-
1
-
-
84904308833
-
3D biofabrication strategies for tissue engineering and regenerative medicine
-
COI: 1:CAS:528:DC%2BC2cXhsVKgt7%2FO, PID: 24905875
-
Bajaj, P., R. M. Schweller, A. Khademhosseini, J. L. West, and R. Bashir. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 16:247–276, 2014.
-
(2014)
Annu. Rev. Biomed. Eng.
, vol.16
, pp. 247-276
-
-
Bajaj, P.1
Schweller, R.M.2
Khademhosseini, A.3
West, J.L.4
Bashir, R.5
-
2
-
-
46449084283
-
Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding
-
PID: 18593357
-
Ballyns, J. J., J. P. Gleghorn, V. Niebrzydowski, J. J. Rawlinson, H. G. Potter, S. A. Maher, T. M. Wright, and L. J. Bonassar. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng. Part A 14:1195–1202, 2008.
-
(2008)
Tissue Eng. Part A
, vol.14
, pp. 1195-1202
-
-
Ballyns, J.J.1
Gleghorn, J.P.2
Niebrzydowski, V.3
Rawlinson, J.J.4
Potter, H.G.5
Maher, S.A.6
Wright, T.M.7
Bonassar, L.J.8
-
3
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
COI: 1:CAS:528:DC%2BC2cXptVeht7Y%3D, PID: 24860845
-
Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211, 2014.
-
(2014)
Lab Chip
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
Cecconi, M.2
Manoharan, V.3
Nikkhah, M.4
Hjortnaes, J.5
Cristino, A.L.6
Barabaschi, G.7
Demarchi, D.8
Dokmeci, M.R.9
Yang, Y.10
Khademhosseini, A.11
-
4
-
-
84887016191
-
The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
-
COI: 1:CAS:528:DC%2BC3sXhsFOltLzK, PID: 24112804
-
Billiet, T., E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62, 2014.
-
(2014)
Biomaterials
, vol.35
, pp. 49-62
-
-
Billiet, T.1
Gevaert, E.2
De Schryver, T.3
Cornelissen, M.4
Dubruel, P.5
-
5
-
-
84874306090
-
In situ bioprinting of the skin for burns
-
Binder, K. W., W. Zhao, T. Aboushwareb, D. Dice, A. Atala, and J. J. Yoo. In situ bioprinting of the skin for burns. J. Am. Coll. Surg. 211:S76, 2010.
-
(2010)
J. Am. Coll. Surg.
, vol.211
, pp. S76
-
-
Binder, K.W.1
Zhao, W.2
Aboushwareb, T.3
Dice, D.4
Atala, A.5
Yoo, J.J.6
-
6
-
-
84890381496
-
Bone tissue engineering using 3D printing
-
COI: 1:CAS:528:DC%2BC3sXhvFOrsrnO
-
Bose, S., S. Vahabzadeh, and A. Bandyopadhyay. Bone tissue engineering using 3D printing. Mater. Today 16:496–504, 2013.
-
(2013)
Mater. Today
, vol.16
, pp. 496-504
-
-
Bose, S.1
Vahabzadeh, S.2
Bandyopadhyay, A.3
-
7
-
-
38349103640
-
Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing
-
COI: 1:CAS:528:DC%2BD1cXovFKgug%3D%3D, PID: 18333803
-
Chang, R., J. Nam, and W. Sun. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A 14:41–48, 2008.
-
(2008)
Tissue Eng. Part A
, vol.14
, pp. 41-48
-
-
Chang, R.1
Nam, J.2
Sun, W.3
-
8
-
-
79953752590
-
Establishment of efficacy and safety assessment of human adipose tissue-derived mesenchymal stem cells (hATMSCs) in a nude rat femoral segmental defect model
-
PID: 21468254
-
Choi, H. J., J. M. Kim, E. Kwon, J.-H. Che, J.-I. Lee, S.-R. Cho, S. K. Kang, J. C. Ra, and B.-C. Kang. Establishment of efficacy and safety assessment of human adipose tissue-derived mesenchymal stem cells (hATMSCs) in a nude rat femoral segmental defect model. J. Korean Med. Sci. 26:482–491, 2011.
-
(2011)
J. Korean Med. Sci.
, vol.26
, pp. 482-491
-
-
Choi, H.J.1
Kim, J.M.2
Kwon, E.3
Che, J.-H.4
Lee, J.-I.5
Cho, S.-R.6
Kang, S.K.7
Ra, J.C.8
Kang, B.-C.9
-
9
-
-
84955703987
-
Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink
-
COI: 1:CAS:528:DC%2BC2MXhvFenur%2FE, PID: 26606883
-
Colosi, C., S. R. Shin, V. Manoharan, S. Massa, M. Costantini, A. Barbetta, M. R. Dokmeci, M. Dentini, and A. Khademhosseini. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater. 28:677–684, 2016.
-
(2016)
Adv. Mater.
, vol.28
, pp. 677-684
-
-
Colosi, C.1
Shin, S.R.2
Manoharan, V.3
Massa, S.4
Costantini, M.5
Barbetta, A.6
Dokmeci, M.R.7
Dentini, M.8
Khademhosseini, A.9
-
10
-
-
69649100202
-
Human microvasculature fabrication using thermal inkjet printing technology
-
COI: 1:CAS:528:DC%2BD1MXhtFWltbzL, PID: 19695697
-
Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 6221-6227
-
-
Cui, X.1
Boland, T.2
-
11
-
-
84861826955
-
Direct human cartilage repair using three-dimensional bioprinting technology
-
COI: 1:CAS:528:DC%2BC38XotVOis7Y%3D, PID: 22394017
-
Cui, X., K. Breitenkamp, M. G. Finn, M. Lotz, and D. D. D’Lima. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A 18:1304–1312, 2012.
-
(2012)
Tissue Eng. Part A
, vol.18
, pp. 1304-1312
-
-
Cui, X.1
Breitenkamp, K.2
Finn, M.G.3
Lotz, M.4
D’Lima, D.D.5
-
12
-
-
84864302244
-
Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation
-
COI: 1:CAS:528:DC%2BC38Xlt1ajtbw%3D, PID: 22508498
-
Cui, X., K. Breitenkamp, M. Lotz, and D. D’Lima. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol. Bioeng. 109:2357–2368, 2012.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 2357-2368
-
-
Cui, X.1
Breitenkamp, K.2
Lotz, M.3
D’Lima, D.4
-
13
-
-
77955689253
-
Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells
-
COI: 1:CAS:528:DC%2BC3cXosVWhs7c%3D, PID: 20589673
-
Cui, X., D. Dean, Z. M. Ruggeri, and T. Boland. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng. 106:963–969, 2010.
