A. Atala. 3d bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 66
    • 0029844930 scopus 로고    scopus 로고
    • Skeletal myoblast transplantation for repair of myocardial necrosis
    • COI: 1:CAS:528:DyaK28XnsVWnsLo%3D, PID: 8958214
    • Murry, C. E., R. W. Wiseman, S. M. Schwartz, and S. D. Hauschka. Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 98:2512–2523, 1996.
    • (1996) J. Clin. Invest. , vol.98 , pp. 2512-2523
    • Murry, C.E.1    Wiseman, R.W.2    Schwartz, S.M.3    Hauschka, S.D.4
  • 67
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • COI: 1:CAS:528:DC%2BD1MXhtVGqtLvI, PID: 19664819
    • Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 68
    • 79957713859 scopus 로고    scopus 로고
    • Vascularization is the key challenge in tissue engineering
    • COI: 1:CAS:528:DC%2BC3MXntV2ntrc%3D, PID: 21396416
    • Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300–311, 2011.
    • (2011) Adv. Drug Deliv. Rev. , vol.63 , pp. 300-311
    • Novosel, E.C.1    Kleinhans, C.2    Kluger, P.J.3
  • 69
    • 84930926663 scopus 로고    scopus 로고
    • Bioprinting scale-up tissue and organ constructs for transplantation
    • COI: 1:CAS:528:DC%2BC2MXnvFShtrg%3D, PID: 25978871
    • Ozbolat, I. T. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 33:395–400, 2015.
    • (2015) Trends Biotechnol. , vol.33 , pp. 395-400
    • Ozbolat, I.T.1
  • 70
    • 84961219034 scopus 로고    scopus 로고
    • Current advances and future perspectives in extrusion-based bioprinting
    • COI: 1:CAS:528:DC%2BC2MXhslOntLfK, PID: 26561931
    • Ozbolat, I. T., and M. Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343, 2016.
    • (2016) Biomaterials , vol.76 , pp. 321-343
    • Ozbolat, I.T.1    Hospodiuk, M.2
  • 71
    • 84880237098 scopus 로고    scopus 로고
    • Bioprinting toward organ fabrication: challenges and future trends
    • PID: 23372076
    • Ozbolat, I. T., and Y. Yu. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60:691–699, 2013.
    • (2013) IEEE Trans. Biomed. Eng. , vol.60 , pp. 691-699
    • Ozbolat, I.T.1    Yu, Y.2
  • 72
    • 84934326295 scopus 로고    scopus 로고
    • 3d printing technology to control bmp-2 and vegf delivery spatially and temporally to promote large-volume bone regeneration
    • COI: 1:CAS:528:DC%2BC2MXptFSntL0%3D
    • Park, J. Y., J. H. Shim, S. A. Choi, J. Jang, M. Kim, S. H. Lee, and D. W. Cho. 3d printing technology to control bmp-2 and vegf delivery spatially and temporally to promote large-volume bone regeneration. J. Mater. Chem. B 3:5415–5425, 2015.
    • (2015) J. Mater. Chem. B , vol.3 , pp. 5415-5425
    • Park, J.Y.1    Shim, J.H.2    Choi, S.A.3    Jang, J.4    Kim, M.5    Lee, S.H.6    Cho, D.W.7
  • 74
    • 84930792703 scopus 로고    scopus 로고
    • Biomimetic 3d tissue printing for soft tissue regeneration
    • COI: 1:CAS:528:DC%2BC2MXpt1egsL4%3D, PID: 26056727
    • Pati, F., D. H. Ha, J. Jang, H. H. Han, J. W. Rhie, and D. W. Cho. Biomimetic 3d tissue printing for soft tissue regeneration. Biomaterials 62:164–175, 2015.
