메뉴 건너뛰기




Volumn 45, Issue 1, 2017, Pages 115-131

Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine

Author keywords

3 D tissue model; Cell printing; Regenerative medicine; Tissue engineering

Indexed keywords

BIOLOGICAL MATERIALS; BIOMATERIALS; BIOMECHANICS; BIOMIMETIC PROCESSES; BIOMIMETICS; CELL ENGINEERING; CELLS; CYTOLOGY; HISTOLOGY; MECHANICAL PROPERTIES; PATIENT REHABILITATION; PRINTING; TISSUE; TISSUE ENGINEERING;

EID: 84962858637     PISSN: 00906964     EISSN: 15739686     Source Type: Journal    
DOI: 10.1007/s10439-016-1613-7     Document Type: Review
Times cited : (76)

References (102)
  • 1
    • 84904308833 scopus 로고    scopus 로고
    • 3D biofabrication strategies for tissue engineering and regenerative medicine
    • COI: 1:CAS:528:DC%2BC2cXhsVKgt7%2FO, PID: 24905875
    • Bajaj, P., R. M. Schweller, A. Khademhosseini, J. L. West, and R. Bashir. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 16:247–276, 2014.
    • (2014) Annu. Rev. Biomed. Eng. , vol.16 , pp. 247-276
    • Bajaj, P.1    Schweller, R.M.2    Khademhosseini, A.3    West, J.L.4    Bashir, R.5
  • 4
    • 84887016191 scopus 로고    scopus 로고
    • The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
    • COI: 1:CAS:528:DC%2BC3sXhsFOltLzK, PID: 24112804
    • Billiet, T., E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62, 2014.
    • (2014) Biomaterials , vol.35 , pp. 49-62
    • Billiet, T.1    Gevaert, E.2    De Schryver, T.3    Cornelissen, M.4    Dubruel, P.5
  • 6
    • 84890381496 scopus 로고    scopus 로고
    • Bone tissue engineering using 3D printing
    • COI: 1:CAS:528:DC%2BC3sXhvFOrsrnO
    • Bose, S., S. Vahabzadeh, and A. Bandyopadhyay. Bone tissue engineering using 3D printing. Mater. Today 16:496–504, 2013.
    • (2013) Mater. Today , vol.16 , pp. 496-504
    • Bose, S.1    Vahabzadeh, S.2    Bandyopadhyay, A.3
  • 7
    • 38349103640 scopus 로고    scopus 로고
    • Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing
    • COI: 1:CAS:528:DC%2BD1cXovFKgug%3D%3D, PID: 18333803
    • Chang, R., J. Nam, and W. Sun. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A 14:41–48, 2008.
    • (2008) Tissue Eng. Part A , vol.14 , pp. 41-48
    • Chang, R.1    Nam, J.2    Sun, W.3
  • 8
    • 79953752590 scopus 로고    scopus 로고
    • Establishment of efficacy and safety assessment of human adipose tissue-derived mesenchymal stem cells (hATMSCs) in a nude rat femoral segmental defect model
    • PID: 21468254
    • Choi, H. J., J. M. Kim, E. Kwon, J.-H. Che, J.-I. Lee, S.-R. Cho, S. K. Kang, J. C. Ra, and B.-C. Kang. Establishment of efficacy and safety assessment of human adipose tissue-derived mesenchymal stem cells (hATMSCs) in a nude rat femoral segmental defect model. J. Korean Med. Sci. 26:482–491, 2011.
    • (2011) J. Korean Med. Sci. , vol.26 , pp. 482-491
    • Choi, H.J.1    Kim, J.M.2    Kwon, E.3    Che, J.-H.4    Lee, J.-I.5    Cho, S.-R.6    Kang, S.K.7    Ra, J.C.8    Kang, B.-C.9
  • 10
    • 69649100202 scopus 로고    scopus 로고
    • Human microvasculature fabrication using thermal inkjet printing technology
    • COI: 1:CAS:528:DC%2BD1MXhtFWltbzL, PID: 19695697
    • Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.
    • (2009) Biomaterials , vol.30 , pp. 6221-6227
    • Cui, X.1    Boland, T.2
  • 11
    • 84861826955 scopus 로고    scopus 로고
    • Direct human cartilage repair using three-dimensional bioprinting technology
    • COI: 1:CAS:528:DC%2BC38XotVOis7Y%3D, PID: 22394017
    • Cui, X., K. Breitenkamp, M. G. Finn, M. Lotz, and D. D. D’Lima. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A 18:1304–1312, 2012.
    • (2012) Tissue Eng. Part A , vol.18 , pp. 1304-1312
    • Cui, X.1    Breitenkamp, K.2    Finn, M.G.3    Lotz, M.4    D’Lima, D.D.5
  • 12
    • 84864302244 scopus 로고    scopus 로고
    • Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation
    • COI: 1:CAS:528:DC%2BC38Xlt1ajtbw%3D, PID: 22508498
    • Cui, X., K. Breitenkamp, M. Lotz, and D. D’Lima. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol. Bioeng. 109:2357–2368, 2012.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2357-2368
    • Cui, X.1    Breitenkamp, K.2    Lotz, M.3    D’Lima, D.4
  • 13
    • 77955689253 scopus 로고    scopus 로고
    • Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells
    • COI: 1:CAS:528:DC%2BC3cXosVWhs7c%3D, PID: 20589673
    • Cui, X., D. Dean, Z. M. Ruggeri, and T. Boland. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng. 106:963–969, 2010.
