-
1
-
-
33748960111
-
Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells
-
PID: 16897421
-
Arcaute, K., B. K. Mann, and R. B. Wicker. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng. 34:1429–1441, 2006.
-
(2006)
Ann. Biomed. Eng.
, vol.34
, pp. 1429-1441
-
-
Arcaute, K.1
Mann, B.K.2
Wicker, R.B.3
-
2
-
-
67649354904
-
Direct-write assembly of 3D hydrogel scaffolds for guided cell growth
-
COI: 1:CAS:528:DC%2BD1MXntlOiu74%3D
-
Barry, R. A., R. F. Shepherd, J. N. Hanson, R. G. Nuzzo, P. Wiltzius, and J. A. Lewis. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater. 21:2407–2410, 2009.
-
(2009)
Adv. Mater.
, vol.21
, pp. 2407-2410
-
-
Barry, R.A.1
Shepherd, R.F.2
Hanson, J.N.3
Nuzzo, R.G.4
Wiltzius, P.5
Lewis, J.A.6
-
3
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
COI: 1:CAS:528:DC%2BC2cXptVeht7Y%3D, PID: 24860845
-
Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211, 2014.
-
(2014)
Lab Chip
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
Cecconi, M.2
Manoharan, V.3
Nikkhah, M.4
Hjortnaes, J.5
Cristino, A.L.6
Barabaschi, G.7
Demarchi, D.8
Dokmeci, M.R.9
Yang, Y.10
Khademhosseini, A.11
-
4
-
-
84887016191
-
The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
-
COI: 1:CAS:528:DC%2BC3sXhsFOltLzK, PID: 24112804
-
Billiet, T., E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62, 2014.
-
(2014)
Biomaterials
, vol.35
, pp. 49-62
-
-
Billiet, T.1
Gevaert, E.2
De Schryver, T.3
Cornelissen, M.4
Dubruel, P.5
-
5
-
-
84862869528
-
A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
-
COI: 1:CAS:528:DC%2BC38XotFKmu78%3D, PID: 22681979
-
Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.
-
(2012)
Biomaterials
, vol.33
, pp. 6020-6041
-
-
Billiet, T.1
Vandenhaute, M.2
Schelfhout, J.3
Van Vlierberghe, S.4
Dubruel, P.5
-
6
-
-
0037670100
-
Pore size and pore volume effects on alumina and TCP ceramic scaffolds
-
Bose, S., J. Darsell, M. Kintner, H. Hosick, and A. Bandyopadhyay. Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater. Sci. Eng. C 23:479–486, 2003.
-
(2003)
Mater. Sci. Eng. C
, vol.23
, pp. 479-486
-
-
Bose, S.1
Darsell, J.2
Kintner, M.3
Hosick, H.4
Bandyopadhyay, A.5
-
7
-
-
0033328992
-
Processing of controlled porosity ceramic structures via fused deposition
-
COI: 1:CAS:528:DyaK1MXmvVarsb0%3D
-
Bose, S., S. Suguira, and A. Bandyopadhyay. Processing of controlled porosity ceramic structures via fused deposition. Scr. Mater. 41:1009–1014, 1999.
-
(1999)
Scr. Mater.
, vol.41
, pp. 1009-1014
-
-
Bose, S.1
Suguira, S.2
Bandyopadhyay, A.3
-
8
-
-
83455228407
-
Direct Writing by way of melt electrospinning
-
COI: 1:CAS:528:DC%2BC3MXhsVyrurjO, PID: 22095922
-
Brown, T. D., P. D. Dalton, and D. W. Hutmacher. Direct Writing by way of melt electrospinning. Adv. Mater. 23:5651–5657, 2011.
-
(2011)
Adv. Mater.
, vol.23
, pp. 5651-5657
-
-
Brown, T.D.1
Dalton, P.D.2
Hutmacher, D.W.3
-
9
-
-
34249653007
-
Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds
-
PID: 17226806
-
Chang, P.-C., B.-Y. Liu, C.-M. Liu, H.-H. Chou, M.-H. Ho, H.-C. Liu, D.-M. Wang, and L.-T. Hou. Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J. Biomed. Mater. Res. A 81:771–780, 2007.
-
(2007)
J. Biomed. Mater. Res. A
, vol.81
, pp. 771-780
-
-
Chang, P.-C.1
Liu, B.-Y.2
Liu, C.-M.3
Chou, H.-H.4
Ho, M.-H.5
Liu, H.-C.6
Wang, D.-M.7
Hou, L.-T.8
-
10
-
-
9444266408
-
Fabrication of artificial bioactive bone using rapid prototyping
-
Chen, Z. Z., D. C. Li, B. H. Lu, Y. P. Tang, M. L. Sun, and Z. Wang. Fabrication of artificial bioactive bone using rapid prototyping. Rapid Prototyp. J. 10:327–333, 2004.
-
(2004)
Rapid Prototyp. J.
, vol.10
, pp. 327-333
-
-
Chen, Z.Z.1
Li, D.C.2
Lu, B.H.3
Tang, Y.P.4
Sun, M.L.5
Wang, Z.6
-
11
-
-
33745942548
-
-
COI: 1:CAS:528:DC%2BD28XjslyitL0%3D, Image (Table 2) was reprinted with permission from Springer
-
Chen, V. J., L. A. Smith, and P. X. Ma. Bone regeneration on computer-designed nano-fibrous scaffolds. 27:3973–3979, 2006; (Image (Table 2) was reprinted with permission from Springer).
-
(2006)
Bone regeneration on computer-designed nano-fibrous scaffolds.
, vol.27
, pp. 3973-3979
-
-
Chen, V.J.1
Smith, L.A.2
Ma, P.X.3
-
12
-
-
84926622049
-
Recent advances in 3D printing of biomaterials
-
PID: 25866560
-
Chia, H. N., and B. M. Wu. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9:4, 2015.
-
(2015)
J. Biol. Eng.
, vol.9
, pp. 4
-
-
Chia, H.N.1
Wu, B.M.2
-
13
-
-
0034957704
-
Hydroxyapatite implants with designed internal architecture
-
COI: 1:CAS:528:DC%2BD3MXlt1aisL8%3D, PID: 15348260
-
Chu, T. M. G., J. W. Halloran, S. J. Hollister, and S. E. Feinberg. Hydroxyapatite implants with designed internal architecture. J. Mater. Sci. Mater. Med. 12:471–478, 2001.
-
(2001)
J. Mater. Sci. Mater. Med.
, vol.12
, pp. 471-478
-
-
Chu, T.M.G.1
Halloran, J.W.2
Hollister, S.J.3
Feinberg, S.E.4
-
14
-
-
0036498046
-
Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures
-
COI: 1:CAS:528:DC%2BD38XovFWksg%3D%3D, PID: 11808536, Image (Table 1) was reprinted with permission from Elsevier
-
Chu, T. M. G., D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23:1283–1293, 2002; (Image (Table 1) was reprinted with permission from Elsevier).
-
(2002)
Biomaterials
, vol.23
, pp. 1283-1293
-
-
Chu, T.M.G.1
Orton, D.G.2
Hollister, S.J.3
Feinberg, S.E.4
Halloran, J.W.5
-
15
-
-
33750150598
-
Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2
-
COI: 1:CAS:528:DC%2BD28XhtFeiu7rK, PID: 16996588
-
Chu, T.-M. G., S. J. Warden, C. H. Turner, and R. L. Stewart. Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2. Biomaterials 28:459–467, 2007.
-
(2007)
Biomaterials
, vol.28
, pp. 459-467
-
-
Chu, T.-M.G.1
Warden, S.J.2
Turner, C.H.3
Stewart, R.L.4
-
16
-
-
84876531997
-
Patient-specific intervertebral disc implants using rapid manufacturing technology
-
De Beer, N., and A. Van Der Merwe. Patient-specific intervertebral disc implants using rapid manufacturing technology. Rapid Prototyp. J. 19:126–139, 2013.
