메뉴 건너뛰기




Volumn 45, Issue 1, 2017, Pages 58-83

Indirect Rapid Prototyping: Opening Up Unprecedented Opportunities in Scaffold Design and Applications

Author keywords

Indirect 3D printing; Indirect rapid prototyping; Indirect solid free form fabrication; Lost mould; Tissue engineering

Indexed keywords

3D PRINTERS; BIOMATERIALS; MOLDS; RAPID PROTOTYPING; TISSUE; TISSUE ENGINEERING; TISSUE REGENERATION;

EID: 84963780775     PISSN: 00906964     EISSN: 15739686     Source Type: Journal    
DOI: 10.1007/s10439-016-1610-x     Document Type: Review
Times cited : (43)

References (110)
  • 1
    • 33748960111 scopus 로고    scopus 로고
    • Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells
    • PID: 16897421
    • Arcaute, K., B. K. Mann, and R. B. Wicker. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng. 34:1429–1441, 2006.
    • (2006) Ann. Biomed. Eng. , vol.34 , pp. 1429-1441
    • Arcaute, K.1    Mann, B.K.2    Wicker, R.B.3
  • 2
    • 67649354904 scopus 로고    scopus 로고
    • Direct-write assembly of 3D hydrogel scaffolds for guided cell growth
    • COI: 1:CAS:528:DC%2BD1MXntlOiu74%3D
    • Barry, R. A., R. F. Shepherd, J. N. Hanson, R. G. Nuzzo, P. Wiltzius, and J. A. Lewis. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater. 21:2407–2410, 2009.
    • (2009) Adv. Mater. , vol.21 , pp. 2407-2410
    • Barry, R.A.1    Shepherd, R.F.2    Hanson, J.N.3    Nuzzo, R.G.4    Wiltzius, P.5    Lewis, J.A.6
  • 4
    • 84887016191 scopus 로고    scopus 로고
    • The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
    • COI: 1:CAS:528:DC%2BC3sXhsFOltLzK, PID: 24112804
    • Billiet, T., E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62, 2014.
    • (2014) Biomaterials , vol.35 , pp. 49-62
    • Billiet, T.1    Gevaert, E.2    De Schryver, T.3    Cornelissen, M.4    Dubruel, P.5
  • 5
    • 84862869528 scopus 로고    scopus 로고
    • A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
    • COI: 1:CAS:528:DC%2BC38XotFKmu78%3D, PID: 22681979
    • Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.
    • (2012) Biomaterials , vol.33 , pp. 6020-6041
    • Billiet, T.1    Vandenhaute, M.2    Schelfhout, J.3    Van Vlierberghe, S.4    Dubruel, P.5
  • 7
    • 0033328992 scopus 로고    scopus 로고
    • Processing of controlled porosity ceramic structures via fused deposition
    • COI: 1:CAS:528:DyaK1MXmvVarsb0%3D
    • Bose, S., S. Suguira, and A. Bandyopadhyay. Processing of controlled porosity ceramic structures via fused deposition. Scr. Mater. 41:1009–1014, 1999.
    • (1999) Scr. Mater. , vol.41 , pp. 1009-1014
    • Bose, S.1    Suguira, S.2    Bandyopadhyay, A.3
  • 8
    • 83455228407 scopus 로고    scopus 로고
    • Direct Writing by way of melt electrospinning
    • COI: 1:CAS:528:DC%2BC3MXhsVyrurjO, PID: 22095922
    • Brown, T. D., P. D. Dalton, and D. W. Hutmacher. Direct Writing by way of melt electrospinning. Adv. Mater. 23:5651–5657, 2011.
    • (2011) Adv. Mater. , vol.23 , pp. 5651-5657
    • Brown, T.D.1    Dalton, P.D.2    Hutmacher, D.W.3
  • 10
    • 9444266408 scopus 로고    scopus 로고
    • Fabrication of artificial bioactive bone using rapid prototyping
    • Chen, Z. Z., D. C. Li, B. H. Lu, Y. P. Tang, M. L. Sun, and Z. Wang. Fabrication of artificial bioactive bone using rapid prototyping. Rapid Prototyp. J. 10:327–333, 2004.
    • (2004) Rapid Prototyp. J. , vol.10 , pp. 327-333
    • Chen, Z.Z.1    Li, D.C.2    Lu, B.H.3    Tang, Y.P.4    Sun, M.L.5    Wang, Z.6
  • 12
    • 84926622049 scopus 로고    scopus 로고
    • Recent advances in 3D printing of biomaterials
    • PID: 25866560