    • (2010) Biotechnol. Bioeng. , vol.106 , pp. 963-969
    • Cui, X.1    Dean, D.2    Ruggeri, Z.M.3    Boland, T.4
  • 14
    • 84908497037 scopus 로고    scopus 로고
    • Human cartilage tissue fabrication using three-dimensional inkjet printing technology
    • Cui, X., G. Gao, T. Yonezawa, and G. Dai. Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J. Vis. Exp. 88:e51294, 2014.
    • (2014) J. Vis. Exp. , vol.88
    • Cui, X.1    Gao, G.2    Yonezawa, T.3    Dai, G.4
  • 15
    • 34548071012 scopus 로고    scopus 로고
    • Single cell epitaxy by acoustic picolitre droplets
    • COI: 1:CAS:528:DC%2BD2sXptlygur4%3D, PID: 17713612
    • Demirci, U., and G. Montesano. Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7:1139–1145, 2007.
    • (2007) Lab Chip , vol.7 , pp. 1139-1145
    • Demirci, U.1    Montesano, G.2
  • 16
    • 9344233837 scopus 로고    scopus 로고
    • Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography
    • COI: 1:CAS:528:DC%2BD2cXhtVSgurvE, PID: 15588392
    • Dhariwala, B., E. Hunt, and T. Boland. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 10:1316–1322, 2004.
    • (2004) Tissue Eng. , vol.10 , pp. 1316-1322
    • Dhariwala, B.1    Hunt, E.2    Boland, T.3
  • 17
    • 84884211629 scopus 로고    scopus 로고
    • 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
    • PID: 23015540
    • Duan, B., L. A. Hockaday, K. H. Kang, and J. T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. A 101:1255–1264, 2013.
    • (2013) J. Biomed. Mater. Res. A , vol.101 , pp. 1255-1264
    • Duan, B.1    Hockaday, L.A.2    Kang, K.H.3    Butcher, J.T.4
  • 18
    • 84898059103 scopus 로고    scopus 로고
    • Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
    • COI: 1:CAS:528:DC%2BC2cXksVyksQ%3D%3D, PID: 24334142
    • Duan, B., E. Kapetanovic, L. A. Hockaday, and J. T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10:1836–1846, 2014.
    • (2014) Acta Biomater. , vol.10 , pp. 1836-1846
    • Duan, B.1    Kapetanovic, E.2    Hockaday, L.A.3    Butcher, J.T.4
  • 19
    • 84855396802 scopus 로고    scopus 로고
    • Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
    • COI: 1:CAS:528:DC%2BC38XjtFajsg%3D%3D
    • Fedorovich, N. E., W. Schuurman, H. M. Wijnberg, H. J. Prins, P. R. van Weeren, J. Malda, J. Alblas, and W. J. Dhert. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. Part C 18:33–44, 2012.
    • (2012) Tissue Eng. Part C , vol.18 , pp. 33-44
    • Fedorovich, N.E.1    Schuurman, W.2    Wijnberg, H.M.3    Prins, H.J.4    van Weeren, P.R.5    Malda, J.6    Alblas, J.7    Dhert, W.J.8
  • 20
    • 79960782567 scopus 로고    scopus 로고
    • Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells
    • PID: 21513466
    • Fedorovich, N. E., H. M. Wijnberg, W. J. Dhert, and J. Alblas. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng. Part A 17:2113–2121, 2011.
    • (2011) Tissue Eng. Part A , vol.17 , pp. 2113-2121
    • Fedorovich, N.E.1    Wijnberg, H.M.2    Dhert, W.J.3    Alblas, J.4
  • 22
    • 83555177196 scopus 로고    scopus 로고
    • Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
    • COI: 1:CAS:528:DC%2BC3MXhs1ejt7fI, PID: 22136718
    • Gaetani, R., P. A. Doevendans, C. H. Metz, J. Alblas, E. Messina, A. Giacomello, and J. P. Sluijter. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790, 2012.
    • (2012) Biomaterials , vol.33 , pp. 1782-1790
    • Gaetani, R.1    Doevendans, P.A.2    Metz, C.H.3    Alblas, J.4    Messina, E.5    Giacomello, A.6    Sluijter, J.P.7
  • 23
    • 84939161281 scopus 로고    scopus 로고
    • Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction
    • COI: 1:CAS:528:DC%2BC2MXotFCqtL8%3D, PID: 26043062
    • Gaetani, R., D. A. Feyen, V. Verhage, R. Slaats, E. Messina, K. L. Christman, A. Giacomello, P. A. Doevendans, and J. P. Sluijter. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348, 2015.