-
(2013)
Rapid Prototyp. J.
, vol.19
, pp. 126-139
-
-
De Beer, N.1
Van Der Merwe, A.2
-
17
-
-
84920837095
-
Free-form optics enhanced confocal Raman spectroscopy for optofluidic lab-on-chips
-
De Coster, D., D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missine, and H. Thienpont. Free-form optics enhanced confocal Raman spectroscopy for optofluidic lab-on-chips. IEEE J. Sel. Top. Quantum Electron. 21:2701108, 2015.
-
(2015)
IEEE J. Sel. Top. Quantum Electron.
, vol.21
, pp. 2701108
-
-
De Coster, D.1
Loterie, D.2
Ottevaere, H.3
Vervaeke, M.4
Van Erps, J.5
Missine, J.6
Thienpont, H.7
-
18
-
-
84981344000
-
Mass-manufacturable polymer microfluidic device for dual fiber optical trapping
-
PID: 26698730
-
De Coster, D., H. Ottevaere, M. Vervaeke, J. Van Erps, M. Callewaert, P. Wuytens, S. H. Simpson, S. Hanna, W. De Malsche, and H. Thienpont. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping. Opt. Express 23:30991, 2015.
-
(2015)
Opt. Express
, vol.23
, pp. 30991
-
-
De Coster, D.1
Ottevaere, H.2
Vervaeke, M.3
Van Erps, J.4
Callewaert, M.5
Wuytens, P.6
Simpson, S.H.7
Hanna, S.8
De Malsche, W.9
Thienpont, H.10
-
19
-
-
84940782499
-
Indirect Rapid Prototyping for Tissue Engineering
-
De Maria, C., A. De Acutis, and G. Vozzi. Indirect Rapid Prototyping for Tissue Engineering. Elsevier, 2015. doi:10.1016/B978-0-12-800972-7/00008-6.
-
(2015)
Elsevier
-
-
De Maria, C.1
De Acutis, A.2
Vozzi, G.3
-
20
-
-
38149109085
-
Fabrication of tailored hydroxyapatite scaffolds: comparison between a direct and an indirect rapid prototyping technique
-
Deisinger, U., S. Hamisch, M. Schumacher, F. Uhl, R. Detsch, and G. Ziegler. Fabrication of tailored hydroxyapatite scaffolds: comparison between a direct and an indirect rapid prototyping technique. Key Eng. Mater. II(915–918):361–363, 2008.
-
(2008)
Key Eng. Mater.
, vol.2
, Issue.915-918
, pp. 361-363
-
-
Deisinger, U.1
Hamisch, S.2
Schumacher, M.3
Uhl, F.4
Detsch, R.5
Ziegler, G.6
-
21
-
-
40849141369
-
3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique
-
COI: 1:CAS:528:DC%2BD1cXjt1Snsr8%3D, PID: 17990079
-
Detsch, R., F. Uhl, U. Deisinger, and G. Ziegler. 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J. Mater. Sci. Mater. Med. 19:1491–1496, 2008.
-
(2008)
J. Mater. Sci. Mater. Med.
, vol.19
, pp. 1491-1496
-
-
Detsch, R.1
Uhl, F.2
Deisinger, U.3
Ziegler, G.4
-
22
-
-
0037473883
-
Biomimetic polymer nanostructures by injection molding
-
COI: 1:CAS:528:DC%2BD3sXitFaju7k%3D
-
Gadegaard, N., S. Mosler, and N. B. Larsen. Biomimetic polymer nanostructures by injection molding. Macromol. Mater. Eng. 288:76–83, 2003.
-
(2003)
Macromol. Mater. Eng.
, vol.288
, pp. 76-83
-
-
Gadegaard, N.1
Mosler, S.2
Larsen, N.B.3
-
23
-
-
34249806021
-
Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
-
COI: 1:CAS:528:DC%2BD2sXlvVSnsLo%3D, PID: 17538713, Image (Table 1) was reprinted with permission from Elsevier
-
Golden, A. P., and J. Tien. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720, 2007; (Image (Table 1) was reprinted with permission from Elsevier).
-
(2007)
Lab Chip
, vol.7
, pp. 720
-
-
Golden, A.P.1
Tien, J.2
-
24
-
-
84945488522
-
Cross-linkable alginate-graft-gelatin copolymers for tissue engineering applications
-
Graulus, G.-J., A. Mignon, S. Van Vlierberghe, H. Declercq, K. Fehér, M. Cornelissen, J. C. Martins, and P. Dubruel. Cross-linkable alginate-graft-gelatin copolymers for tissue engineering applications. Eur. Polym. J. 2015. doi:10.1016/j.eurpolymj.2015.06.033.
-
(2015)
Eur. Polym. J.
-
-
Graulus, G.-J.1
Mignon, A.2
Van Vlierberghe, S.3
Declercq, H.4
Fehér, K.5
Cornelissen, M.6
Martins, J.C.7
Dubruel, P.8
-
25
-
-
33747004206
-
Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance
-
COI: 1:CAS:528:DC%2BD28XnvVymt7g%3D, PID: 16732473
-
Grumann, M., J. Steigert, L. Riegger, I. Moser, B. Enderle, K. Riebeseel, G. Urban, R. Zengerle, and J. Ducrée. Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed. Microdevices 8:209–214, 2006.
-
(2006)
Biomed. Microdevices
, vol.8
, pp. 209-214
-
-
Grumann, M.1
Steigert, J.2
Riegger, L.3
Moser, I.4
Enderle, B.5
Riebeseel, K.6
Urban, G.7
Zengerle, R.8
Ducrée, J.9
-
26
-
-
84952862630
-
Hierarchically structured porous poly(2-oxazoline) hydrogels
-
PID: 26474191
-
Haigh, J. N., Y. Chuang, B. Farrugia, R. Hoogenboom, P. D. Dalton, and T. R. Dargaville. Hierarchically structured porous poly(2-oxazoline) hydrogels. Macromol. Rapid Commun. 2015. doi:10.1002/marc.201500495.
-
(2015)
Macromol. Rapid Commun.
-
-
Haigh, J.N.1
Chuang, Y.2
Farrugia, B.3
Hoogenboom, R.4
Dalton, P.D.5
Dargaville, T.R.6
-
27
-
-
0001191946
-
Processing, Characterization and Modeling of Non-Random Porous Ceramic Structures
-
Hattiangadi, A., and A. Bandyopadhyay. Processing, Characterization and Modeling of Non-Random Porous Ceramic Structures. Int. Solid Free. Fabr. Symp. 319–326, 1999.
-
(1999)
Int. Solid Free. Fabr. Symp
, pp. 319-326
-
-
Hattiangadi, A.1
Bandyopadhyay, A.2
-
28
-
-
38049134313
-
Sickle cell vasoocclusion and rescue in a microfluidic device
-
COI: 1:CAS:528:DC%2BD1cXjslelsA%3D%3D, PID: 18077341
-
Higgins, J. M., D. T. Eddington, S. N. Bhatia, and L. Mahadevan. Sickle cell vasoocclusion and rescue in a microfluidic device. Proc. Natl. Acad. Sci. USA 104:20496–20500, 2007.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 20496-20500
-
-
Higgins, J.M.1
Eddington, D.T.2
Bhatia, S.N.3
Mahadevan, L.4
-
29
-
-
35548972566
-
Cytotoxicity of formaldehyde on human osteoblastic cells is related to intracellular glutathione levels
-
PID: 17385229
-
Ho, Y.-C., F.-M. Huang, and Y.-C. Chang. Cytotoxicity of formaldehyde on human osteoblastic cells is related to intracellular glutathione levels. J. Biomed. Mater. Res. B Appl. Biomater. 83:340–344, 2007.