-
(2010)
Biotechnol. Bioeng.
, vol.106
, pp. 963-969
-
-
Cui, X.1
Dean, D.2
Ruggeri, Z.M.3
Boland, T.4
-
14
-
-
84908497037
-
Human cartilage tissue fabrication using three-dimensional inkjet printing technology
-
Cui, X., G. Gao, T. Yonezawa, and G. Dai. Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J. Vis. Exp. 88:e51294, 2014.
-
(2014)
J. Vis. Exp.
, vol.88
-
-
Cui, X.1
Gao, G.2
Yonezawa, T.3
Dai, G.4
-
15
-
-
34548071012
-
Single cell epitaxy by acoustic picolitre droplets
-
COI: 1:CAS:528:DC%2BD2sXptlygur4%3D, PID: 17713612
-
Demirci, U., and G. Montesano. Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7:1139–1145, 2007.
-
(2007)
Lab Chip
, vol.7
, pp. 1139-1145
-
-
Demirci, U.1
Montesano, G.2
-
16
-
-
9344233837
-
Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography
-
COI: 1:CAS:528:DC%2BD2cXhtVSgurvE, PID: 15588392
-
Dhariwala, B., E. Hunt, and T. Boland. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 10:1316–1322, 2004.
-
(2004)
Tissue Eng.
, vol.10
, pp. 1316-1322
-
-
Dhariwala, B.1
Hunt, E.2
Boland, T.3
-
17
-
-
84884211629
-
3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
-
PID: 23015540
-
Duan, B., L. A. Hockaday, K. H. Kang, and J. T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. A 101:1255–1264, 2013.
-
(2013)
J. Biomed. Mater. Res. A
, vol.101
, pp. 1255-1264
-
-
Duan, B.1
Hockaday, L.A.2
Kang, K.H.3
Butcher, J.T.4
-
18
-
-
84898059103
-
Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
-
COI: 1:CAS:528:DC%2BC2cXksVyksQ%3D%3D, PID: 24334142
-
Duan, B., E. Kapetanovic, L. A. Hockaday, and J. T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10:1836–1846, 2014.
-
(2014)
Acta Biomater.
, vol.10
, pp. 1836-1846
-
-
Duan, B.1
Kapetanovic, E.2
Hockaday, L.A.3
Butcher, J.T.4
-
19
-
-
84855396802
-
Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
-
COI: 1:CAS:528:DC%2BC38XjtFajsg%3D%3D
-
Fedorovich, N. E., W. Schuurman, H. M. Wijnberg, H. J. Prins, P. R. van Weeren, J. Malda, J. Alblas, and W. J. Dhert. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. Part C 18:33–44, 2012.
-
(2012)
Tissue Eng. Part C
, vol.18
, pp. 33-44
-
-
Fedorovich, N.E.1
Schuurman, W.2
Wijnberg, H.M.3
Prins, H.J.4
van Weeren, P.R.5
Malda, J.6
Alblas, J.7
Dhert, W.J.8
-
20
-
-
79960782567
-
Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells
-
PID: 21513466
-
Fedorovich, N. E., H. M. Wijnberg, W. J. Dhert, and J. Alblas. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng. Part A 17:2113–2121, 2011.
-
(2011)
Tissue Eng. Part A
, vol.17
, pp. 2113-2121
-
-
Fedorovich, N.E.1
Wijnberg, H.M.2
Dhert, W.J.3
Alblas, J.4
-
21
-
-
80053604735
-
Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration
-
COI: 1:CAS:528:DC%2BC3MXht1OqurfN, PID: 21911255
-
Gaebel, R., N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. Wang, P. Mark, F. Wang, B. Chichkov, W. Li, and G. Steinhoff. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230, 2011.
-
(2011)
Biomaterials
, vol.32
, pp. 9218-9230
-
-
Gaebel, R.1
Ma, N.2
Liu, J.3
Guan, J.4
Koch, L.5
Klopsch, C.6
Gruene, M.7
Toelk, A.8
Wang, W.9
Mark, P.10
Wang, F.11
Chichkov, B.12
Li, W.13
Steinhoff, G.14
-
22
-
-
83555177196
-
Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
-
COI: 1:CAS:528:DC%2BC3MXhs1ejt7fI, PID: 22136718
-
Gaetani, R., P. A. Doevendans, C. H. Metz, J. Alblas, E. Messina, A. Giacomello, and J. P. Sluijter. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790, 2012.
-
(2012)
Biomaterials
, vol.33
, pp. 1782-1790
-
-
Gaetani, R.1
Doevendans, P.A.2
Metz, C.H.3
Alblas, J.4
Messina, E.5
Giacomello, A.6
Sluijter, J.P.7
-
23
-
-
84939161281
-
Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction
-
COI: 1:CAS:528:DC%2BC2MXotFCqtL8%3D, PID: 26043062
-
Gaetani, R., D. A. Feyen, V. Verhage, R. Slaats, E. Messina, K. L. Christman, A. Giacomello, P. A. Doevendans, and J. P. Sluijter. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348, 2015.
-
(2015)
Biomaterials
, vol.61
, pp. 339-348
-
-
Gaetani, R.1
Feyen, D.A.2
Verhage, V.3
Slaats, R.4
Messina, E.5
Christman, K.L.6
Giacomello, A.7
Doevendans, P.A.8
Sluijter, J.P.9
-
24
-
-
84939125652
-
Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery
-
COI: 1:CAS:528:DC%2BC2MXos1CjtbY%3D, PID: 26004235
-
Gao, Q., Y. He, J. Z. Fu, A. Liu, and L. Ma. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215, 2015.
-
(2015)
Biomaterials
, vol.61
, pp. 203-215
-
-
Gao, Q.1
He, Y.2
Fu, J.Z.3
Liu, A.4
Ma, L.5
-
25
-
-
84908496206
-
Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
-
COI: 1:CAS:528:DC%2BC2cXhsFWitrvF, PID: 25130390
-
Gao, G., A. F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9:1304–1311, 2014.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 1304-1311
-
-
Gao, G.1
Schilling, A.F.2
Yonezawa, T.3
Wang, J.4
Dai, G.5
Cui, X.6
-
26
-
-
84943351158
-
Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging
-
COI: 1:CAS:528:DC%2BC2MXkvVWlsbg%3D, PID: 25641582
-
Gao, G., T. Yonezawa, K. Hubbell, G. Dai, and X. Cui. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol. J. 10:1568, 2015.