    • (2015) Biomaterials , vol.61 , pp. 339-348
    • Gaetani, R.1    Feyen, D.A.2    Verhage, V.3    Slaats, R.4    Messina, E.5    Christman, K.L.6    Giacomello, A.7    Doevendans, P.A.8    Sluijter, J.P.9
  • 24
    • 84939125652 scopus 로고    scopus 로고
    • Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery
    • COI: 1:CAS:528:DC%2BC2MXos1CjtbY%3D, PID: 26004235
    • Gao, Q., Y. He, J. Z. Fu, A. Liu, and L. Ma. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215, 2015.
    • (2015) Biomaterials , vol.61 , pp. 203-215
    • Gao, Q.1    He, Y.2    Fu, J.Z.3    Liu, A.4    Ma, L.5
  • 25
    • 84908496206 scopus 로고    scopus 로고
    • Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
    • COI: 1:CAS:528:DC%2BC2cXhsFWitrvF, PID: 25130390
    • Gao, G., A. F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9:1304–1311, 2014.
    • (2014) Biotechnol. J. , vol.9 , pp. 1304-1311
    • Gao, G.1    Schilling, A.F.2    Yonezawa, T.3    Wang, J.4    Dai, G.5    Cui, X.6
  • 26
    • 84943351158 scopus 로고    scopus 로고
    • Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging
    • COI: 1:CAS:528:DC%2BC2MXkvVWlsbg%3D, PID: 25641582
    • Gao, G., T. Yonezawa, K. Hubbell, G. Dai, and X. Cui. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol. J. 10:1568, 2015.
    • (2015) Biotechnol. J. , vol.10 , pp. 1568
    • Gao, G.1    Yonezawa, T.2    Hubbell, K.3    Dai, G.4    Cui, X.5
  • 27
    • 84940449794 scopus 로고    scopus 로고
    • Combined additive manufacturing approaches in tissue engineering
    • COI: 1:CAS:528:DC%2BC2MXht1GrurnE, PID: 26134665
    • Giannitelli, S. M., P. Mozetic, M. Trombetta, and A. Rainer. Combined additive manufacturing approaches in tissue engineering. Acta Biomater. 24:1–11, 2015.
    • (2015) Acta Biomater. , vol.24 , pp. 1-11
    • Giannitelli, S.M.1    Mozetic, P.2    Trombetta, M.3    Rainer, A.4
  • 28
    • 0029970747 scopus 로고    scopus 로고
    • Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing
    • COI: 1:CAS:528:DyaK28XntVylsrk%3D, PID: 8933291
    • Giordano, R. A., B. M. Wu, S. W. Borland, L. G. Cima, E. M. Sachs, and M. J. Cima. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Ed. 8:63–75, 1996.
    • (1996) J. Biomater. Sci. Polym. Ed. , vol.8 , pp. 63-75
    • Giordano, R.A.1    Wu, B.M.2    Borland, S.W.3    Cima, L.G.4    Sachs, E.M.5    Cima, M.J.6
  • 29
    • 78650267994 scopus 로고    scopus 로고
    • Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09)
    • PID: 20811115
    • Guillemot, F., V. Mironov, and M. Nakamura. Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09). Biofabrication 2:010201, 2010.
    • (2010) Biofabrication , vol.2 , pp. 010201
    • Guillemot, F.1    Mironov, V.2    Nakamura, M.3
  • 32
    • 84903964392 scopus 로고    scopus 로고
    • Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets
    • COI: 1:CAS:528:DC%2BC2cXhslyht74%3D, PID: 24495169
    • Gurkan, U. A., R. El Assal, S. E. Yildiz, Y. Sung, A. J. Trachtenberg, W. P. Kuo, and U. Demirci. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol. Pharm. 11:2151–2159, 2014.
    • (2014) Mol. Pharm. , vol.11 , pp. 2151-2159
    • Gurkan, U.A.1    El Assal, R.2    Yildiz, S.E.3    Sung, Y.4    Trachtenberg, A.J.5    Kuo, W.P.6    Demirci, U.7
  • 33
    • 84940977939 scopus 로고    scopus 로고
    • Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels
    • COI: 1:CAS:528:DC%2BC2MXhtFOrtb%2FE, PID: 26177925
    • Highley, C. B., C. B. Rodell, and J. A. Burdick. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27:5075–5079, 2015.
    • (2015) Adv. Mater. , vol.27 , pp. 5075-5079
    • Highley, C.B.1    Rodell, C.B.2    Burdick, J.A.3
  • 36
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • COI: 1:CAS:528:DC%2BD2MXlvFOis7Y%3D, PID: 16003400
    • Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4:518–524, 2005.
    • (2005) Nat. Mater. , vol.4 , pp. 518-524
    • Hollister, S.J.1
  • 37
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems
    • COI: 1:CAS:528:DC%2BD2cXls1Wkur4%3D, PID: 15245908
    • Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354–362, 2004.
    • (2004) Trends Biotechnol. , vol.22 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 38
    • 84896715739 scopus 로고    scopus 로고
    • 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration
    • COI: 1:CAS:528:DC%2BC2cXisFSnu7g%3D, PID: 24529628
    • Inzana, J. A., D. Olvera, S. M. Fuller, J. P. Kelly, O. A. Graeve, E. M. Schwarz, S. L. Kates, and H. A. Awad. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034, 2014.