-
(2007)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.83
, pp. 340-344
-
-
Ho, Y.-C.1
Huang, F.-M.2
Chang, Y.-C.3
-
30
-
-
0034134353
-
An image-based approach for designing and manufacturing craniofacial scaffolds
-
COI: 1:STN:280:DC%2BD3c7ltlSjtQ%3D%3D, PID: 10691148
-
Hollister, S. J., R. A. Levy, T. M. Chu, J. W. Halloran, and S. E. Feinberg. An image-based approach for designing and manufacturing craniofacial scaffolds. Int. J. Oral Maxillofac. Surg. 29:67–71, 2000.
-
(2000)
Int. J. Oral Maxillofac. Surg.
, vol.29
, pp. 67-71
-
-
Hollister, S.J.1
Levy, R.A.2
Chu, T.M.3
Halloran, J.W.4
Feinberg, S.E.5
-
31
-
-
24344458170
-
Engineering craniofacial scaffolds
-
COI: 1:STN:280:DC%2BD2Mzmslegsw%3D%3D, PID: 16022718
-
Hollister, S., C. Lin, E. Saito, C. Lin, R. Schek, J. Taboas, J. Williams, B. Partee, C. Flanagan, A. Diggs, E. Wilke, G. Van Lenthe, R. M. Ller, T. Wirtz, S. Das, S. Feinberg, and P. Krebsbach. Engineering craniofacial scaffolds. Orthod. Craniofac. Res. 8:162–173, 2005.
-
(2005)
Orthod. Craniofac. Res.
, vol.8
, pp. 162-173
-
-
Hollister, S.1
Lin, C.2
Saito, E.3
Lin, C.4
Schek, R.5
Taboas, J.6
Williams, J.7
Partee, B.8
Flanagan, C.9
Diggs, A.10
Wilke, E.11
Van Lenthe, G.12
Ller, R.M.13
Wirtz, T.14
Das, S.15
Feinberg, S.16
Krebsbach, P.17
-
32
-
-
0035988665
-
Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints
-
COI: 1:CAS:528:DC%2BD38Xlt1Ohtrw%3D, PID: 12182311
-
Hollister, S. J., R. D. Maddox, and J. M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103, 2002.
-
(2002)
Biomaterials
, vol.23
, pp. 4095-4103
-
-
Hollister, S.J.1
Maddox, R.D.2
Taboas, J.M.3
-
33
-
-
24944569212
-
Engineering vascularized tissue
-
COI: 1:CAS:528:DC%2BD2MXlvFehu7o%3D, PID: 16003365
-
Jain, R. K., P. Au, J. Tam, D. G. Duda, and D. Fukumura. Engineering vascularized tissue. Nat. Biotechnol. 23:821–823, 2005.
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 821-823
-
-
Jain, R.K.1
Au, P.2
Tam, J.3
Duda, D.G.4
Fukumura, D.5
-
34
-
-
84867002981
-
Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity
-
COI: 1:CAS:528:DC%2BC38Xht1Kmtr3J
-
Kang, H.-W., and D.-W. Cho. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity. Tissue Eng. C Methods 18:719–729, 2012.
-
(2012)
Tissue Eng. C Methods
, vol.18
, pp. 719-729
-
-
Kang, H.-W.1
Cho, D.-W.2
-
35
-
-
84883110864
-
Quantitative optimization of solid freeform deposition of aqueous hydrogels
-
COI: 1:STN:280:DC%2BC3sngtVChsA%3D%3D, PID: 23636927
-
Kang, K. H., L. A. Hockaday, and J. T. Butcher. Quantitative optimization of solid freeform deposition of aqueous hydrogels. Biofabrication 5:035001, 2013.
-
(2013)
Biofabrication
, vol.5
, pp. 035001
-
-
Kang, K.H.1
Hockaday, L.A.2
Butcher, J.T.3
-
36
-
-
67349135240
-
Development of a bi-pore scaffold using indirect solid freeform fabrication based on microstereolithography technology
-
COI: 1:CAS:528:DC%2BD1MXlvFGjsbs%3D
-
Kang, H., J. Rhie, and D. Cho. Development of a bi-pore scaffold using indirect solid freeform fabrication based on microstereolithography technology. Microelectron. Eng. 86:941–944, 2009.
-
(2009)
Microelectron. Eng.
, vol.86
, pp. 941-944
-
-
Kang, H.1
Rhie, J.2
Cho, D.3
-
37
-
-
0037205335
-
Scaffold development using 3D printing with a starch-based polymer
-
Lam, C. X., X. Mo, S. Teoh, and D. Hutmacher. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C 20:49–56, 2002.
-
(2002)
Mater. Sci. Eng. C
, vol.20
, pp. 49-56
-
-
Lam, C.X.1
Mo, X.2
Teoh, S.3
Hutmacher, D.4
-
38
-
-
0036685718
-
Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques
-
COI: 1:CAS:528:DC%2BD38XltVaiurY%3D
-
Landers, R., A. Pfister, U. Hubner, H. John, R. Schmelzeisen, and R. Milhaupt. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37:3107–3116, 2002.
-
(2002)
J. Mater. Sci.
, vol.37
, pp. 3107-3116
-
-
Landers, R.1
Pfister, A.2
Hubner, U.3
John, H.4
Schmelzeisen, R.5
Milhaupt, R.6
-
39
-
-
0027595948
-
Tissue engineering
-
COI: 1:CAS:528:DyaK3sXis1Sktrs%3D
-
Langer, R., and J. P. Vacanti. Tissue engineering. Science (80-) 260:920–926, 1993.
-
(1993)
Science (80-)
, vol.260
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
40
-
-
84889064340
-
Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering
-
PID: 24060622
-
Lee, J.-Y., B. Choi, B. Wu, and M. Lee. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 5:045003, 2013.
-
(2013)
Biofabrication
, vol.5
, pp. 045003
-
-
Lee, J.-Y.1
Choi, B.2
Wu, B.3
Lee, M.4
-
41
-
-
84889064340
-
Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering
-
Lee, J.-Y., B. Choi, B. Wu, and M. Lee. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 5:12–14, 2013.
-
(2013)
Biofabrication
, vol.5
, pp. 12-14
-
-
Lee, J.-Y.1
Choi, B.2
Wu, B.3
Lee, M.4
-
42
-
-
15944374297
-
Scaffold fabrication by indirect three-dimensional printing
-
COI: 1:CAS:528:DC%2BD2MXotVKhuw%3D%3D, PID: 15683652
-
Lee, M., J. C. Y. Dunn, and B. M. Wu. Scaffold fabrication by indirect three-dimensional printing. Biomaterials 26:4281–4289, 2005.
-
(2005)
Biomaterials
, vol.26
, pp. 4281-4289
-
-
Lee, M.1
Dunn, J.C.Y.2
Wu, B.M.3
-
43
-
-
56749133299
-
Effect of scaffold architecture and pore size on smooth muscle cell growth
-
COI: 1:CAS:528:DC%2BD1cXhsVClsbfN
-
Lee, M., B. M. Wu, and J. C. Y. Dunn. Effect of scaffold architecture and pore size on smooth muscle cell growth. J. Biomed. Mater. Res. A 87A:1010–1016, 2008.
-
(2008)
J. Biomed. Mater. Res. A
, vol.87A
, pp. 1010-1016
-
-
Lee, M.1
Wu, B.M.2
Dunn, J.C.Y.3
-
44
-
-
77955886715
-
In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres
-
COI: 1:CAS:528:DC%2BC3cXosFelsb8%3D, PID: 19398393
-
Li, L. H., K. P. Kommareddy, C. Pilz, C. R. Zhou, P. Fratzl, and I. Manjubala. In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres. Acta Biomater. 6:2525–2531, 2010.
-
(2010)
Acta Biomater.