-
(2015)
Biotechnol. J.
, vol.10
, pp. 1568
-
-
Gao, G.1
Yonezawa, T.2
Hubbell, K.3
Dai, G.4
Cui, X.5
-
27
-
-
84940449794
-
Combined additive manufacturing approaches in tissue engineering
-
COI: 1:CAS:528:DC%2BC2MXht1GrurnE, PID: 26134665
-
Giannitelli, S. M., P. Mozetic, M. Trombetta, and A. Rainer. Combined additive manufacturing approaches in tissue engineering. Acta Biomater. 24:1–11, 2015.
-
(2015)
Acta Biomater.
, vol.24
, pp. 1-11
-
-
Giannitelli, S.M.1
Mozetic, P.2
Trombetta, M.3
Rainer, A.4
-
28
-
-
0029970747
-
Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing
-
COI: 1:CAS:528:DyaK28XntVylsrk%3D, PID: 8933291
-
Giordano, R. A., B. M. Wu, S. W. Borland, L. G. Cima, E. M. Sachs, and M. J. Cima. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Ed. 8:63–75, 1996.
-
(1996)
J. Biomater. Sci. Polym. Ed.
, vol.8
, pp. 63-75
-
-
Giordano, R.A.1
Wu, B.M.2
Borland, S.W.3
Cima, L.G.4
Sachs, E.M.5
Cima, M.J.6
-
29
-
-
78650267994
-
Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09)
-
PID: 20811115
-
Guillemot, F., V. Mironov, and M. Nakamura. Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09). Biofabrication 2:010201, 2010.
-
(2010)
Biofabrication
, vol.2
, pp. 010201
-
-
Guillemot, F.1
Mironov, V.2
Nakamura, M.3
-
30
-
-
77955276061
-
High-throughput laser printing of cells and biomaterials for tissue engineering
-
COI: 1:CAS:528:DC%2BC3cXosFelsLk%3D, PID: 19819356
-
Guillemot, F., A. Souquet, S. Catros, B. Guillotin, J. Lopez, M. Faucon, B. Pippenger, R. Bareille, M. Remy, S. Bellance, P. Chabassier, J. C. Fricain, and J. Amedee. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 6:2494–2500, 2010.
-
(2010)
Acta Biomater.
, vol.6
, pp. 2494-2500
-
-
Guillemot, F.1
Souquet, A.2
Catros, S.3
Guillotin, B.4
Lopez, J.5
Faucon, M.6
Pippenger, B.7
Bareille, R.8
Remy, M.9
Bellance, S.10
Chabassier, P.11
Fricain, J.C.12
Amedee, J.13
-
31
-
-
77955275038
-
Laser assisted bioprinting of engineered tissue with high cell density and microscale organization
-
COI: 1:CAS:528:DC%2BC3cXpsFSjsLw%3D, PID: 20580082
-
Guillotin, B., A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Remy, L. Bordenave, J. Amedee, and F. Guillemot. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 7250-7256
-
-
Guillotin, B.1
Souquet, A.2
Catros, S.3
Duocastella, M.4
Pippenger, B.5
Bellance, S.6
Bareille, R.7
Remy, M.8
Bordenave, L.9
Amedee, J.10
Guillemot, F.11
-
32
-
-
84903964392
-
Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets
-
COI: 1:CAS:528:DC%2BC2cXhslyht74%3D, PID: 24495169
-
Gurkan, U. A., R. El Assal, S. E. Yildiz, Y. Sung, A. J. Trachtenberg, W. P. Kuo, and U. Demirci. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol. Pharm. 11:2151–2159, 2014.
-
(2014)
Mol. Pharm.
, vol.11
, pp. 2151-2159
-
-
Gurkan, U.A.1
El Assal, R.2
Yildiz, S.E.3
Sung, Y.4
Trachtenberg, A.J.5
Kuo, W.P.6
Demirci, U.7
-
33
-
-
84940977939
-
Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels
-
COI: 1:CAS:528:DC%2BC2MXhtFOrtb%2FE, PID: 26177925
-
Highley, C. B., C. B. Rodell, and J. A. Burdick. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27:5075–5079, 2015.
-
(2015)
Adv. Mater.
, vol.27
, pp. 5075-5079
-
-
Highley, C.B.1
Rodell, C.B.2
Burdick, J.A.3
-
34
-
-
85040290621
-
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
-
PID: 26601312
-
Hinton, T. J., Q. Jallerat, R. N. Palchesko, J. H. Park, M. S. Grodzicki, H.-J. Shue, M. H. Ramadan, A. R. Hudson, and A. W. Feinberg. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1:e1500758, 2015.
-
(2015)
Sci. Adv.
, vol.1
-
-
Hinton, T.J.1
Jallerat, Q.2
Palchesko, R.N.3
Park, J.H.4
Grodzicki, M.S.5
Shue, H.-J.6
Ramadan, M.H.7
Hudson, A.R.8
Feinberg, A.W.9
-
35
-
-
84866055893
-
Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
-
COI: 1:STN:280:DC%2BC38bgsFWgtw%3D%3D, PID: 22914604
-
Hockaday, L. A., K. H. Kang, N. W. Colangelo, P. Y. Cheung, B. Duan, E. Malone, J. Wu, L. N. Girardi, L. J. Bonassar, H. Lipson, C. C. Chu, and J. T. Butcher. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4:035005, 2012.
-
(2012)
Biofabrication
, vol.4
, pp. 035005
-
-
Hockaday, L.A.1
Kang, K.H.2
Colangelo, N.W.3
Cheung, P.Y.4
Duan, B.5
Malone, E.6
Wu, J.7
Girardi, L.N.8
Bonassar, L.J.9
Lipson, H.10
Chu, C.C.11
Butcher, J.T.12
-
36
-
-
21844438003
-
Porous scaffold design for tissue engineering
-
COI: 1:CAS:528:DC%2BD2MXlvFOis7Y%3D, PID: 16003400
-
Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4:518–524, 2005.
-
(2005)
Nat. Mater.
, vol.4
, pp. 518-524
-
-
Hollister, S.J.1
-
37
-
-
3042782581
-
Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems
-
COI: 1:CAS:528:DC%2BD2cXls1Wkur4%3D, PID: 15245908
-
Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354–362, 2004.