    • (2015) Biomaterials , vol.62 , pp. 164-175
    • Pati, F.1    Ha, D.H.2    Jang, J.3    Han, H.H.4    Rhie, J.W.5    Cho, D.W.6
  • 75
    • 84901923061 scopus 로고    scopus 로고
    • Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
    • COI: 1:CAS:528:DC%2BC2cXhvF2mu77P, PID: 24887553
    • Pati, F., J. Jang, D. H. Ha, S. W. Kim, J. W. Rhie, J. H. Shim, D. H. Kim, and D. W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.
    • (2014) Nat. Commun. , vol.5 , pp. 3935
    • Pati, F.1    Jang, J.2    Ha, D.H.3    Kim, S.W.4    Rhie, J.W.5    Shim, J.H.6    Kim, D.H.7    Cho, D.W.8
  • 76
    • 84929266861 scopus 로고    scopus 로고
    • Tissue vascularization through 3D printing: will technology bring us flow?
    • COI: 1:STN:280:DC%2BC2MvotlSrtQ%3D%3D, PID: 25613150
    • Paulsen, S. J., and J. S. Miller. Tissue vascularization through 3D printing: will technology bring us flow? Dev. Dyn. 244:629–640, 2015.
    • (2015) Dev. Dyn. , vol.244 , pp. 629-640
    • Paulsen, S.J.1    Miller, J.S.2
  • 77
    • 42449159656 scopus 로고    scopus 로고
    • A review of rapid prototyping techniques for tissue engineering purposes
    • COI: 1:CAS:528:DC%2BD1cXltFCmtLk%3D, PID: 18428020
    • Peltola, S. M., F. P. W. Melchels, D. W. Grijpma, and M. Kellomaki. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40:268–280, 2008.
    • (2008) Ann. Med. , vol.40 , pp. 268-280
    • Peltola, S.M.1    Melchels, F.P.W.2    Grijpma, D.W.3    Kellomaki, M.4
  • 79
    • 0038369093 scopus 로고    scopus 로고
    • Cellular cardiomyoplasty—cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure?
    • COI: 1:CAS:528:DC%2BD3sXjvFagtbk%3D, PID: 12757870
    • Reffelmann, T., and R. A. Kloner. Cellular cardiomyoplasty—cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc. Res. 58:358–368, 2003.
    • (2003) Cardiovasc. Res. , vol.58 , pp. 358-368
    • Reffelmann, T.1    Kloner, R.A.2
  • 80
    • 47049097487 scopus 로고    scopus 로고
    • Vascularization in tissue engineering
    • COI: 1:CAS:528:DC%2BD1cXoslegt7Y%3D, PID: 18585808
    • Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434–441, 2008.
    • (2008) Trends Biotechnol. , vol.26 , pp. 434-441
    • Rouwkema, J.1    Rivron, N.C.2    van Blitterswijk, C.A.3
  • 81
    • 84923829773 scopus 로고    scopus 로고
    • A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels
    • COI: 1:CAS:528:DC%2BC2MXptFCksA%3D%3D, PID: 25641220
    • Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.
    • (2015) Adv. Mater. , vol.27 , pp. 1607-1614
    • Rutz, A.L.1    Hyland, K.E.2    Jakus, A.E.3    Burghardt, W.R.4    Shah, R.N.5
  • 83
    • 84907518520 scopus 로고    scopus 로고
    • Inkjet printing biomaterials for tissue engineering: bioprinting
    • COI: 1:CAS:528:DC%2BC2cXhtFyktL%2FF
    • Saunders, R. E., and B. Derby. Inkjet printing biomaterials for tissue engineering: bioprinting. Int. Mater. Rev. 59:430–448, 2014.
    • (2014) Int. Mater. Rev. , vol.59 , pp. 430-448
    • Saunders, R.E.1    Derby, B.2
  • 85
    • 0034670183 scopus 로고    scopus 로고
    • Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering
    • COI: 1:CAS:528:DC%2BD3cXmtlOgtbg%3D, PID: 11026628
    • Schmidt, C. E., and J. M. Baier. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomaterials 21:2215–2231, 2000.