    • Chia, H. N., and B. M. Wu. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9:4, 2015.
    • (2015) J. Biol. Eng. , vol.9 , pp. 4
    • Chia, H.N.1    Wu, B.M.2
  • 13
    • 0034957704 scopus 로고    scopus 로고
    • Hydroxyapatite implants with designed internal architecture
    • COI: 1:CAS:528:DC%2BD3MXlt1aisL8%3D, PID: 15348260
    • Chu, T. M. G., J. W. Halloran, S. J. Hollister, and S. E. Feinberg. Hydroxyapatite implants with designed internal architecture. J. Mater. Sci. Mater. Med. 12:471–478, 2001.
    • (2001) J. Mater. Sci. Mater. Med. , vol.12 , pp. 471-478
    • Chu, T.M.G.1    Halloran, J.W.2    Hollister, S.J.3    Feinberg, S.E.4
  • 14
    • 0036498046 scopus 로고    scopus 로고
    • Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures
    • COI: 1:CAS:528:DC%2BD38XovFWksg%3D%3D, PID: 11808536, Image (Table 1) was reprinted with permission from Elsevier
    • Chu, T. M. G., D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23:1283–1293, 2002; (Image (Table 1) was reprinted with permission from Elsevier).
    • (2002) Biomaterials , vol.23 , pp. 1283-1293
    • Chu, T.M.G.1    Orton, D.G.2    Hollister, S.J.3    Feinberg, S.E.4    Halloran, J.W.5
  • 15
    • 33750150598 scopus 로고    scopus 로고
    • Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2
    • COI: 1:CAS:528:DC%2BD28XhtFeiu7rK, PID: 16996588
    • Chu, T.-M. G., S. J. Warden, C. H. Turner, and R. L. Stewart. Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2. Biomaterials 28:459–467, 2007.
    • (2007) Biomaterials , vol.28 , pp. 459-467
    • Chu, T.-M.G.1    Warden, S.J.2    Turner, C.H.3    Stewart, R.L.4
  • 16
    • 84876531997 scopus 로고    scopus 로고
    • Patient-specific intervertebral disc implants using rapid manufacturing technology
    • De Beer, N., and A. Van Der Merwe. Patient-specific intervertebral disc implants using rapid manufacturing technology. Rapid Prototyp. J. 19:126–139, 2013.
    • (2013) Rapid Prototyp. J. , vol.19 , pp. 126-139
    • De Beer, N.1    Van Der Merwe, A.2
  • 19
    • 84940782499 scopus 로고    scopus 로고
    • Indirect Rapid Prototyping for Tissue Engineering
    • De Maria, C., A. De Acutis, and G. Vozzi. Indirect Rapid Prototyping for Tissue Engineering. Elsevier, 2015. doi:10.1016/B978-0-12-800972-7/00008-6.
    • (2015) Elsevier
    • De Maria, C.1    De Acutis, A.2    Vozzi, G.3
  • 20
    • 38149109085 scopus 로고    scopus 로고
    • Fabrication of tailored hydroxyapatite scaffolds: comparison between a direct and an indirect rapid prototyping technique
    • Deisinger, U., S. Hamisch, M. Schumacher, F. Uhl, R. Detsch, and G. Ziegler. Fabrication of tailored hydroxyapatite scaffolds: comparison between a direct and an indirect rapid prototyping technique. Key Eng. Mater. II(915–918):361–363, 2008.
    • (2008) Key Eng. Mater. , vol.2 , Issue.915-918 , pp. 361-363
    • Deisinger, U.1    Hamisch, S.2    Schumacher, M.3    Uhl, F.4    Detsch, R.5    Ziegler, G.6
  • 21
    • 40849141369 scopus 로고    scopus 로고
    • 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique
    • COI: 1:CAS:528:DC%2BD1cXjt1Snsr8%3D, PID: 17990079
    • Detsch, R., F. Uhl, U. Deisinger, and G. Ziegler. 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J. Mater. Sci. Mater. Med. 19:1491–1496, 2008.
    • (2008) J. Mater. Sci. Mater. Med. , vol.19 , pp. 1491-1496
    • Detsch, R.1    Uhl, F.2    Deisinger, U.3    Ziegler, G.4
  • 22
    • 0037473883 scopus 로고    scopus 로고
    • Biomimetic polymer nanostructures by injection molding
    • COI: 1:CAS:528:DC%2BD3sXitFaju7k%3D