-
(2004)
Trends Biotechnol.
, vol.22
, pp. 354-362
-
-
Hutmacher, D.W.1
Sittinger, M.2
Risbud, M.V.3
-
38
-
-
84896715739
-
3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration
-
COI: 1:CAS:528:DC%2BC2cXisFSnu7g%3D, PID: 24529628
-
Inzana, J. A., D. Olvera, S. M. Fuller, J. P. Kelly, O. A. Graeve, E. M. Schwarz, S. L. Kates, and H. A. Awad. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034, 2014.
-
(2014)
Biomaterials
, vol.35
, pp. 4026-4034
-
-
Inzana, J.A.1
Olvera, D.2
Fuller, S.M.3
Kelly, J.P.4
Graeve, O.A.5
Schwarz, E.M.6
Kates, S.L.7
Awad, H.A.8
-
39
-
-
1542267824
-
Engineering biological structures of prescribed shape using self-assembling multicellular systems
-
COI: 1:CAS:528:DC%2BD2cXitlWhs7Y%3D, PID: 14981244
-
Jakab, K., A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. USA 101:2864–2869, 2004.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 2864-2869
-
-
Jakab, K.1
Neagu, A.2
Mironov, V.3
Markwald, R.R.4
Forgacs, G.5
-
40
-
-
84960905071
-
A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
-
COI: 1:CAS:528:DC%2BC28XisFKhsbg%3D, PID: 26878319
-
Kang, H. W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34:312–319, 2016.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 312-319
-
-
Kang, H.W.1
Lee, S.J.2
Ko, I.K.3
Kengla, C.4
Yoo, J.J.5
Atala, A.6
-
41
-
-
77951245659
-
In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice
-
PID: 20811116
-
Keriquel, V., F. Guillemot, I. Arnault, B. Guillotin, S. Miraux, J. Amédée, J.-C. Fricain, and S. Catros. In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2:014101, 2010.
-
(2010)
Biofabrication
, vol.2
, pp. 014101
-
-
Keriquel, V.1
Guillemot, F.2
Arnault, I.3
Guillotin, B.4
Miraux, S.5
Amédée, J.6
Fricain, J.-C.7
Catros, S.8
-
42
-
-
77954494231
-
Bioprinting endothelial cells with alginate for 3D tissue constructs
-
PID: 20353253
-
Khalil, S., and W. Sun. Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 131:111002, 2009.
-
(2009)
J. Biomech. Eng.
, vol.131
, pp. 111002
-
-
Khalil, S.1
Sun, W.2
-
44
-
-
84861199493
-
Skin tissue generation by laser cell printing
-
COI: 1:CAS:528:DC%2BC38Xit1Whur0%3D, PID: 22328297
-
Koch, L., A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. Chichkov. Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 109:1855–1863, 2012.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 1855-1863
-
-
Koch, L.1
Deiwick, A.2
Schlie, S.3
Michael, S.4
Gruene, M.5
Coger, V.6
Zychlinski, D.7
Schambach, A.8
Reimers, K.9
Vogt, P.M.10
Chichkov, B.11
-
45
-
-
0346634885
-
Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering
-
COI: 1:CAS:528:DC%2BD38XmsVeru74%3D, PID: 12322962
-
Landers, R., U. Hubner, R. Schmelzeisen, and R. Mulhaupt. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447, 2002.
-
(2002)
Biomaterials
, vol.23
, pp. 4437-4447
-
-
Landers, R.1
Hubner, U.2
Schmelzeisen, R.3
Mulhaupt, R.4
-
46
-
-
58249093214
-
Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication
-
COI: 1:CAS:528:DC%2BD1MXpsFyjtw%3D%3D, PID: 19108884
-
Lee, W., J. C. Debasitis, V. K. Lee, J. H. Lee, K. Fischer, K. Edminster, J. K. Park, and S. S. Yoo. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 1587-1595
-
-
Lee, W.1
Debasitis, J.C.2
Lee, V.K.3
Lee, J.H.4
Fischer, K.5
Edminster, K.6
Park, J.K.7
Yoo, S.S.8
-
47
-
-
78549257386
-
Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres
-
COI: 1:CAS:528:DC%2BC3cXhsVCnurbI, PID: 20933279
-
Lee, J. W., K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–752, 2011.
-
(2011)
Biomaterials
, vol.32
, pp. 744-752
-
-
Lee, J.W.1
Kang, K.S.2
Lee, S.H.3
Kim, J.-Y.4
Lee, B.-K.5
Cho, D.-W.6
-
48
-
-
84903737158
-
Creating perfused functional vascular channels using 3D bio-printing technology
-
COI: 1:CAS:528:DC%2BC2cXhtV2qt7jM, PID: 24965886
-
Lee, V. K., D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S. S. Yoo, P. A. Vincent, and G. Dai. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35:8092–8102, 2014.
-
(2014)
Biomaterials
, vol.35
, pp. 8092-8102
-
-
Lee, V.K.1
Kim, D.Y.2
Ngo, H.3
Lee, Y.4
Seo, L.5
Yoo, S.S.6
Vincent, P.A.7
Dai, G.8
-
49
-
-
84906938147
-
Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology
-
COI: 1:CAS:528:DC%2BC2cXpvFGmtL8%3D, PID: 25484989
-
Lee, V. K., A. M. Lanzi, N. Haygan, S. S. Yoo, P. A. Vincent, and G. Dai. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell. Mol. Bioeng. 7:460–472, 2014.
-
(2014)
Cell. Mol. Bioeng.
, vol.7
, pp. 460-472
-
-
Lee, V.K.1
Lanzi, A.M.2
Haygan, N.3
Yoo, S.S.4
Vincent, P.A.5
Dai, G.6
-
50
-
-
77951604536
-
On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels
-
COI: 1:CAS:528:DC%2BC3cXisFKlsbo%3D, PID: 19953677
-
Lee, W., V. Lee, S. Polio, P. Keegan, J. H. Lee, K. Fischer, J. K. Park, and S. S. Yoo. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 105:1178–1186, 2010.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, pp. 1178-1186
-
-
Lee, W.1
Lee, V.2
Polio, S.3
Keegan, P.4
Lee, J.H.5
Fischer, K.6
Park, J.K.7
Yoo, S.S.8
-
51
-
-
72149117158
-
Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo
-
COI: 1:CAS:528:DC%2BC3cXhtlOl, PID: 19563263
-
Lee, C. H., N. W. Marion, S. Hollister, and J. J. Mao. Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo. Tissue Eng. Part A 15:3923–3930, 2009.