, vol.6
, pp. 2525-2531
-
-
Li, L.H.1
Kommareddy, K.P.2
Pilz, C.3
Zhou, C.R.4
Fratzl, P.5
Manjubala, I.6
-
45
-
-
34147196091
-
Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds
-
COI: 1:CAS:528:DC%2BD2sXivVSlt7s%3D, PID: 17319795
-
Liao, E., M. Yaszemski, P. Krebsbach, and S. Hollister. Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng. 13:537–550, 2007.
-
(2007)
Tissue Eng.
, vol.13
, pp. 537-550
-
-
Liao, E.1
Yaszemski, M.2
Krebsbach, P.3
Hollister, S.4
-
46
-
-
1842866910
-
Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method
-
COI: 1:CAS:528:DC%2BD2cXitlagsg%3D%3D, PID: 15007466
-
Lim, D., Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama. Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 3:318–323, 2003.
-
(2003)
Lab Chip
, vol.3
, pp. 318-323
-
-
Lim, D.1
Kamotani, Y.2
Cho, B.3
Mazumder, J.4
Takayama, S.5
-
47
-
-
0036976296
-
Manufacture of biomaterials by a novel printing process
-
COI: 1:CAS:528:DC%2BD38XoslGmtrY%3D, PID: 15348660
-
Limpanuphap, S., and B. Derby. Manufacture of biomaterials by a novel printing process. J. Mater. Sci. Mater. Med. 13:1163–1166, 2002.
-
(2002)
J. Mater. Sci. Mater. Med.
, vol.13
, pp. 1163-1166
-
-
Limpanuphap, S.1
Derby, B.2
-
48
-
-
27644595283
-
Functional bone engineering using ex vivi gene therapy and topology-optimized, biodegradable polymer composite scaffolds
-
COI: 1:CAS:528:DC%2BD2MXhtFKlsLzM, PID: 16259612
-
Lin, C.-Y., R. Schek, A. Mistry, X. Shi, A. G. Mikos, P. H. Krebsbach, and S. J. Hollister. Functional bone engineering using ex vivi gene therapy and topology-optimized, biodegradable polymer composite scaffolds. Tissue Eng. 11:1589–1598, 2005.
-
(2005)
Tissue Eng.
, vol.11
, pp. 1589-1598
-
-
Lin, C.-Y.1
Schek, R.2
Mistry, A.3
Shi, X.4
Mikos, A.G.5
Krebsbach, P.H.6
Hollister, S.J.7
-
49
-
-
25444472676
-
Water-soluble photopolymers for rapid prototyping of cellular materials
-
COI: 1:CAS:528:DC%2BD2MXntlCgsrg%3D
-
Liska, R., F. Schwager, C. Maier, R. Cano-Vives, and J. Stampfl. Water-soluble photopolymers for rapid prototyping of cellular materials. J. Appl. Polym. Sci. 97:2286–2298, 2005.
-
(2005)
J. Appl. Polym. Sci.
, vol.97
, pp. 2286-2298
-
-
Liska, R.1
Schwager, F.2
Maier, C.3
Cano-Vives, R.4
Stampfl, J.5
-
50
-
-
84872293178
-
The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography
-
COI: 1:STN:280:DC%2BC38zntFGqsQ%3D%3D, PID: 22055004, Image (Table 2) was reprinted with permission from Springer
-
Liu, M. J. J., S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng. The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography. Med. Eng. Phys. 35:253–262, 2013; (Image (Table 2) was reprinted with permission from Springer.).
-
(2013)
Med. Eng. Phys.
, vol.35
, pp. 253-262
-
-
Liu, M.J.J.1
Chou, S.M.2
Chua, C.K.3
Tay, B.C.M.4
Ng, B.K.5
-
51
-
-
34249752062
-
On the manufacturability of scaffold mould using a 3D printing technology
-
Liu, C. Z., E. Sachlos, D. A. Wahl, Z. W. Han, and J. T. Czernuszka. On the manufacturability of scaffold mould using a 3D printing technology. Rapid Prototyp. J. 13:163–174, 2007.
-
(2007)
Rapid Prototyp. J.
, vol.13
, pp. 163-174
-
-
Liu, C.Z.1
Sachlos, E.2
Wahl, D.A.3
Han, Z.W.4
Czernuszka, J.T.5
-
52
-
-
0033684370
-
Passive mixing in a three-dimensional serpentine microchannel
-
Liu, R. H., M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe. Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst. 9:190–197, 2000.
-
(2000)
J. Microelectromech. Syst.
, vol.9
, pp. 190-197
-
-
Liu, R.H.1
Stremler, M.A.2
Sharp, K.V.3
Olsen, M.G.4
Santiago, J.G.5
Adrian, R.J.6
Aref, H.7
Beebe, D.J.8
-
53
-
-
42649083003
-
Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering
-
COI: 1:STN:280:DC%2BD1c3jtVKntQ%3D%3D, PID: 18076093
-
Liu, C. Z., Z. D. Xia, Z. W. Han, P. A. Hulley, J. T. Triffitt, and J. T. Czernuszka. Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 85:519–528, 2008.
-
(2008)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.85
, pp. 519-528
-
-
Liu, C.Z.1
Xia, Z.D.2
Han, Z.W.3
Hulley, P.A.4
Triffitt, J.T.5
Czernuszka, J.T.6
-
54
-
-
84867097728
-
Biocompatibility and biodegradation studies of PCL/b-TCP bone tissue scaffold fabricated by structural porogen method
-
COI: 1:CAS:528:DC%2BC38Xht1Ogtb7I, PID: 22669285, Image (Table 1) was reprinted with permission from Elsevier
-
Lu, L., Q. Zhang, D. Wootton, R. Chiou, D. Li, B. Lu, P. Lelkes, and J. Zhou. Biocompatibility and biodegradation studies of PCL/b-TCP bone tissue scaffold fabricated by structural porogen method. J. Mater. Sci. Mater. Med. 23:2217–2226, 2012; (Image (Table 1) was reprinted with permission from Elsevier).
-
(2012)
J. Mater. Sci. Mater. Med.
, vol.23
, pp. 2217-2226
-
-
Lu, L.1
Zhang, Q.2
Wootton, D.3
Chiou, R.4
Li, D.5
Lu, B.6
Lelkes, P.7
Zhou, J.8
-
55
-
-
84877891962
-
Novel additive manufactured scaffolds for tissue engineered trachea research
-
PID: 23394221
-
Mäkitie, A. A., J. Korpela, L. Elomaa, M. Reivonen, A. Kokkari, M. Malin, H. Korhonen, X. Wang, J. Salo, E. Sihvo, M. Salmi, J. Partanen, K.-S. Paloheimo, J. Tuomi, T. Närhi, and J. Seppälä. Novel additive manufactured scaffolds for tissue engineered trachea research. Acta Otolaryngol. 133:412–417, 2013.
-
(2013)
Acta Otolaryngol.
, vol.133
, pp. 412-417
-
-
Mäkitie, A.A.1
Korpela, J.2
Elomaa, L.3
Reivonen, M.4
Kokkari, A.5
Malin, M.6
Korhonen, H.7
Wang, X.8
Salo, J.9
Sihvo, E.10
Salmi, M.11
Partanen, J.12
Paloheimo, K.-S.13
Tuomi, J.14
Närhi, T.15
Seppälä, J.16
-
56
-
-
29144441974
-
Biomimetic mineral-organic composite scaffolds with controlled internal architecture
-
COI: 1:CAS:528:DC%2BD2MXhtlWrsrbE, PID: 16362209
-
Manjubala, I., A. Woesz, C. Pilz, M. Rumpler, N. Fratzl-Zelman, P. Roschger, J. Stampfl, and P. Fratzl. Biomimetic mineral-organic composite scaffolds with controlled internal architecture. J. Mater. Sci. Mater. Med. 16:1111–1119, 2005.