    • (2000) Biomaterials , vol.21 , pp. 2215-2231
    • Schmidt, C.E.1    Baier, J.M.2
  • 89
    • 78751642508 scopus 로고    scopus 로고
    • The current status of engineering myocardial tissue
    • Sui, R. Q., X. B. Liao, X. M. Zhou, and Q. Tan. The current status of engineering myocardial tissue. Stem Cell Rev. Rep. 7:172–180, 2011.
    • (2011) Stem Cell Rev. Rep. , vol.7 , pp. 172-180
    • Sui, R.Q.1    Liao, X.B.2    Zhou, X.M.3    Tan, Q.4
  • 90
    • 85008507837 scopus 로고    scopus 로고
    • Vascularization strategies of engineered tissues and their application in cardiac regeneration
    • Sun, X., W. Altalhi, and S. S. Nunes. Vascularization strategies of engineered tissues and their application in cardiac regeneration. Adv. Drug Deliv. Rev. 2015. doi:10.1016/j.addr.2015.1006.1001.
    • (2015) Adv. Drug Deliv. Rev.
    • Sun, X.1    Altalhi, W.2    Nunes, S.S.3
  • 92
    • 77953683474 scopus 로고    scopus 로고
    • Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy
    • COI: 1:CAS:528:DC%2BC3cXntlait7Y%3D, PID: 20214939
    • Wang, F., and J. J. Guan. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv. Drug Deliv. Rev. 62:784–797, 2010.
    • (2010) Adv. Drug Deliv. Rev. , vol.62 , pp. 784-797
    • Wang, F.1    Guan, J.J.2
  • 93
    • 14844322862 scopus 로고    scopus 로고
    • Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
    • COI: 1:CAS:528:DC%2BD2MXitV2gs7g%3D, PID: 15763261
    • Williams, J. M., A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.
    • (2005) Biomaterials , vol.26 , pp. 4817-4827
    • Williams, J.M.1    Adewunmi, A.2    Schek, R.M.3    Flanagan, C.L.4    Krebsbach, P.H.5    Feinberg, S.E.6    Hollister, S.J.7    Das, S.8
  • 94
    • 84922697514 scopus 로고    scopus 로고
    • Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system
    • COI: 1:CAS:528:DC%2BC3sXhvFCjtbbM, PID: 24380055
    • Williams, S. K., J. S. Touroo, K. H. Church, and J. B. Hoying. Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system. Biores. Open Access. 2:448–454, 2013.
    • (2013) Biores. Open Access. , vol.2 , pp. 448-454
    • Williams, S.K.1    Touroo, J.S.2    Church, K.H.3    Hoying, J.B.4
  • 95
    • 84899653856 scopus 로고    scopus 로고
    • Epidemiological studies of chd and the evolution of preventive cardiology
    • PID: 24663092
    • Wong, N. D. Epidemiological studies of chd and the evolution of preventive cardiology. Nat. Rev. Cardiol. 11:276–289, 2014.
    • (2014) Nat. Rev. Cardiol. , vol.11 , pp. 276-289
    • Wong, N.D.1
  • 96
    • 1642319363 scopus 로고    scopus 로고
    • Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique
    • COI: 1:CAS:528:DC%2BD2cXitlWqsLc%3D, PID: 15046905
    • Woodfield, T. B. F., J. Malda, J. de Wijn, F. Peters, J. Riesle, and C. A. van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161, 2004.
    • (2004) Biomaterials , vol.25 , pp. 4149-4161
    • Woodfield, T.B.F.1    Malda, J.2    de Wijn, J.3    Peters, F.4    Riesle, J.5    van Blitterswijk, C.A.6
  • 97
    • 84870316597 scopus 로고    scopus 로고
    • Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
    • PID: 23172542
    • Xu, T., K. W. Binder, M. Z. Albanna, D. Dice, W. X. Zhao, J. J. Yoo, and A. Atala. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 5:015001, 2013.