    • (2014) Biomaterials , vol.35 , pp. 4026-4034
    • Inzana, J.A.1    Olvera, D.2    Fuller, S.M.3    Kelly, J.P.4    Graeve, O.A.5    Schwarz, E.M.6    Kates, S.L.7    Awad, H.A.8
  • 39
    • 1542267824 scopus 로고    scopus 로고
    • Engineering biological structures of prescribed shape using self-assembling multicellular systems
    • COI: 1:CAS:528:DC%2BD2cXitlWhs7Y%3D, PID: 14981244
    • Jakab, K., A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. USA 101:2864–2869, 2004.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 2864-2869
    • Jakab, K.1    Neagu, A.2    Mironov, V.3    Markwald, R.R.4    Forgacs, G.5
  • 40
    • 84960905071 scopus 로고    scopus 로고
    • A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
    • COI: 1:CAS:528:DC%2BC28XisFKhsbg%3D, PID: 26878319
    • Kang, H. W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34:312–319, 2016.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 312-319
    • Kang, H.W.1    Lee, S.J.2    Ko, I.K.3    Kengla, C.4    Yoo, J.J.5    Atala, A.6
  • 42
    • 77954494231 scopus 로고    scopus 로고
    • Bioprinting endothelial cells with alginate for 3D tissue constructs
    • PID: 20353253
    • Khalil, S., and W. Sun. Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 131:111002, 2009.
    • (2009) J. Biomech. Eng. , vol.131 , pp. 111002
    • Khalil, S.1    Sun, W.2
  • 45
    • 0346634885 scopus 로고    scopus 로고
    • Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering
    • COI: 1:CAS:528:DC%2BD38XmsVeru74%3D, PID: 12322962
    • Landers, R., U. Hubner, R. Schmelzeisen, and R. Mulhaupt. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447, 2002.
    • (2002) Biomaterials , vol.23 , pp. 4437-4447
    • Landers, R.1    Hubner, U.2    Schmelzeisen, R.3    Mulhaupt, R.4
  • 46
    • 58249093214 scopus 로고    scopus 로고
    • Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication
    • COI: 1:CAS:528:DC%2BD1MXpsFyjtw%3D%3D, PID: 19108884
    • Lee, W., J. C. Debasitis, V. K. Lee, J. H. Lee, K. Fischer, K. Edminster, J. K. Park, and S. S. Yoo. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595, 2009.
    • (2009) Biomaterials , vol.30 , pp. 1587-1595
    • Lee, W.1    Debasitis, J.C.2    Lee, V.K.3    Lee, J.H.4    Fischer, K.5    Edminster, K.6    Park, J.K.7    Yoo, S.S.8
  • 47
    • 78549257386 scopus 로고    scopus 로고
    • Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres
    • COI: 1:CAS:528:DC%2BC3cXhsVCnurbI, PID: 20933279
    • Lee, J. W., K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–752, 2011.
    • (2011) Biomaterials , vol.32 , pp. 744-752
    • Lee, J.W.1    Kang, K.S.2    Lee, S.H.3    Kim, J.-Y.4    Lee, B.-K.5    Cho, D.-W.6
  • 48
    • 84903737158 scopus 로고    scopus 로고
    • Creating perfused functional vascular channels using 3D bio-printing technology
    • COI: 1:CAS:528:DC%2BC2cXhtV2qt7jM, PID: 24965886
    • Lee, V. K., D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S. S. Yoo, P. A. Vincent, and G. Dai. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35:8092–8102, 2014.
    • (2014) Biomaterials , vol.35 , pp. 8092-8102
    • Lee, V.K.1    Kim, D.Y.2    Ngo, H.3    Lee, Y.4    Seo, L.5    Yoo, S.S.6    Vincent, P.A.7    Dai, G.8
  • 49
    • 84906938147 scopus 로고    scopus 로고
    • Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology
    • COI: 1:CAS:528:DC%2BC2cXpvFGmtL8%3D, PID: 25484989
    • Lee, V. K., A. M. Lanzi, N. Haygan, S. S. Yoo, P. A. Vincent, and G. Dai. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell. Mol. Bioeng. 7:460–472, 2014.
    • (2014) Cell. Mol. Bioeng. , vol.7 , pp. 460-472
    • Lee, V.K.1    Lanzi, A.M.2    Haygan, N.3    Yoo, S.S.4    Vincent, P.A.5    Dai, G.6
  • 50
    • 77951604536 scopus 로고    scopus 로고
    • On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels
    • COI: 1:CAS:528:DC%2BC3cXisFKlsbo%3D, PID: 19953677
    • Lee, W., V. Lee, S. Polio, P. Keegan, J. H. Lee, K. Fischer, J. K. Park, and S. S. Yoo. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 105:1178–1186, 2010.