-
(2005)
J. Mater. Sci. Mater. Med.
, vol.16
, pp. 1111-1119
-
-
Manjubala, I.1
Woesz, A.2
Pilz, C.3
Rumpler, M.4
Fratzl-Zelman, N.5
Roschger, P.6
Stampfl, J.7
Fratzl, P.8
-
57
-
-
73549098444
-
The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model
-
Mantila Roosa, S. M., J. M. Kemppainen, E. N. Moffitt, P. H. Krebsbach, and S. J. Hollister. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J. Biomed. Mater. Res. A 92:359–368, 2010.
-
(2010)
J. Biomed. Mater. Res. A
, vol.92
, pp. 359-368
-
-
Mantila Roosa, S.M.1
Kemppainen, J.M.2
Moffitt, E.N.3
Krebsbach, P.H.4
Hollister, S.J.5
-
58
-
-
84942747240
-
Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation
-
Markovic, M., J. Van Hoorick, K. Hölzl, M. Tromayer, P. Gruber, S. Nürnberger, P. Dubruel, S. Van Vlierberghe, R. Liska, and A. Ovsianikov. Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation. J. Nanotechnol. Eng. Med. 6:021004, 2015.
-
(2015)
J. Nanotechnol. Eng. Med.
, vol.6
, pp. 021004
-
-
Markovic, M.1
Van Hoorick, J.2
Hölzl, K.3
Tromayer, M.4
Gruber, P.5
Nürnberger, S.6
Dubruel, P.7
Van Vlierberghe, S.8
Liska, R.9
Ovsianikov, A.10
-
59
-
-
77953651502
-
A review on stereolithography and its applications in biomedical engineering
-
COI: 1:CAS:528:DC%2BC3cXnt12rt7k%3D, PID: 20478613
-
Melchels, F. P. W., J. Feijen, and D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 6121-6130
-
-
Melchels, F.P.W.1
Feijen, J.2
Grijpma, D.W.3
-
60
-
-
0035089666
-
Three-dimensional printing and porous metallic surfaces: a new orthopedic application
-
COI: 1:CAS:528:DC%2BD3MXhs1OmsbY%3D, PID: 11255171
-
Melican, M. C., M. C. Zimmerman, M. S. Dhillon, A. R. Ponnambalam, A. Curodeau, and J. R. Parsons. Three-dimensional printing and porous metallic surfaces: a new orthopedic application. J. Biomed. Mater. Res. 55:194–202, 2001.
-
(2001)
J. Biomed. Mater. Res.
, vol.55
, pp. 194-202
-
-
Melican, M.C.1
Zimmerman, M.C.2
Dhillon, M.S.3
Ponnambalam, A.R.4
Curodeau, A.5
Parsons, J.R.6
-
61
-
-
84879201066
-
The history of tissue engineering and regenerative medicine in perspective
-
Meyer U, Meyer Th, Handschel J, Wiesmann JP, (eds), Springer, Berlin
-
Meyer, U. The history of tissue engineering and regenerative medicine in perspective. In: Fundamentals of Tissue Engineering and Regenerative Medicine, edited by U. Meyer, Th Meyer, J. Handschel, and J. P. Wiesmann. Berlin: Springer, 2009, pp. 5–12.
-
(2009)
Fundamentals of Tissue Engineering and Regenerative Medicine
, pp. 5-12
-
-
Meyer, U.1
-
62
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
COI: 1:CAS:528:DC%2BC38XpsVWhsbc%3D, PID: 22751181
-
Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D.-H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.
-
(2012)
Nat. Mater.
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
Stevens, K.R.2
Yang, M.T.3
Baker, B.M.4
Nguyen, D.-H.T.5
Cohen, D.M.6
Toro, E.7
Chen, A.A.8
Galie, P.A.9
Yu, X.10
Chaturvedi, R.11
Bhatia, S.N.12
Chen, C.S.13
-
63
-
-
33646519215
-
Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering
-
COI: 1:CAS:528:DC%2BD28XkvVajsbo%3D, PID: 16678255
-
Mondrinos, M. J., R. Dembzynski, L. Lu, V. K. C. Byrapogu, D. M. Wootton, P. I. Lelkes, and J. Zhou. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408, 2006.
-
(2006)
Biomaterials
, vol.27
, pp. 4399-4408
-
-
Mondrinos, M.J.1
Dembzynski, R.2
Lu, L.3
Byrapogu, V.K.C.4
Wootton, D.M.5
Lelkes, P.I.6
Zhou, J.7
-
64
-
-
26844534722
-
Multiple-channel scaffolds to promote spinal cord axon regeneration
-
COI: 1:CAS:528:DC%2BD2MXhtFakurfP, PID: 16137759
-
Moore, M. J., J. A. Friedman, E. B. Lewellyn, S. M. Mantila, A. J. Krych, S. Ameenuddin, A. M. Knight, L. Lu, B. L. Currier, R. J. Spinner, R. W. Marsh, A. J. Windebank, and M. J. Yaszemski. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27:419–429, 2006.
-
(2006)
Biomaterials
, vol.27
, pp. 419-429
-
-
Moore, M.J.1
Friedman, J.A.2
Lewellyn, E.B.3
Mantila, S.M.4
Krych, A.J.5
Ameenuddin, S.6
Knight, A.M.7
Lu, L.8
Currier, B.L.9
Spinner, R.J.10
Marsh, R.W.11
Windebank, A.J.12
Yaszemski, M.J.13
-
65
-
-
38449087800
-
3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation
-
COI: 1:CAS:528:DC%2BD1cXhsV2qsrg%3D
-
Moroni, L., R. Schotel, D. Hamann, J. R. de Wijn, and C. A. van Blitterswijk. 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv. Funct. Mater. 18:53–60, 2008.
-
(2008)
Adv. Funct. Mater.
, vol.18
, pp. 53-60
-
-
Moroni, L.1
Schotel, R.2
Hamann, D.3
de Wijn, J.R.4
van Blitterswijk, C.A.5
-
66
-
-
77953025978
-
Cell-laden microengineered gelatin methacrylate hydrogels
-
COI: 1:CAS:528:DC%2BC3cXmtlKitbo%3D, PID: 20417964
-
Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 5536-5544
-
-
Nichol, J.W.1
Koshy, S.T.2
Bae, H.3
Hwang, C.M.4
Yamanlar, S.5
Khademhosseini, A.6
-
67
-
-
79953897232
-
Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering
-
COI: 1:CAS:528:DC%2BC3MXisFyitLw%3D, PID: 21366287
-
Ovsianikov, A., A. Deiwick, S. Van Vlierberghe, P. Dubruel, M. Lena, G. Dräger, and B. Chichkov. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12:851–858, 2011.
-
(2011)
Biomacromolecules
, vol.12
, pp. 851-858
-
-
Ovsianikov, A.1
Deiwick, A.2
Van Vlierberghe, S.3
Dubruel, P.4
Lena, M.5
Dräger, G.6
Chichkov, B.7
-
68
-
-
79953855611
-
Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues
-
COI: 1:CAS:528:DC%2BC3MXht1Kltbs%3D
-
Ovsianikov, A., A. Deiwick, S. Van Vlierberghe, M. Pflaum, M. Wilhelmi, P. Dubruel, and B. Chichkov. Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues. Materials (Basel) 4:288–299, 2011.
-
(2011)
Materials (Basel)
, vol.4
, pp. 288-299
-
-
Ovsianikov, A.1
Deiwick, A.2
Van Vlierberghe, S.3
Pflaum, M.4
Wilhelmi, M.5
Dubruel, P.6
Chichkov, B.7
-
69
-
-
84898006915
-
Laser photofabrication of cell-containing hydrogel constructs
-
COI: 1:CAS:528:DC%2BC3sXhsVCgtb3K, PID: 24033187
-
Ovsianikov, A., S. Mühleder, J. Torgersen, Z. Li, X.-H. Qin, S. Van Vlierberghe, P. Dubruel, W. Holnthoner, H. Redl, R. Liska, and J. Stampfl. Laser photofabrication of cell-containing hydrogel constructs. Langmuir 30:3787–3794, 2014.