    • Gadegaard, N., S. Mosler, and N. B. Larsen. Biomimetic polymer nanostructures by injection molding. Macromol. Mater. Eng. 288:76–83, 2003.
    • (2003) Macromol. Mater. Eng. , vol.288 , pp. 76-83
    • Gadegaard, N.1    Mosler, S.2    Larsen, N.B.3
  • 23
    • 34249806021 scopus 로고    scopus 로고
    • Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
    • COI: 1:CAS:528:DC%2BD2sXlvVSnsLo%3D, PID: 17538713, Image (Table 1) was reprinted with permission from Elsevier
    • Golden, A. P., and J. Tien. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720, 2007; (Image (Table 1) was reprinted with permission from Elsevier).
    • (2007) Lab Chip , vol.7 , pp. 720
    • Golden, A.P.1    Tien, J.2
  • 27
    • 0001191946 scopus 로고    scopus 로고
    • Processing, Characterization and Modeling of Non-Random Porous Ceramic Structures
    • Hattiangadi, A., and A. Bandyopadhyay. Processing, Characterization and Modeling of Non-Random Porous Ceramic Structures. Int. Solid Free. Fabr. Symp. 319–326, 1999.
    • (1999) Int. Solid Free. Fabr. Symp , pp. 319-326
    • Hattiangadi, A.1    Bandyopadhyay, A.2
  • 28
    • 38049134313 scopus 로고    scopus 로고
    • Sickle cell vasoocclusion and rescue in a microfluidic device
    • COI: 1:CAS:528:DC%2BD1cXjslelsA%3D%3D, PID: 18077341
    • Higgins, J. M., D. T. Eddington, S. N. Bhatia, and L. Mahadevan. Sickle cell vasoocclusion and rescue in a microfluidic device. Proc. Natl. Acad. Sci. USA 104:20496–20500, 2007.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 20496-20500
    • Higgins, J.M.1    Eddington, D.T.2    Bhatia, S.N.3    Mahadevan, L.4
  • 29
    • 35548972566 scopus 로고    scopus 로고
    • Cytotoxicity of formaldehyde on human osteoblastic cells is related to intracellular glutathione levels
    • PID: 17385229
    • Ho, Y.-C., F.-M. Huang, and Y.-C. Chang. Cytotoxicity of formaldehyde on human osteoblastic cells is related to intracellular glutathione levels. J. Biomed. Mater. Res. B Appl. Biomater. 83:340–344, 2007.
    • (2007) J. Biomed. Mater. Res. B Appl. Biomater. , vol.83 , pp. 340-344
    • Ho, Y.-C.1    Huang, F.-M.2    Chang, Y.-C.3
  • 30
    • 0034134353 scopus 로고    scopus 로고
    • An image-based approach for designing and manufacturing craniofacial scaffolds
    • COI: 1:STN:280:DC%2BD3c7ltlSjtQ%3D%3D, PID: 10691148
    • Hollister, S. J., R. A. Levy, T. M. Chu, J. W. Halloran, and S. E. Feinberg. An image-based approach for designing and manufacturing craniofacial scaffolds. Int. J. Oral Maxillofac. Surg. 29:67–71, 2000.
    • (2000) Int. J. Oral Maxillofac. Surg. , vol.29 , pp. 67-71
    • Hollister, S.J.1    Levy, R.A.2    Chu, T.M.3    Halloran, J.W.4    Feinberg, S.E.5
  • 32
    • 0035988665 scopus 로고    scopus 로고
    • Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints
    • COI: 1:CAS:528:DC%2BD38Xlt1Ohtrw%3D, PID: 12182311
    • Hollister, S. J., R. D. Maddox, and J. M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103, 2002.
    • (2002) Biomaterials , vol.23 , pp. 4095-4103
    • Hollister, S.J.1    Maddox, R.D.2    Taboas, J.M.3
  • 33
    • 24944569212 scopus 로고    scopus 로고
    • Engineering vascularized tissue
    • COI: 1:CAS:528:DC%2BD2MXlvFehu7o%3D, PID: 16003365
    • Jain, R. K., P. Au, J. Tam, D. G. Duda, and D. Fukumura. Engineering vascularized tissue. Nat. Biotechnol. 23:821–823, 2005.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 821-823
    • Jain, R.K.1    Au, P.2    Tam, J.3    Duda, D.G.4    Fukumura, D.5
  • 34
    • 84867002981 scopus 로고    scopus 로고
    • Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity