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 1178-1186
    • Lee, W.1    Lee, V.2    Polio, S.3    Keegan, P.4    Lee, J.H.5    Fischer, K.6    Park, J.K.7    Yoo, S.S.8
  • 51
    • 72149117158 scopus 로고    scopus 로고
    • Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo
    • COI: 1:CAS:528:DC%2BC3cXhtlOl, PID: 19563263
    • Lee, C. H., N. W. Marion, S. Hollister, and J. J. Mao. Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo. Tissue Eng. Part A 15:3923–3930, 2009.
    • (2009) Tissue Eng. Part A , vol.15 , pp. 3923-3930
    • Lee, C.H.1    Marion, N.W.2    Hollister, S.3    Mao, J.J.4
  • 52
    • 77952545276 scopus 로고    scopus 로고
    • Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture
    • COI: 1:CAS:528:DC%2BC3cXlsFShurc%3D, PID: 20211178
    • Lee, Y. B., S. Polio, W. Lee, G. Dai, L. Menon, R. S. Carroll, and S. S. Yoo. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223:645–652, 2010.
    • (2010) Exp. Neurol. , vol.223 , pp. 645-652
    • Lee, Y.B.1    Polio, S.2    Lee, W.3    Dai, G.4    Menon, L.5    Carroll, R.S.6    Yoo, S.S.7
  • 54
    • 84922726919 scopus 로고    scopus 로고
    • 3D printing for regenerative medicine: from bench to bedside
    • COI: 1:CAS:528:DC%2BC2MXis1ags7c%3D
    • Li, J., L. He, C. Zhou, Y. Zhou, Y. Y. Bai, F. Y. Lee, and J. J. Mao. 3D printing for regenerative medicine: from bench to bedside. MRS Bull. 40:145–153, 2015.
    • (2015) MRS Bull. , vol.40 , pp. 145-153
    • Li, J.1    He, L.2    Zhou, C.3    Zhou, Y.4    Bai, Y.Y.5    Lee, F.Y.6    Mao, J.J.7
  • 55
    • 1842419423 scopus 로고    scopus 로고
    • A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity
    • PID: 15046991
    • Lin, C. Y., N. Kikuchi, and S. J. Hollister. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37:623–636, 2004.
    • (2004) J. Biomech. , vol.37 , pp. 623-636
    • Lin, C.Y.1    Kikuchi, N.2    Hollister, S.J.3
  • 57
    • 84929176653 scopus 로고    scopus 로고
    • 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
    • COI: 1:CAS:528:DC%2BC2MXltFSnurc%3D, PID: 25806996
    • Markstedt, K., A. Mantas, I. Tournier, H. Martinez-Avila, D. Hagg, and P. Gatenholm. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489, 2015.
    • (2015) Biomacromolecules , vol.16 , pp. 1489
    • Markstedt, K.1    Mantas, A.2    Tournier, I.3    Martinez-Avila, H.4    Hagg, D.5    Gatenholm, P.6
  • 58
    • 84874591959 scopus 로고    scopus 로고
    • Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice
    • COI: 1:CAS:528:DC%2BC3sXktFClsr4%3D, PID: 23469227
    • Michael, S., H. Sorg, C. T. Peck, L. Koch, A. Deiwick, B. Chichkov, P. M. Vogt, and K. Reimers. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8:e57741, 2013.
    • (2013) PLoS ONE , vol.8
    • Michael, S.1    Sorg, H.2    Peck, C.T.3    Koch, L.4    Deiwick, A.5    Chichkov, B.6    Vogt, P.M.7    Reimers, K.8
  • 60
    • 0242668870 scopus 로고    scopus 로고
    • Organ printing: computer-aided jet-based 3D tissue engineering
    • COI: 1:CAS:528:DC%2BD3sXisFWlu74%3D, PID: 12679063
    • Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21:157–161, 2003.
    • (2003) Trends Biotechnol. , vol.21 , pp. 157-161
    • Mironov, V.1    Boland, T.2    Trusk, T.3    Forgacs, G.4    Markwald, R.R.5
  • 62
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • COI: 1:CAS:528:DC%2BC2cXht1OqtbfK, PID: 25093879
    • Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 63
    • 84872681726 scopus 로고    scopus 로고
    • Evaluation of hydrogels for bio-printing applications
    • PID: 22941807
    • Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101:272–284, 2013.
    • (2013) J. Biomed. Mater. Res. A , vol.101 , pp. 272-284
    • Murphy, S.V.1    Skardal, A.2    Atala, A.3
  • 64
    • 70350100448 scopus 로고    scopus 로고
    • Characterization of cell viability during bioprinting processes
    • COI: 1:CAS:528:DC%2BD1MXhtVWkur7I, PID: 19507149
    • Nair, K., M. Gandhi, S. Khalil, K. C. Yan, M. Marcolongo, K. Barbee, and W. Sun. Characterization of cell viability during bioprinting processes. Biotechnol. J. 4:1168–1177, 2009.
    • (2009) Biotechnol. J. , vol.4 , pp. 1168-1177
    • Nair, K.1    Gandhi, M.2    Khalil, S.3    Yan, K.C.4    Marcolongo, M.5    Barbee, K.6    Sun, W.7
  • 66
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • COI: 1:CAS:528:DC%2BD1MXhtVGqtLvI, PID: 19664819
    • Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 68
    • 84930926663 scopus 로고    scopus 로고
    • Bioprinting scale-up tissue and organ constructs for transplantation
    • COI: 1:CAS:528:DC%2BC2MXnvFShtrg%3D, PID: 25978871
    • Ozbolat, I. T. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 33:395–400, 2015.