-
(2014)
Langmuir
, vol.30
, pp. 3787-3794
-
-
Ovsianikov, A.1
Mühleder, S.2
Torgersen, J.3
Li, Z.4
Qin, X.-H.5
Van Vlierberghe, S.6
Dubruel, P.7
Holnthoner, W.8
Redl, H.9
Liska, R.10
Stampfl, J.11
-
70
-
-
34247634561
-
Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine
-
COI: 1:CAS:528:DC%2BD2sXlt1WrtL8%3D
-
Ovsianikov, A., A. Ostendorf, and B. N. Chichkov. Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl. Surf. Sci. 253:6599–6602, 2007.
-
(2007)
Appl. Surf. Sci.
, vol.253
, pp. 6599-6602
-
-
Ovsianikov, A.1
Ostendorf, A.2
Chichkov, B.N.3
-
71
-
-
58549094696
-
3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system
-
COI: 1:CAS:528:DC%2BD1MXlvFGqtA%3D%3D, PID: 18758915
-
Park, S., G. Kim, Y. C. Jeon, Y. Koh, and W. Kim. 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J. Mater. Sci. Mater. Med. 20:229–234, 2009.
-
(2009)
J. Mater. Sci. Mater. Med.
, vol.20
, pp. 229-234
-
-
Park, S.1
Kim, G.2
Jeon, Y.C.3
Koh, Y.4
Kim, W.5
-
72
-
-
77953808787
-
Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces
-
COI: 1:CAS:528:DC%2BC3cXnslamt74%3D, PID: 20471083
-
Park, C. H., H. F. Rios, Q. Jin, M. E. Bland, C. L. Flanagan, S. J. Hollister, and W. V. Giannobile. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials 31:5945–5952, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 5945-5952
-
-
Park, C.H.1
Rios, H.F.2
Jin, Q.3
Bland, M.E.4
Flanagan, C.L.5
Hollister, S.J.6
Giannobile, W.V.7
-
73
-
-
82855165040
-
Tissue engineering bone-ligament complexes using fiber-guiding scaffolds
-
COI: 1:CAS:528:DC%2BC3MXhsVWlu7fP, PID: 21993234
-
Park, C. H., H. F. Rios, Q. Jin, J. V. Sugai, M. Padial-molina, A. D. Taut, C. L. Flanagan, S. J. Hollister, and W. V. Giannobile. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. Biomaterials 33:137–145, 2012.
-
(2012)
Biomaterials
, vol.33
, pp. 137-145
-
-
Park, C.H.1
Rios, H.F.2
Jin, Q.3
Sugai, J.V.4
Padial-molina, M.5
Taut, A.D.6
Flanagan, C.L.7
Hollister, S.J.8
Giannobile, W.V.9
-
74
-
-
49949086830
-
The effect of geometry on three-dimensional tissue growth
-
PID: 18348957
-
Rumpler, M., A. Woesz, J. W. Dunlop, J. T. van Dongen, and P. Fratzl. The effect of geometry on three-dimensional tissue growth. J. R. Soc. Interface 5:1173–1180, 2008.
-
(2008)
J. R. Soc. Interface
, vol.5
, pp. 1173-1180
-
-
Rumpler, M.1
Woesz, A.2
Dunlop, J.W.3
van Dongen, J.T.4
Fratzl, P.5
-
75
-
-
33947193947
-
Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds
-
COI: 1:CAS:528:DC%2BD2sXjsVSlsLo%3D
-
Rumpler, M., A. Woesz, F. Varga, I. Manjubala, K. Klaushofer, and P. Fratzl. Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds. J. Biomed. Mater. Res. 81A:40–50, 2007.
-
(2007)
J. Biomed. Mater. Res.
, vol.81A
, pp. 40-50
-
-
Rumpler, M.1
Woesz, A.2
Varga, F.3
Manjubala, I.4
Klaushofer, K.5
Fratzl, P.6
-
76
-
-
34250214157
-
Propagation of blood clotting in the complex biochemical network of hemostasis is described by a simple mechanism
-
COI: 1:CAS:528:DC%2BD2sXltV2itro%3D, PID: 17497790
-
Runyon, M. K., B. L. Johnson-Kerner, C. J. Kastrup, T. G. Van Ha, and R. F. Ismagilov. Propagation of blood clotting in the complex biochemical network of hemostasis is described by a simple mechanism. J. Am. Chem. Soc. 129:7014–7015, 2007.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 7014-7015
-
-
Runyon, M.K.1
Johnson-Kerner, B.L.2
Kastrup, C.J.3
Van Ha, T.G.4
Ismagilov, R.F.5
-
77
-
-
85008424563
-
-
Proc. p
-
Sachlos, E., N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka. A process to make collagen scaffolds with an artificial circulatory system using rapid prototyping. Mater. Res. Soc. Symp. Proc. p. 758, 2002.
-
(2002)
Sachlos, E., N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka. A process to make collagen scaffolds with an artificial circulatory system using rapid prototyping. Mater. Res. Soc. Symp
, vol.758
-
-
-
79
-
-
0037376632
-
Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication
-
COI: 1:CAS:528:DC%2BD3sXis1SnsQ%3D%3D, PID: 12527290
-
Sachlos, E., N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24:1487–1497, 2003.
-
(2003)
Biomaterials
, vol.24
, pp. 1487-1497
-
-
Sachlos, E.1
Reis, N.2
Ainsley, C.3
Derby, B.4
Czernuszka, J.T.5
-
80
-
-
77952836095
-
Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications
-
COI: 1:CAS:528:DC%2BC3cXpvFWjtLs%3D, PID: 20524047, Image (Table 2) was reprinted with permission from Springer
-
Saito, E., H. Kang, J. M. Taboas, A. Diggs, C. L. Flanagan, and S. J. Hollister. Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications. J. Mater. Sci. Mater. Med. 21:2371–2383, 2010; (Image (Table 2) was reprinted with permission from Springer.).
-
(2010)
J. Mater. Sci. Mater. Med.
, vol.21
, pp. 2371-2383
-
-
Saito, E.1
Kang, H.2
Taboas, J.M.3
Diggs, A.4
Flanagan, C.L.5
Hollister, S.J.6
-
81
-
-
78651283946
-
Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties
-
COI: 1:CAS:528:DC%2BC3cXhsVKis7%2FN, PID: 20953674
-
Schumacher, M., U. Deisinger, R. Detsch, and G. Ziegler. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. J. Mater. Sci. Mater. Med. 21:3119–3127, 2010.
-
(2010)
J. Mater. Sci. Mater. Med.
, vol.21
, pp. 3119-3127
-
-
Schumacher, M.1
Deisinger, U.2
Detsch, R.3
Ziegler, G.4
-
82
-
-
78349311839
-
Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique
-
COI: 1:CAS:528:DC%2BC3cXhtlyrsLzJ, PID: 20857322
-
Schumacher, M., F. Uhl, R. Detsch, U. Deisinger, and G. Ziegler. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J. Mater. Sci. Mater. Med. 21:3039–3048, 2010.
-
(2010)
J. Mater. Sci. Mater. Med.
, vol.21
, pp. 3039-3048
-
-
Schumacher, M.1
Uhl, F.2
Detsch, R.3
Deisinger, U.4
Ziegler, G.5
-
83
-
-
67349099426
-
Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology
-
COI: 1:CAS:528:DC%2BD1MXlvFCrur0%3D
-
Seol, Y. J., J. Y. Kim, E. K. Park, S. Y. Kim, and D. W. Cho. Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology. Microelectron. Eng. 86:1443–1446, 2009.
-
(2009)
Microelectron. Eng.