-
(2009)
Tissue Eng. Part A
, vol.15
, pp. 3923-3930
-
-
Lee, C.H.1
Marion, N.W.2
Hollister, S.3
Mao, J.J.4
-
52
-
-
77952545276
-
Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture
-
COI: 1:CAS:528:DC%2BC3cXlsFShurc%3D, PID: 20211178
-
Lee, Y. B., S. Polio, W. Lee, G. Dai, L. Menon, R. S. Carroll, and S. S. Yoo. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223:645–652, 2010.
-
(2010)
Exp. Neurol.
, vol.223
, pp. 645-652
-
-
Lee, Y.B.1
Polio, S.2
Lee, W.3
Dai, G.4
Menon, L.5
Carroll, R.S.6
Yoo, S.S.7
-
53
-
-
84901016012
-
Design and fabrication of human skin by three-dimensional bioprinting
-
COI: 1:CAS:528:DC%2BC2cXotVanurw%3D
-
Lee, V., G. Singh, J. P. Trasatti, C. Bjornsson, X. Xu, T. N. Tran, S. S. Yoo, G. Dai, and P. Karande. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C 20:473–484, 2014.
-
(2014)
Tissue Eng. Part C
, vol.20
, pp. 473-484
-
-
Lee, V.1
Singh, G.2
Trasatti, J.P.3
Bjornsson, C.4
Xu, X.5
Tran, T.N.6
Yoo, S.S.7
Dai, G.8
Karande, P.9
-
54
-
-
84922726919
-
3D printing for regenerative medicine: from bench to bedside
-
COI: 1:CAS:528:DC%2BC2MXis1ags7c%3D
-
Li, J., L. He, C. Zhou, Y. Zhou, Y. Y. Bai, F. Y. Lee, and J. J. Mao. 3D printing for regenerative medicine: from bench to bedside. MRS Bull. 40:145–153, 2015.
-
(2015)
MRS Bull.
, vol.40
, pp. 145-153
-
-
Li, J.1
He, L.2
Zhou, C.3
Zhou, Y.4
Bai, Y.Y.5
Lee, F.Y.6
Mao, J.J.7
-
55
-
-
1842419423
-
A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity
-
PID: 15046991
-
Lin, C. Y., N. Kikuchi, and S. J. Hollister. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37:623–636, 2004.
-
(2004)
J. Biomech.
, vol.37
, pp. 623-636
-
-
Lin, C.Y.1
Kikuchi, N.2
Hollister, S.J.3
-
56
-
-
84884903697
-
25th anniversary article: engineering hydrogels for biofabrication
-
COI: 1:CAS:528:DC%2BC3sXhtlansLrK, PID: 24038336
-
Malda, J., J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.
-
(2013)
Adv. Mater.
, vol.25
, pp. 5011-5028
-
-
Malda, J.1
Visser, J.2
Melchels, F.P.3
Jüngst, T.4
Hennink, W.E.5
Dhert, W.J.6
Groll, J.7
Hutmacher, D.W.8
-
57
-
-
84929176653
-
3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
-
COI: 1:CAS:528:DC%2BC2MXltFSnurc%3D, PID: 25806996
-
Markstedt, K., A. Mantas, I. Tournier, H. Martinez-Avila, D. Hagg, and P. Gatenholm. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489, 2015.
-
(2015)
Biomacromolecules
, vol.16
, pp. 1489
-
-
Markstedt, K.1
Mantas, A.2
Tournier, I.3
Martinez-Avila, H.4
Hagg, D.5
Gatenholm, P.6
-
58
-
-
84874591959
-
Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice
-
COI: 1:CAS:528:DC%2BC3sXktFClsr4%3D, PID: 23469227
-
Michael, S., H. Sorg, C. T. Peck, L. Koch, A. Deiwick, B. Chichkov, P. M. Vogt, and K. Reimers. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8:e57741, 2013.
-
(2013)
PLoS ONE
, vol.8
-
-
Michael, S.1
Sorg, H.2
Peck, C.T.3
Koch, L.4
Deiwick, A.5
Chichkov, B.6
Vogt, P.M.7
Reimers, K.8
-
59
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
COI: 1:CAS:528:DC%2BC38XpsVWhsbc%3D, PID: 22751181
-
Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D. H. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.
-
(2012)
Nat. Mater.
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
Stevens, K.R.2
Yang, M.T.3
Baker, B.M.4
Nguyen, D.H.5
Cohen, D.M.6
Toro, E.7
Chen, A.A.8
Galie, P.A.9
Yu, X.10
Chaturvedi, R.11
Bhatia, S.N.12
Chen, C.S.13
-
60
-
-
0242668870
-
Organ printing: computer-aided jet-based 3D tissue engineering
-
COI: 1:CAS:528:DC%2BD3sXisFWlu74%3D, PID: 12679063
-
Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21:157–161, 2003.
-
(2003)
Trends Biotechnol.
, vol.21
, pp. 157-161
-
-
Mironov, V.1
Boland, T.2
Trusk, T.3
Forgacs, G.4
Markwald, R.R.5
-
61
-
-
60549108145
-
Organ printing: tissue spheroids as building blocks
-
COI: 1:CAS:528:DC%2BD1MXisVCmuro%3D, PID: 19176247
-
Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 2164-2174
-
-
Mironov, V.1
Visconti, R.P.2
Kasyanov, V.3
Forgacs, G.4
Drake, C.J.5
Markwald, R.R.6
-
62
-
-
84905725612
-
3D bioprinting of tissues and organs
-
COI: 1:CAS:528:DC%2BC2cXht1OqtbfK, PID: 25093879
-
Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
63
-
-
84872681726
-
Evaluation of hydrogels for bio-printing applications
-
PID: 22941807
-
Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101:272–284, 2013.
-
(2013)
J. Biomed. Mater. Res. A
, vol.101
, pp. 272-284
-
-
Murphy, S.V.1
Skardal, A.2
Atala, A.3
-
64
-
-
70350100448
-
Characterization of cell viability during bioprinting processes
-
COI: 1:CAS:528:DC%2BD1MXhtVWkur7I, PID: 19507149
-
Nair, K., M. Gandhi, S. Khalil, K. C. Yan, M. Marcolongo, K. Barbee, and W. Sun. Characterization of cell viability during bioprinting processes. Biotechnol. J. 4:1168–1177, 2009.