    • (2015) Trends Biotechnol. , vol.33 , pp. 395-400
    • Ozbolat, I.T.1
  • 69
    • 84886776027 scopus 로고    scopus 로고
    • Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue
    • PID: 24091624
    • Ozturk, M. S., V. K. Lee, L. Zhao, G. Dai, and X. Intes. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. J. Biomed. Opt. 18:100501, 2013.
    • (2013) J. Biomed. Opt. , vol.18 , pp. 100501
    • Ozturk, M.S.1    Lee, V.K.2    Zhao, L.3    Dai, G.4    Intes, X.5
  • 70
    • 84869469648 scopus 로고    scopus 로고
    • Designing regenerative biomaterial therapies for the clinic
    • Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci Transl Med 4:160sr164, 2012.
    • (2012) Sci Transl Med , vol.4 , pp. 160sr164
    • Pashuck, E.T.1    Stevens, M.M.2
  • 71
    • 84930792703 scopus 로고    scopus 로고
    • Biomimetic 3D tissue printing for soft tissue regeneration
    • COI: 1:CAS:528:DC%2BC2MXpt1egsL4%3D, PID: 26056727
    • Pati, F., D. H. Ha, J. Jang, H. H. Han, J. W. Rhie, and D. W. Cho. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175, 2015.
    • (2015) Biomaterials , vol.62 , pp. 164-175
    • Pati, F.1    Ha, D.H.2    Jang, J.3    Han, H.H.4    Rhie, J.W.5    Cho, D.W.6
  • 72
    • 84901923061 scopus 로고    scopus 로고
    • Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
    • COI: 1:CAS:528:DC%2BC2cXhvF2mu77P, PID: 24887553
    • Pati, F., J. Jang, D. H. Ha, S. W. Kim, J. W. Rhie, J. H. Shim, D. H. Kim, and D. W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.
    • (2014) Nat. Commun. , vol.5 , pp. 3935
    • Pati, F.1    Jang, J.2    Ha, D.H.3    Kim, S.W.4    Rhie, J.W.5    Shim, J.H.6    Kim, D.H.7    Cho, D.W.8
  • 73
    • 42449159656 scopus 로고    scopus 로고
    • A review of rapid prototyping techniques for tissue engineering purposes
    • COI: 1:CAS:528:DC%2BD1cXltFCmtLk%3D, PID: 18428020
    • Peltola, S. M., F. P. Melchels, D. W. Grijpma, and M. Kellomaki. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40:268–280, 2008.
    • (2008) Ann. Med. , vol.40 , pp. 268-280
    • Peltola, S.M.1    Melchels, F.P.2    Grijpma, D.W.3    Kellomaki, M.4
  • 74
    • 1542328767 scopus 로고    scopus 로고
    • Inkjet printing for high-throughput cell patterning
    • COI: 1:CAS:528:DC%2BD2cXitVKis78%3D, PID: 15020146
    • Roth, E. A., T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–3715, 2004.
    • (2004) Biomaterials , vol.25 , pp. 3707-3715
    • Roth, E.A.1    Xu, T.2    Das, M.3    Gregory, C.4    Hickman, J.J.5    Boland, T.6
  • 75
    • 84923829773 scopus 로고    scopus 로고
    • A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels
    • COI: 1:CAS:528:DC%2BC2MXptFCksA%3D%3D, PID: 25641220
    • Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.
    • (2015) Adv. Mater. , vol.27 , pp. 1607-1614
    • Rutz, A.L.1    Hyland, K.E.2    Jakus, A.E.3    Burghardt, W.R.4    Shah, R.N.5
  • 76
    • 35549011970 scopus 로고    scopus 로고
    • Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing
    • COI: 1:CAS:528:DC%2BD2sXht1Ghs7vE, PID: 17936351
    • Saunders, R. E., J. E. Gough, and B. Derby. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203, 2008.
    • (2008) Biomaterials , vol.29 , pp. 193-203
    • Saunders, R.E.1    Gough, J.E.2    Derby, B.3
  • 79
    • 77049107803 scopus 로고    scopus 로고
    • Inkjet printing-process and its applications
    • COI: 1:CAS:528:DC%2BC3cXitVShurs%3D, PID: 20217769
    • Singh, M., H. M. Haverinen, P. Dhagat, and G. E. Jabbour. Inkjet printing-process and its applications. Adv. Mater. 22:673–685, 2010.
    • (2010) Adv. Mater. , vol.22 , pp. 673-685
    • Singh, M.1    Haverinen, H.M.2    Dhagat, P.3    Jabbour, G.E.4
  • 80
    • 84925745420 scopus 로고    scopus 로고
    • Biomaterials for integration with 3-D bioprinting
    • PID: 25476164
    • Skardal, A., and A. Atala. Biomaterials for integration with 3-D bioprinting. Ann. Biomed. Eng. 43:730–746, 2015.