, vol.86
, pp. 1443-1446
-
-
Seol, Y.J.1
Kim, J.Y.2
Park, E.K.3
Kim, S.Y.4
Cho, D.W.5
-
85
-
-
0036262843
-
Application of stereolithography for scaffold fabrication for tissue engineered heart valves
-
Sodian, R., M. Loebe, A. Hein, D. P. Martin, S. P. Hoerstrup, E. V. Potapov, H. Hausmann, T. Lueth, and R. Hetzer. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. Am. Soc. Artif. Intern. Organs J. 48:12–16, 2002.
-
(2002)
Am. Soc. Artif. Intern. Organs J.
, vol.48
, pp. 12-16
-
-
Sodian, R.1
Loebe, M.2
Hein, A.3
Martin, D.P.4
Hoerstrup, S.P.5
Potapov, E.V.6
Hausmann, H.7
Lueth, T.8
Hetzer, R.9
-
86
-
-
0033996295
-
Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering
-
COI: 1:CAS:528:DC%2BD3cXjtF2lsbw%3D, PID: 10941212
-
Sodian, R., J. S. Sperling, D. P. Martin, A. Egozy, U. Stock, J. E. Mayer, and J. P. Vacanti. Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng. 6:183–188, 2000.
-
(2000)
Tissue Eng.
, vol.6
, pp. 183-188
-
-
Sodian, R.1
Sperling, J.S.2
Martin, D.P.3
Egozy, A.4
Stock, U.5
Mayer, J.E.6
Vacanti, J.P.7
-
87
-
-
0037210053
-
Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds
-
COI: 1:CAS:528:DC%2BD38XotlKgsr0%3D, PID: 12417192
-
Taboas, J. M., R. D. Maddox, P. H. Krebsbach, and S. J. Hollister. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194, 2003.
-
(2003)
Biomaterials
, vol.24
, pp. 181-194
-
-
Taboas, J.M.1
Maddox, R.D.2
Krebsbach, P.H.3
Hollister, S.J.4
-
88
-
-
77952574628
-
Indirect fabrication of gelatin scaffolds using rapid prototyping technology
-
Tan, J. Y., C. K. Chua, and K. F. Leong. Indirect fabrication of gelatin scaffolds using rapid prototyping technology. Virtual Phys. Prototyp. 5:45–53, 2010.
-
(2010)
Virtual Phys. Prototyp.
, vol.5
, pp. 45-53
-
-
Tan, J.Y.1
Chua, C.K.2
Leong, K.F.3
-
89
-
-
84872607223
-
Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect
-
COI: 1:CAS:528:DC%2BC3sXptlWqtA%3D%3D, Image (Table 1) was reprinted with permission from Elsevier
-
Tan, J. Y., C. K. Chua, and K. F. Leong. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect. Rapid Prototyp. Tech. 15:83–96, 2013. doi:10.1007/s10544-012-9690-3; (Image (Table 1) was reprinted with permission from Elsevier).
-
(2013)
Rapid Prototyp. Tech.
, vol.15
, pp. 83-96
-
-
Tan, J.Y.1
Chua, C.K.2
Leong, K.F.3
-
90
-
-
14844315100
-
Fugitive inks for direct-write assembly of three-dimensional microvascular networks
-
COI: 1:CAS:528:DC%2BD2MXitl2ku7g%3D
-
Therriault, D., R. F. Shepherd, S. R. White, and J. A. Lewis. Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Adv. Mater. 17:395–399, 2005.
-
(2005)
Adv. Mater.
, vol.17
, pp. 395-399
-
-
Therriault, D.1
Shepherd, R.F.2
White, S.R.3
Lewis, J.A.4
-
91
-
-
0038545277
-
Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly
-
COI: 1:CAS:528:DC%2BD3sXisFWgs7o%3D, PID: 12690401
-
Therriault, D., S. R. White, and J. A. Lewis. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2:265–271, 2003.
-
(2003)
Nat. Mater.
, vol.2
, pp. 265-271
-
-
Therriault, D.1
White, S.R.2
Lewis, J.A.3
-
92
-
-
84871382127
-
Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms
-
PID: 23070525
-
Torgersen, J., A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl. Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. J. Biomed. Opt. 17:105008, 2012.
-
(2012)
J. Biomed. Opt.
, vol.17
, pp. 105008
-
-
Torgersen, J.1
Ovsianikov, A.2
Mironov, V.3
Pucher, N.4
Qin, X.5
Li, Z.6
Cicha, K.7
Machacek, T.8
Liska, R.9
Jantsch, V.10
Stampfl, J.11
-
93
-
-
37249054616
-
Development of biodegradable scaffolds based on patient-specific arterial configuration
-
COI: 1:CAS:528:DC%2BD2sXhsVOltrbM, PID: 17868940
-
Uchida, T., S. Ikeda, H. Oura, M. Tada, T. Nakano, T. Fukuda, T. Matsuda, M. Negoro, and F. Arai. Development of biodegradable scaffolds based on patient-specific arterial configuration. J. Biotechnol. 133:213–218, 2008.
-
(2008)
J. Biotechnol.
, vol.133
, pp. 213-218
-
-
Uchida, T.1
Ikeda, S.2
Oura, H.3
Tada, M.4
Nakano, T.5
Fukuda, T.6
Matsuda, T.7
Negoro, M.8
Arai, F.9
-
94
-
-
0034158545
-
Structural and rheological properties of methacrylamide modified gelatin hydrogels
-
Van Den Bulcke, A. I., B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen, and H. Berghmans. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38, 2000.
-
(2000)
Biomacromolecules
, vol.1
, pp. 31-38
-
-
Van Den Bulcke, A.I.1
Bogdanov, B.2
De Rooze, N.3
Schacht, E.H.4
Cornelissen, M.5
Berghmans, H.6
-
95
-
-
84942784686
-
Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds
-
PID: 26411443
-
Van Hoorick, J., H. Declercq, A. De Muynck, A. Houben, L. Van Hoorebeke, R. Cornelissen, J. Van Erps, H. Thienpont, P. Dubruel, and S. Van Vlierberghe. Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds. J. Mater. Sci. Mater. Med. 26:247, 2015.
-
(2015)
J. Mater. Sci. Mater. Med.
, vol.26
, pp. 247
-
-
Van Hoorick, J.1
Declercq, H.2
De Muynck, A.3
Houben, A.4
Van Hoorebeke, L.5
Cornelissen, R.6
Van Erps, J.7
Thienpont, H.8
Dubruel, P.9
Van Vlierberghe, S.10
-
96
-
-
84923364223
-
Cryogel-PCL combination scaffolds for bone tissue repair
-
Van Rie, J., H. Declercq, J. Van Hoorick, M. Dierick, L. Van Hoorebeke, R. Cornelissen, H. Thienpont, P. Dubruel, and S. Van Vlierberghe. Cryogel-PCL combination scaffolds for bone tissue repair. J. Mater. Sci. Mater. Med. 26:5465, 2015.
-
(2015)
J. Mater. Sci. Mater. Med.
, vol.26
, pp. 5465
-
-
Van Rie, J.1
Declercq, H.2
Van Hoorick, J.3
Dierick, M.4
Van Hoorebeke, L.5
Cornelissen, R.6
Thienpont, H.7
Dubruel, P.8
Van Vlierberghe, S.9
-
97
-
-
33847336086
-
Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis
-
PID: 17291055
-
Van Vlierberghe, S., V. Cnudde, P. Dubruel, B. Masschaele, A. Cosijns, I. De Paepe, P. J. S. Jacobs, L. Van Hoorebeke, J. P. Remon, and E. Schacht. Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis. Biomacromolecules 8:331–337, 2007.