-
(2009)
Biotechnol. J.
, vol.4
, pp. 1168-1177
-
-
Nair, K.1
Gandhi, M.2
Khalil, S.3
Yan, K.C.4
Marcolongo, M.5
Barbee, K.6
Sun, W.7
-
65
-
-
31044445708
-
Biocompatible inkjet printing technique for designed seeding of individual living cells
-
COI: 1:CAS:528:DC%2BD28XkvFOnsg%3D%3D, PID: 16411811
-
Nakamura, M., A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 11:1658–1666, 2005.
-
(2005)
Tissue Eng.
, vol.11
, pp. 1658-1666
-
-
Nakamura, M.1
Kobayashi, A.2
Takagi, F.3
Watanabe, A.4
Hiruma, Y.5
Ohuchi, K.6
Iwasaki, Y.7
Horie, M.8
Morita, I.9
Takatani, S.10
-
66
-
-
69249208450
-
Scaffold-free vascular tissue engineering using bioprinting
-
COI: 1:CAS:528:DC%2BD1MXhtVGqtLvI, PID: 19664819
-
Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 5910-5917
-
-
Norotte, C.1
Marga, F.S.2
Niklason, L.E.3
Forgacs, G.4
-
67
-
-
78649565673
-
Laser printing of cells into 3D scaffolds
-
COI: 1:STN:280:DC%2BC3cjovVWjtA%3D%3D, PID: 20811119
-
Ovsianikov, A., M. Gruene, M. Pflaum, L. Koch, F. Maiorana, M. Wilhelmi, A. Haverich, and B. Chichkov. Laser printing of cells into 3D scaffolds. Biofabrication 2:014104, 2010.
-
(2010)
Biofabrication
, vol.2
, pp. 014104
-
-
Ovsianikov, A.1
Gruene, M.2
Pflaum, M.3
Koch, L.4
Maiorana, F.5
Wilhelmi, M.6
Haverich, A.7
Chichkov, B.8
-
68
-
-
84930926663
-
Bioprinting scale-up tissue and organ constructs for transplantation
-
COI: 1:CAS:528:DC%2BC2MXnvFShtrg%3D, PID: 25978871
-
Ozbolat, I. T. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 33:395–400, 2015.
-
(2015)
Trends Biotechnol.
, vol.33
, pp. 395-400
-
-
Ozbolat, I.T.1
-
69
-
-
84886776027
-
Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue
-
PID: 24091624
-
Ozturk, M. S., V. K. Lee, L. Zhao, G. Dai, and X. Intes. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. J. Biomed. Opt. 18:100501, 2013.
-
(2013)
J. Biomed. Opt.
, vol.18
, pp. 100501
-
-
Ozturk, M.S.1
Lee, V.K.2
Zhao, L.3
Dai, G.4
Intes, X.5
-
70
-
-
84869469648
-
Designing regenerative biomaterial therapies for the clinic
-
Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci Transl Med 4:160sr164, 2012.
-
(2012)
Sci Transl Med
, vol.4
, pp. 160sr164
-
-
Pashuck, E.T.1
Stevens, M.M.2
-
71
-
-
84930792703
-
Biomimetic 3D tissue printing for soft tissue regeneration
-
COI: 1:CAS:528:DC%2BC2MXpt1egsL4%3D, PID: 26056727
-
Pati, F., D. H. Ha, J. Jang, H. H. Han, J. W. Rhie, and D. W. Cho. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175, 2015.
-
(2015)
Biomaterials
, vol.62
, pp. 164-175
-
-
Pati, F.1
Ha, D.H.2
Jang, J.3
Han, H.H.4
Rhie, J.W.5
Cho, D.W.6
-
72
-
-
84901923061
-
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
-
COI: 1:CAS:528:DC%2BC2cXhvF2mu77P, PID: 24887553
-
Pati, F., J. Jang, D. H. Ha, S. W. Kim, J. W. Rhie, J. H. Shim, D. H. Kim, and D. W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3935
-
-
Pati, F.1
Jang, J.2
Ha, D.H.3
Kim, S.W.4
Rhie, J.W.5
Shim, J.H.6
Kim, D.H.7
Cho, D.W.8
-
73
-
-
42449159656
-
A review of rapid prototyping techniques for tissue engineering purposes
-
COI: 1:CAS:528:DC%2BD1cXltFCmtLk%3D, PID: 18428020
-
Peltola, S. M., F. P. Melchels, D. W. Grijpma, and M. Kellomaki. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40:268–280, 2008.
-
(2008)
Ann. Med.
, vol.40
, pp. 268-280
-
-
Peltola, S.M.1
Melchels, F.P.2
Grijpma, D.W.3
Kellomaki, M.4
-
74
-
-
1542328767
-
Inkjet printing for high-throughput cell patterning
-
COI: 1:CAS:528:DC%2BD2cXitVKis78%3D, PID: 15020146
-
Roth, E. A., T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–3715, 2004.
-
(2004)
Biomaterials
, vol.25
, pp. 3707-3715
-
-
Roth, E.A.1
Xu, T.2
Das, M.3
Gregory, C.4
Hickman, J.J.5
Boland, T.6
-
75
-
-
84923829773
-
A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels
-
COI: 1:CAS:528:DC%2BC2MXptFCksA%3D%3D, PID: 25641220
-
Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.
-
(2015)
Adv. Mater.
, vol.27
, pp. 1607-1614
-
-
Rutz, A.L.1
Hyland, K.E.2
Jakus, A.E.3
Burghardt, W.R.4
Shah, R.N.5
-
76
-
-
35549011970
-
Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing
-
COI: 1:CAS:528:DC%2BD2sXht1Ghs7vE, PID: 17936351
-
Saunders, R. E., J. E. Gough, and B. Derby. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203, 2008.
-
(2008)
Biomaterials
, vol.29
, pp. 193-203
-
-
Saunders, R.E.1
Gough, J.E.2
Derby, B.3
-
77
-
-
78650289774
-
Laser-based direct-write techniques for cell printing
-
PID: 20814088
-
Schiele, N. R., D. T. Corr, Y. Huang, N. A. Raof, Y. Xie, and D. B. Chrisey. Laser-based direct-write techniques for cell printing. Biofabrication 2:032001, 2010.