    • (2015) Ann. Biomed. Eng. , vol.43 , pp. 730-746
    • Skardal, A.1    Atala, A.2
  • 81
    • 84873046124 scopus 로고    scopus 로고
    • Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
    • COI: 1:CAS:528:DC%2BC3sXntleh, PID: 23197691
    • Skardal, A., D. Mack, E. Kapetanovic, A. Atala, J. D. Jackson, J. Yoo, and S. Soker. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1:792, 2012.
    • (2012) Stem Cells Transl. Med. , vol.1 , pp. 792
    • Skardal, A.1    Mack, D.2    Kapetanovic, E.3    Atala, A.4    Jackson, J.D.5    Yoo, J.6    Soker, S.7
  • 82
    • 77956090298 scopus 로고    scopus 로고
    • Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting
    • COI: 1:CAS:528:DC%2BC3cXpvVWitbw%3D, PID: 20387987
    • Skardal, A., J. Zhang, L. McCoard, X. Xu, S. Oottamasathien, and G. D. Prestwich. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A 16:2675–2685, 2010.
    • (2010) Tissue Eng. Part A , vol.16 , pp. 2675-2685
    • Skardal, A.1    Zhang, J.2    McCoard, L.3    Xu, X.4    Oottamasathien, S.5    Prestwich, G.D.6
  • 83
    • 77953651709 scopus 로고    scopus 로고
    • Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
    • COI: 1:CAS:528:DC%2BC3cXnt12rtLw%3D, PID: 20546891
    • Skardal, A., J. Zhang, and G. D. Prestwich. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31:6173–6181, 2010.
    • (2010) Biomaterials , vol.31 , pp. 6173-6181
    • Skardal, A.1    Zhang, J.2    Prestwich, G.D.3
  • 84
    • 84896544149 scopus 로고    scopus 로고
    • Stereolithography in tissue engineering
    • COI: 1:CAS:528:DC%2BC3sXhvFWrtbrI, PID: 24306145
    • Skoog, S. A., P. L. Goering, and R. J. Narayan. Stereolithography in tissue engineering. J. Mater. Sci. Mater. Med. 25:845–856, 2014.
    • (2014) J. Mater. Sci. Mater. Med. , vol.25 , pp. 845-856
    • Skoog, S.A.1    Goering, P.L.2    Narayan, R.J.3
  • 85
    • 84895526092 scopus 로고    scopus 로고
    • Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts
    • COI: 1:CAS:528:DC%2BC2cXktV2gsr8%3D, PID: 22740314
    • Strobel, L. A., S. N. Rath, A. K. Maier, J. P. Beier, A. Arkudas, P. Greil, R. E. Horch, and U. Kneser. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. J. Tissue Eng. Regen. Med. 8:176–185, 2014.
    • (2014) J. Tissue Eng. Regen. Med. , vol.8 , pp. 176-185
    • Strobel, L.A.1    Rath, S.N.2    Maier, A.K.3    Beier, J.P.4    Arkudas, A.5    Greil, P.6    Horch, R.E.7    Kneser, U.8
  • 86
    • 1042288112 scopus 로고    scopus 로고
    • Computer-aided tissue engineering: overview, scope and challenges
    • COI: 1:CAS:528:DC%2BD2cXls1Gntg%3D%3D, PID: 14563211
    • Sun, W., A. Darling, B. Starly, and J. Nam. Computer-aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem. 39:29–47, 2004.
    • (2004) Biotechnol. Appl. Biochem. , vol.39 , pp. 29-47
    • Sun, W.1    Darling, A.2    Starly, B.3    Nam, J.4
  • 87
    • 84870316597 scopus 로고    scopus 로고
    • Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
    • Tao, X., W. B. Kyle, Z. A. Mohammad, D. Dennis, Z. Weixin, J. Y. James, and A. Anthony. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001, 2013.
    • (2013) Biofabrication , vol.5 , pp. 015001
    • Tao, X.1    Kyle, W.B.2    Mohammad, Z.A.3    Dennis, D.4    Weixin, Z.5    James, J.Y.6    Anthony, A.7
  • 88
    • 84880702026 scopus 로고    scopus 로고
    • Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
    • COI: 1:CAS:528:DC%2BC3sXhtFOitr%2FL, PID: 22396130
    • Tarafder, S., V. K. Balla, N. M. Davies, A. Bandyopadhyay, and S. Bose. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 7:631–641, 2013.
    • (2013) J. Tissue Eng. Regen. Med. , vol.7 , pp. 631-641
    • Tarafder, S.1    Balla, V.K.2    Davies, N.M.3    Bandyopadhyay, A.4    Bose, S.5
  • 89
    • 84871703021 scopus 로고    scopus 로고
    • Bioprinting for stem cell research
    • COI: 1:CAS:528:DC%2BC38XhvVKqurbJ, PID: 23260439
    • Tasoglu, S., and U. Demirci. Bioprinting for stem cell research. Trends Biotechnol. 31:10–19, 2013.