    • (2013) Biofabrication. , vol.5 , pp. 015001
    • Xu, T.1    Binder, K.W.2    Albanna, M.Z.3    Dice, D.4    Zhao, W.X.5    Yoo, J.J.6    Atala, A.7
  • 98
    • 84930886019 scopus 로고    scopus 로고
    • Application of 3d biomimetic models in drug delivery and regenerative medicine
    • COI: 1:CAS:528:DC%2BC2MXjslyhsr4%3D, PID: 25594404
    • Xu, Y. F., and X. H. Wang. Application of 3d biomimetic models in drug delivery and regenerative medicine. Curr. Pharm. Des. 21:1618–1626, 2015.
    • (2015) Curr. Pharm. Des. , vol.21 , pp. 1618-1626
    • Xu, Y.F.1    Wang, X.H.2
  • 99
    • 0036191695 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
    • COI: 1:CAS:528:DC%2BD38XislChu7g%3D, PID: 11886649
    • Yang, S. F., K. F. Leong, Z. H. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8:1–11, 2002.
    • (2002) Tissue Eng. , vol.8 , pp. 1-11
    • Yang, S.F.1    Leong, K.F.2    Du, Z.H.3    Chua, C.K.4
  • 100
    • 77953577951 scopus 로고    scopus 로고
    • Population trends in the incidence and outcomes of acute myocardial infarction
    • COI: 1:CAS:528:DC%2BC3cXnsV2hsbY%3D, PID: 20558366
    • Yeh, R. W., S. Sidney, M. Chandra, M. Sorel, J. V. Selby, and A. S. Go. Population trends in the incidence and outcomes of acute myocardial infarction. N. Engl. J. Med. 362:2155–2165, 2010.
    • (2010) N. Engl. J. Med. , vol.362 , pp. 2155-2165
    • Yeh, R.W.1    Sidney, S.2    Chandra, M.3    Sorel, M.4    Selby, J.V.5    Go, A.S.6
  • 101
    • 8144227180 scopus 로고    scopus 로고
    • Rapid prototyping in tissue engineering: challenges and potential
    • COI: 1:CAS:528:DC%2BD2cXpslGitro%3D, PID: 15542155
    • Yeong, W. Y., C. K. Chua, K. F. Leong, and M. Chandrasekaran. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22:643–652, 2004.
    • (2004) Trends Biotechnol. , vol.22 , pp. 643-652
    • Yeong, W.Y.1    Chua, C.K.2    Leong, K.F.3    Chandrasekaran, M.4
  • 102
    • 84924351834 scopus 로고    scopus 로고
    • A hybrid bioprinting approach for scale-up tissue fabrication
    • Yu, Y., Y. H. Zhang, and I. T. Ozbolat. A hybrid bioprinting approach for scale-up tissue fabrication. J. Manuf. Sci. Eng. Trans. ASME. 136:61013, 2014.
    • (2014) J. Manuf. Sci. Eng. Trans. ASME. , vol.136 , pp. 61013
    • Yu, Y.1    Zhang, Y.H.2    Ozbolat, I.T.3
  • 103
    • 0037082740 scopus 로고    scopus 로고
    • Fused deposition modeling of novel scaffold architectures for tissue engineering applications
    • COI: 1:CAS:528:DC%2BD3MXos1WqtLY%3D, PID: 11791921
    • Zein, I., D. W. Hutmacher, K. C. Tan, and S. H. Teoh. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185, 2002.
    • (2002) Biomaterials , vol.23 , pp. 1169-1185
    • Zein, I.1    Hutmacher, D.W.2    Tan, K.C.3    Teoh, S.H.4
  • 104
    • 84864678601 scopus 로고    scopus 로고
    • Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography
    • COI: 1:CAS:528:DC%2BC38XhtVehsLfI, PID: 22786787
    • Zhang, A. P., X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Advanced Materials. 24:4266–4270, 2012.
    • (2012) Advanced Materials. , vol.24 , pp. 4266-4270
    • Zhang, A.P.1    Qu, X.2    Soman, P.3    Hribar, K.C.4    Lee, J.W.5    Chen, S.C.6    He, S.L.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.