-
(2010)
Biofabrication
, vol.2
, pp. 032001
-
-
Schiele, N.R.1
Corr, D.T.2
Huang, Y.3
Raof, N.A.4
Xie, Y.5
Chrisey, D.B.6
-
78
-
-
84907331566
-
Bioprinting technology and its applications
-
PID: 25061217
-
Seol, Y. J., H. W. Kang, S. J. Lee, A. Atala, and J. J. Yoo. Bioprinting technology and its applications. Eur. J. Cardiothorac. Surg. 46:342–348, 2014.
-
(2014)
Eur. J. Cardiothorac. Surg.
, vol.46
, pp. 342-348
-
-
Seol, Y.J.1
Kang, H.W.2
Lee, S.J.3
Atala, A.4
Yoo, J.J.5
-
79
-
-
77049107803
-
Inkjet printing-process and its applications
-
COI: 1:CAS:528:DC%2BC3cXitVShurs%3D, PID: 20217769
-
Singh, M., H. M. Haverinen, P. Dhagat, and G. E. Jabbour. Inkjet printing-process and its applications. Adv. Mater. 22:673–685, 2010.
-
(2010)
Adv. Mater.
, vol.22
, pp. 673-685
-
-
Singh, M.1
Haverinen, H.M.2
Dhagat, P.3
Jabbour, G.E.4
-
80
-
-
84925745420
-
Biomaterials for integration with 3-D bioprinting
-
PID: 25476164
-
Skardal, A., and A. Atala. Biomaterials for integration with 3-D bioprinting. Ann. Biomed. Eng. 43:730–746, 2015.
-
(2015)
Ann. Biomed. Eng.
, vol.43
, pp. 730-746
-
-
Skardal, A.1
Atala, A.2
-
81
-
-
84873046124
-
Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
-
COI: 1:CAS:528:DC%2BC3sXntleh, PID: 23197691
-
Skardal, A., D. Mack, E. Kapetanovic, A. Atala, J. D. Jackson, J. Yoo, and S. Soker. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1:792, 2012.
-
(2012)
Stem Cells Transl. Med.
, vol.1
, pp. 792
-
-
Skardal, A.1
Mack, D.2
Kapetanovic, E.3
Atala, A.4
Jackson, J.D.5
Yoo, J.6
Soker, S.7
-
82
-
-
77956090298
-
Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting
-
COI: 1:CAS:528:DC%2BC3cXpvVWitbw%3D, PID: 20387987
-
Skardal, A., J. Zhang, L. McCoard, X. Xu, S. Oottamasathien, and G. D. Prestwich. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A 16:2675–2685, 2010.
-
(2010)
Tissue Eng. Part A
, vol.16
, pp. 2675-2685
-
-
Skardal, A.1
Zhang, J.2
McCoard, L.3
Xu, X.4
Oottamasathien, S.5
Prestwich, G.D.6
-
83
-
-
77953651709
-
Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
-
COI: 1:CAS:528:DC%2BC3cXnt12rtLw%3D, PID: 20546891
-
Skardal, A., J. Zhang, and G. D. Prestwich. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31:6173–6181, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 6173-6181
-
-
Skardal, A.1
Zhang, J.2
Prestwich, G.D.3
-
84
-
-
84896544149
-
Stereolithography in tissue engineering
-
COI: 1:CAS:528:DC%2BC3sXhvFWrtbrI, PID: 24306145
-
Skoog, S. A., P. L. Goering, and R. J. Narayan. Stereolithography in tissue engineering. J. Mater. Sci. Mater. Med. 25:845–856, 2014.
-
(2014)
J. Mater. Sci. Mater. Med.
, vol.25
, pp. 845-856
-
-
Skoog, S.A.1
Goering, P.L.2
Narayan, R.J.3
-
85
-
-
84895526092
-
Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts
-
COI: 1:CAS:528:DC%2BC2cXktV2gsr8%3D, PID: 22740314
-
Strobel, L. A., S. N. Rath, A. K. Maier, J. P. Beier, A. Arkudas, P. Greil, R. E. Horch, and U. Kneser. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. J. Tissue Eng. Regen. Med. 8:176–185, 2014.
-
(2014)
J. Tissue Eng. Regen. Med.
, vol.8
, pp. 176-185
-
-
Strobel, L.A.1
Rath, S.N.2
Maier, A.K.3
Beier, J.P.4
Arkudas, A.5
Greil, P.6
Horch, R.E.7
Kneser, U.8
-
86
-
-
1042288112
-
Computer-aided tissue engineering: overview, scope and challenges
-
COI: 1:CAS:528:DC%2BD2cXls1Gntg%3D%3D, PID: 14563211
-
Sun, W., A. Darling, B. Starly, and J. Nam. Computer-aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem. 39:29–47, 2004.
-
(2004)
Biotechnol. Appl. Biochem.
, vol.39
, pp. 29-47
-
-
Sun, W.1
Darling, A.2
Starly, B.3
Nam, J.4
-
87
-
-
84870316597
-
Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
-
Tao, X., W. B. Kyle, Z. A. Mohammad, D. Dennis, Z. Weixin, J. Y. James, and A. Anthony. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001, 2013.
-
(2013)
Biofabrication
, vol.5
, pp. 015001
-
-
Tao, X.1
Kyle, W.B.2
Mohammad, Z.A.3
Dennis, D.4
Weixin, Z.5
James, J.Y.6
Anthony, A.7
-
88
-
-
84880702026
-
Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
-
COI: 1:CAS:528:DC%2BC3sXhtFOitr%2FL, PID: 22396130
-
Tarafder, S., V. K. Balla, N. M. Davies, A. Bandyopadhyay, and S. Bose. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 7:631–641, 2013.
-
(2013)
J. Tissue Eng. Regen. Med.
, vol.7
, pp. 631-641
-
-
Tarafder, S.1
Balla, V.K.2
Davies, N.M.3
Bandyopadhyay, A.4
Bose, S.5
-
89
-
-
84871703021
-
Bioprinting for stem cell research
-
COI: 1:CAS:528:DC%2BC38XhvVKqurbJ, PID: 23260439
-
Tasoglu, S., and U. Demirci. Bioprinting for stem cell research. Trends Biotechnol. 31:10–19, 2013.
-
(2013)
Trends Biotechnol.
, vol.31
, pp. 10-19
-
-
Tasoglu, S.1
Demirci, U.2
-
90
-
-
84911805552
-
Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
-
PID: 24510413
-
Temple, J. P., D. L. Hutton, B. P. Hung, P. Y. Huri, C. A. Cook, R. Kondragunta, X. Jia, and W. L. Grayson. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. A 102:4317–4325, 2014.