-
(2007)
Biomacromolecules
, vol.8
, pp. 331-337
-
-
Van Vlierberghe, S.1
Cnudde, V.2
Dubruel, P.3
Masschaele, B.4
Cosijns, A.5
De Paepe, I.6
Jacobs, P.J.S.7
Van Hoorebeke, L.8
Remon, J.P.9
Schacht, E.10
-
98
-
-
46549089222
-
Toward modulating the architecture of hydrogel scaffolds: curtains versus channels
-
PID: 18299964
-
Van Vlierberghe, S., P. Dubruel, E. Lippens, B. Masschaele, L. Van Hoorebeke, M. Cornelissen, R. Unger, C. J. Kirkpatrick, and E. Schacht. Toward modulating the architecture of hydrogel scaffolds: curtains versus channels. J. Mater. Sci. Mater. Med. 19:1459–1466, 2008.
-
(2008)
J. Mater. Sci. Mater. Med.
, vol.19
, pp. 1459-1466
-
-
Van Vlierberghe, S.1
Dubruel, P.2
Lippens, E.3
Masschaele, B.4
Van Hoorebeke, L.5
Cornelissen, M.6
Unger, R.7
Kirkpatrick, C.J.8
Schacht, E.9
-
99
-
-
79955793532
-
Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review
-
PID: 21388145
-
Van Vlierberghe, S., P. Dubruel, and E. Schacht. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408, 2011.
-
(2011)
Biomacromolecules
, vol.12
, pp. 1387-1408
-
-
Van Vlierberghe, S.1
Dubruel, P.2
Schacht, E.3
-
100
-
-
78049513369
-
Hydrogel network formation revised: high-resolution magic angle spinning nuclear magnetic resonance as a powerful tool for measuring absolute hydrogel cross-link efficiencies
-
PID: 20925989
-
Van Vlierberghe, S., B. Fritzinger, J. C. Martins, and P. Dubruel. Hydrogel network formation revised: high-resolution magic angle spinning nuclear magnetic resonance as a powerful tool for measuring absolute hydrogel cross-link efficiencies. Appl. Spectrosc. 64:1176–1180, 2010.
-
(2010)
Appl. Spectrosc.
, vol.64
, pp. 1176-1180
-
-
Van Vlierberghe, S.1
Fritzinger, B.2
Martins, J.C.3
Dubruel, P.4
-
101
-
-
79954610765
-
Reversible gelatin-based hydrogels: finetuning of material properties
-
Van Vlierberghe, S., E. Schacht, and P. Dubruel. Reversible gelatin-based hydrogels: finetuning of material properties. Eur. Polym. J. 47:1039–1047, 2011.
-
(2011)
Eur. Polym. J.
, vol.47
, pp. 1039-1047
-
-
Van Vlierberghe, S.1
Schacht, E.2
Dubruel, P.3
-
102
-
-
84902449499
-
Proof-of-concept demonstration of a total internal reflection based module for fluorescence and absorbance detection using a 3D-printed syringe pump
-
Verschooten, T., H. Ottevaere, M. Vervaeke, J. Van Erps, and H. Thienpont. Proof-of-concept demonstration of a total internal reflection based module for fluorescence and absorbance detection using a 3D-printed syringe pump. Proc. SPIE 9130:91300E–91300E-11, 2014.
-
(2014)
Proc. SPIE
, vol.9130
-
-
Verschooten, T.1
Ottevaere, H.2
Vervaeke, M.3
Van Erps, J.4
Thienpont, H.5
-
103
-
-
79952688084
-
Roll-to-roll fabricated lab-on-a-chip devices
-
Vig, A. L., T. Mäkelä, P. Majander, V. Lambertini, J. Ahopelto, and A. Kristensen. Roll-to-roll fabricated lab-on-a-chip devices. J. Micromech. Microeng. 21:035006, 2011.
-
(2011)
J. Micromech. Microeng.
, vol.21
, pp. 035006
-
-
Vig, A.L.1
Mäkelä, T.2
Majander, P.3
Lambertini, V.4
Ahopelto, J.5
Kristensen, A.6
-
104
-
-
61549132913
-
The engineering of patient-specific, anatomically shaped, digits
-
COI: 1:CAS:528:DC%2BD1MXjtFamsrs%3D, PID: 19203788
-
Wang, P., J. Hu, and P. X. Ma. The engineering of patient-specific, anatomically shaped, digits. Biomaterials 30:2735–2740, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 2735-2740
-
-
Wang, P.1
Hu, J.2
Ma, P.X.3
-
105
-
-
0347596728
-
Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research
-
Wilson, C. E., J. D. De Bruijn, C. A. Van Blitterswijk, A. J. Verbout, W. J. A. Dhert, J. D. de Bruijn, C. A. van Blitterswijk, A. J. Verbout, and W. J. A. Dhert. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. J. Biomed. Mater. Res. A 68:1–10, 2003.
-
(2003)
J. Biomed. Mater. Res. A
, vol.68
, pp. 1-10
-
-
Wilson, C.E.1
De Bruijn, J.D.2
Van Blitterswijk, C.A.3
Verbout, A.J.4
Dhert, W.J.A.5
de Bruijn, J.D.6
van Blitterswijk, C.A.7
Verbout, A.J.8
Dhert, W.J.A.9
-
106
-
-
17844401459
-
Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting
-
Image (Table 2) was reprinted with permission from Springer
-
Woesz, A., M. Rumpler, J. Stampfl, F. Varga, N. Fratzl-Zelman, P. Roschger, K. Klaushofer, and P. Fratzl. Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting. Mater. Sci. Eng., C 25:181–186, 2005; (Image (Table 2) was reprinted with permission from Springer).
-
(2005)
Mater. Sci. Eng., C
, vol.25
, pp. 181-186
-
-
Woesz, A.1
Rumpler, M.2
Stampfl, J.3
Varga, F.4
Fratzl-Zelman, N.5
Roschger, P.6
Klaushofer, K.7
Fratzl, P.8
-
107
-
-
1642319363
-
Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique
-
COI: 1:CAS:528:DC%2BD2cXitlWqsLc%3D, PID: 15046905
-
Woodfield, T. B. F., J. Malda, J. de Wijn, F. Péters, J. Riesle, and C. A. van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161, 2004.
-
(2004)
Biomaterials
, vol.25
, pp. 4149-4161
-
-
Woodfield, T.B.F.1
Malda, J.2
de Wijn, J.3
Péters, F.4
Riesle, J.5
van Blitterswijk, C.A.6
-
108
-
-
76449091061
-
Direct-write assembly of biomimetic microvascular networks for efficient fluid transport
-
COI: 1:CAS:528:DC%2BC3cXhsFGisrY%3D
-
Wu, W., C. J. Hansen, A. M. Aragón, P. H. Geubelle, S. R. White, and J. A. Lewis. Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter 6:739, 2010.
-
(2010)
Soft Matter
, vol.6
, pp. 739
-
-
Wu, W.1
Hansen, C.J.2
Aragón, A.M.3
Geubelle, P.H.4
White, S.R.5
Lewis, J.A.6
-
109
-
-
0036191695
-
Review the design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
-
COI: 1:CAS:528:DC%2BD38XislChu7g%3D, PID: 11886649
-
Yang, S., K.-F. Leong, D. Zhaohui, and C. Chua. Review the design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8:1–11, 2002.
-
(2002)
Tissue Eng.
, vol.8
, pp. 1-11
-
-
Yang, S.1
Leong, K.-F.2
Zhaohui, D.3
Chua, C.4
-
110
-
-
34347343787
-
Comparison of drying methods in the fabrication of collagen scaffold via indirect
-
Yeong, W., C. Chua, K. Leong, M. Chandrasekaran, and M. Lee. Comparison of drying methods in the fabrication of collagen scaffold via indirect. Rapid Prototyp. 82:260–266, 2006. doi:10.1002/jbmb.
-
(2006)
Rapid Prototyp.
, vol.82
, pp. 260-266
-
-
Yeong, W.1
Chua, C.2
Leong, K.3
Chandrasekaran, M.4
Lee, M.5
|