    • (2013) Trends Biotechnol. , vol.31 , pp. 10-19
    • Tasoglu, S.1    Demirci, U.2
  • 91
    • 33847387695 scopus 로고    scopus 로고
    • Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels
    • COI: 1:CAS:528:DC%2BD2sXis1eis7c%3D
    • Tsang, V. L., A. A. Chen, L. M. Cho, K. D. Jadin, R. L. Sah, S. DeLong, J. L. West, and S. N. Bhatia. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21:790–801, 2007.
    • (2007) FASEB J. , vol.21 , pp. 790-801
    • Tsang, V.L.1    Chen, A.A.2    Cho, L.M.3    Jadin, K.D.4    Sah, R.L.5    DeLong, S.6    West, J.L.7    Bhatia, S.N.8
  • 93
    • 0043122970 scopus 로고    scopus 로고
    • Cell and organ printing 1: protein and cell printers
    • Wilson, Jr, W. C., and T. Boland. Cell and organ printing 1: protein and cell printers. Anat. Rec A 272:491–496, 2003.
    • (2003) Anat. Rec A , vol.272 , pp. 491-496
    • Wilson, W.C.1    Boland, T.2
  • 94
    • 77955280239 scopus 로고    scopus 로고
    • Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP)
    • COI: 1:STN:280:DC%2BC3cjovVWisQ%3D%3D, PID: 20811126
    • Wu, P. K., and B. R. Ringeisen. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2:014111, 2010.
    • (2010) Biofabrication , vol.2 , pp. 014111
    • Wu, P.K.1    Ringeisen, B.R.2
  • 95
    • 84896549846 scopus 로고    scopus 로고
    • Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
    • COI: 1:CAS:528:DC%2BC3sXhslGmtb3P, PID: 24157694
    • Wust, S., M. E. Godla, R. Muller, and S. Hofmann. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 10:630–640, 2014.
    • (2014) Acta Biomater. , vol.10 , pp. 630-640
    • Wust, S.1    Godla, M.E.2    Muller, R.3    Hofmann, S.4
  • 96
    • 33645883539 scopus 로고    scopus 로고
    • Viability and electrophysiology of neural cell structures generated by the inkjet printing method
    • COI: 1:CAS:528:DC%2BD28XjtVKjtb4%3D, PID: 16516288
    • Xu, T., C. A. Gregory, P. Molnar, X. Cui, S. Jalota, S. B. Bhaduri, and T. Boland. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588, 2006.
    • (2006) Biomaterials , vol.27 , pp. 3580-3588
    • Xu, T.1    Gregory, C.A.2    Molnar, P.3    Cui, X.4    Jalota, S.5    Bhaduri, S.B.6    Boland, T.7
  • 98
    • 0036191695 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
    • COI: 1:CAS:528:DC%2BD38XislChu7g%3D, PID: 11886649
    • Yang, S., K. F. Leong, Z. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8:1–11, 2002.
    • (2002) Tissue Eng. , vol.8 , pp. 1-11
    • Yang, S.1    Leong, K.F.2    Du, Z.3    Chua, C.K.4
  • 99
    • 8144227180 scopus 로고    scopus 로고
    • Rapid prototyping in tissue engineering: challenges and potential
    • COI: 1:CAS:528:DC%2BD2cXpslGitro%3D, PID: 15542155
    • Yeong, W. Y., C. K. Chua, K. F. Leong, and M. Chandrasekaran. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22:643–652, 2004.
    • (2004) Trends Biotechnol. , vol.22 , pp. 643-652
    • Yeong, W.Y.1    Chua, C.K.2    Leong, K.F.3    Chandrasekaran, M.4
  • 100
    • 84924351834 scopus 로고    scopus 로고
    • A hybrid bioprinting approach for scale-up tissue fabrication
    • Yu, Y., Y. Zhang, and I. T. Ozbolat. A hybrid bioprinting approach for scale-up tissue fabrication. J. Manuf. Sci. Eng. 136:061013, 2014.
    • (2014) J. Manuf. Sci. Eng. , vol.136 , pp. 061013
    • Yu, Y.1    Zhang, Y.2    Ozbolat, I.T.3
  • 101
    • 84860916466 scopus 로고    scopus 로고
    • The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds
    • COI: 1:CAS:528:DC%2BC38XlvFWqs7c%3D, PID: 22531221
    • Zhao, L., V. K. Lee, S. S. Yoo, G. Dai, and X. Intes. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33:5325–5332, 2012.
    • (2012) Biomaterials , vol.33 , pp. 5325-5332
    • Zhao, L.1    Lee, V.K.2    Yoo, S.S.3    Dai, G.4    Intes, X.5
  • 102
    • 84899560969 scopus 로고    scopus 로고
    • Three-dimensional printing of Hela cells for cervical tumor model in vitro
    • PID: 24722236
    • Zhao, Y., R. Yao, L. Ouyang, H. Ding, T. Zhang, K. Zhang, S. Cheng, and W. Sun. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001, 2014.
    • (2014) Biofabrication , vol.6 , pp. 035001
    • Zhao, Y.1    Yao, R.2    Ouyang, L.3    Ding, H.4    Zhang, T.5    Zhang, K.6    Cheng, S.7    Sun, W.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.