-
(2014)
J. Biomed. Mater. Res. A
, vol.102
, pp. 4317-4325
-
-
Temple, J.P.1
Hutton, D.L.2
Hung, B.P.3
Huri, P.Y.4
Cook, C.A.5
Kondragunta, R.6
Jia, X.7
Grayson, W.L.8
-
91
-
-
33847387695
-
Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels
-
COI: 1:CAS:528:DC%2BD2sXis1eis7c%3D
-
Tsang, V. L., A. A. Chen, L. M. Cho, K. D. Jadin, R. L. Sah, S. DeLong, J. L. West, and S. N. Bhatia. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21:790–801, 2007.
-
(2007)
FASEB J.
, vol.21
, pp. 790-801
-
-
Tsang, V.L.1
Chen, A.A.2
Cho, L.M.3
Jadin, K.D.4
Sah, R.L.5
DeLong, S.6
West, J.L.7
Bhatia, S.N.8
-
92
-
-
70350520841
-
Toward regenerating a human thumb in situ
-
COI: 1:CAS:528:DC%2BD1MXhtVKjs7bK, PID: 19199577
-
Weinand, C., R. Gupta, E. Weinberg, I. Madisch, C. M. Neville, J. B. Jupiter, and J. P. Vacanti. Toward regenerating a human thumb in situ. Tissue Eng. Part A 15:2605–2615, 2009.
-
(2009)
Tissue Eng. Part A
, vol.15
, pp. 2605-2615
-
-
Weinand, C.1
Gupta, R.2
Weinberg, E.3
Madisch, I.4
Neville, C.M.5
Jupiter, J.B.6
Vacanti, J.P.7
-
93
-
-
0043122970
-
Cell and organ printing 1: protein and cell printers
-
Wilson, Jr, W. C., and T. Boland. Cell and organ printing 1: protein and cell printers. Anat. Rec A 272:491–496, 2003.
-
(2003)
Anat. Rec A
, vol.272
, pp. 491-496
-
-
Wilson, W.C.1
Boland, T.2
-
94
-
-
77955280239
-
Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP)
-
COI: 1:STN:280:DC%2BC3cjovVWisQ%3D%3D, PID: 20811126
-
Wu, P. K., and B. R. Ringeisen. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2:014111, 2010.
-
(2010)
Biofabrication
, vol.2
, pp. 014111
-
-
Wu, P.K.1
Ringeisen, B.R.2
-
95
-
-
84896549846
-
Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
-
COI: 1:CAS:528:DC%2BC3sXhslGmtb3P, PID: 24157694
-
Wust, S., M. E. Godla, R. Muller, and S. Hofmann. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 10:630–640, 2014.
-
(2014)
Acta Biomater.
, vol.10
, pp. 630-640
-
-
Wust, S.1
Godla, M.E.2
Muller, R.3
Hofmann, S.4
-
96
-
-
33645883539
-
Viability and electrophysiology of neural cell structures generated by the inkjet printing method
-
COI: 1:CAS:528:DC%2BD28XjtVKjtb4%3D, PID: 16516288
-
Xu, T., C. A. Gregory, P. Molnar, X. Cui, S. Jalota, S. B. Bhaduri, and T. Boland. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588, 2006.
-
(2006)
Biomaterials
, vol.27
, pp. 3580-3588
-
-
Xu, T.1
Gregory, C.A.2
Molnar, P.3
Cui, X.4
Jalota, S.5
Bhaduri, S.B.6
Boland, T.7
-
97
-
-
2942557434
-
Inkjet printing of viable mammalian cells
-
PID: 15193884
-
Xu, T., J. Jin, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing of viable mammalian cells. Biomaterials 26:93–99, 2005.
-
(2005)
Biomaterials
, vol.26
, pp. 93-99
-
-
Xu, T.1
Jin, J.2
Gregory, C.3
Hickman, J.J.4
Boland, T.5
-
98
-
-
0036191695
-
The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
-
COI: 1:CAS:528:DC%2BD38XislChu7g%3D, PID: 11886649
-
Yang, S., K. F. Leong, Z. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8:1–11, 2002.
-
(2002)
Tissue Eng.
, vol.8
, pp. 1-11
-
-
Yang, S.1
Leong, K.F.2
Du, Z.3
Chua, C.K.4
-
99
-
-
8144227180
-
Rapid prototyping in tissue engineering: challenges and potential
-
COI: 1:CAS:528:DC%2BD2cXpslGitro%3D, PID: 15542155
-
Yeong, W. Y., C. K. Chua, K. F. Leong, and M. Chandrasekaran. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22:643–652, 2004.
-
(2004)
Trends Biotechnol.
, vol.22
, pp. 643-652
-
-
Yeong, W.Y.1
Chua, C.K.2
Leong, K.F.3
Chandrasekaran, M.4
-
100
-
-
84924351834
-
A hybrid bioprinting approach for scale-up tissue fabrication
-
Yu, Y., Y. Zhang, and I. T. Ozbolat. A hybrid bioprinting approach for scale-up tissue fabrication. J. Manuf. Sci. Eng. 136:061013, 2014.
-
(2014)
J. Manuf. Sci. Eng.
, vol.136
, pp. 061013
-
-
Yu, Y.1
Zhang, Y.2
Ozbolat, I.T.3
-
101
-
-
84860916466
-
The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds
-
COI: 1:CAS:528:DC%2BC38XlvFWqs7c%3D, PID: 22531221
-
Zhao, L., V. K. Lee, S. S. Yoo, G. Dai, and X. Intes. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33:5325–5332, 2012.
-
(2012)
Biomaterials
, vol.33
, pp. 5325-5332
-
-
Zhao, L.1
Lee, V.K.2
Yoo, S.S.3
Dai, G.4
Intes, X.5
-
102
-
-
84899560969
-
Three-dimensional printing of Hela cells for cervical tumor model in vitro
-
PID: 24722236
-
Zhao, Y., R. Yao, L. Ouyang, H. Ding, T. Zhang, K. Zhang, S. Cheng, and W. Sun. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001, 2014.
-
(2014)
Biofabrication
, vol.6
, pp. 035001
-
-
Zhao, Y.1
Yao, R.2
Ouyang, L.3
Ding, H.4
Zhang, T.5
Zhang, K.6
Cheng, S.7
Sun, W.8
|