    • COI: 1:CAS:528:DC%2BC38Xht1Kmtr3J
    • Kang, H.-W., and D.-W. Cho. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity. Tissue Eng. C Methods 18:719–729, 2012.
    • (2012) Tissue Eng. C Methods , vol.18 , pp. 719-729
    • Kang, H.-W.1    Cho, D.-W.2
  • 35
    • 84883110864 scopus 로고    scopus 로고
    • Quantitative optimization of solid freeform deposition of aqueous hydrogels
    • COI: 1:STN:280:DC%2BC3sngtVChsA%3D%3D, PID: 23636927
    • Kang, K. H., L. A. Hockaday, and J. T. Butcher. Quantitative optimization of solid freeform deposition of aqueous hydrogels. Biofabrication 5:035001, 2013.
    • (2013) Biofabrication , vol.5 , pp. 035001
    • Kang, K.H.1    Hockaday, L.A.2    Butcher, J.T.3
  • 36
    • 67349135240 scopus 로고    scopus 로고
    • Development of a bi-pore scaffold using indirect solid freeform fabrication based on microstereolithography technology
    • COI: 1:CAS:528:DC%2BD1MXlvFGjsbs%3D
    • Kang, H., J. Rhie, and D. Cho. Development of a bi-pore scaffold using indirect solid freeform fabrication based on microstereolithography technology. Microelectron. Eng. 86:941–944, 2009.
    • (2009) Microelectron. Eng. , vol.86 , pp. 941-944
    • Kang, H.1    Rhie, J.2    Cho, D.3
  • 37
    • 0037205335 scopus 로고    scopus 로고
    • Scaffold development using 3D printing with a starch-based polymer
    • Lam, C. X., X. Mo, S. Teoh, and D. Hutmacher. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C 20:49–56, 2002.
    • (2002) Mater. Sci. Eng. C , vol.20 , pp. 49-56
    • Lam, C.X.1    Mo, X.2    Teoh, S.3    Hutmacher, D.4
  • 38
    • 0036685718 scopus 로고    scopus 로고
    • Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques
    • COI: 1:CAS:528:DC%2BD38XltVaiurY%3D
    • Landers, R., A. Pfister, U. Hubner, H. John, R. Schmelzeisen, and R. Milhaupt. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37:3107–3116, 2002.
    • (2002) J. Mater. Sci. , vol.37 , pp. 3107-3116
    • Landers, R.1    Pfister, A.2    Hubner, U.3    John, H.4    Schmelzeisen, R.5    Milhaupt, R.6
  • 39
    • 0027595948 scopus 로고
    • Tissue engineering
    • COI: 1:CAS:528:DyaK3sXis1Sktrs%3D
    • Langer, R., and J. P. Vacanti. Tissue engineering. Science (80-) 260:920–926, 1993.
    • (1993) Science (80-) , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 40
    • 84889064340 scopus 로고    scopus 로고
    • Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering
    • PID: 24060622
    • Lee, J.-Y., B. Choi, B. Wu, and M. Lee. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 5:045003, 2013.
    • (2013) Biofabrication , vol.5 , pp. 045003
    • Lee, J.-Y.1    Choi, B.2    Wu, B.3    Lee, M.4
  • 41
    • 84889064340 scopus 로고    scopus 로고
    • Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering
    • Lee, J.-Y., B. Choi, B. Wu, and M. Lee. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 5:12–14, 2013.
    • (2013) Biofabrication , vol.5 , pp. 12-14
    • Lee, J.-Y.1    Choi, B.2    Wu, B.3    Lee, M.4
  • 42
    • 15944374297 scopus 로고    scopus 로고
    • Scaffold fabrication by indirect three-dimensional printing
    • COI: 1:CAS:528:DC%2BD2MXotVKhuw%3D%3D, PID: 15683652
    • Lee, M., J. C. Y. Dunn, and B. M. Wu. Scaffold fabrication by indirect three-dimensional printing. Biomaterials 26:4281–4289, 2005.
    • (2005) Biomaterials , vol.26 , pp. 4281-4289
    • Lee, M.1    Dunn, J.C.Y.2    Wu, B.M.3
  • 43
    • 56749133299 scopus 로고    scopus 로고
    • Effect of scaffold architecture and pore size on smooth muscle cell growth
    • COI: 1:CAS:528:DC%2BD1cXhsVClsbfN
    • Lee, M., B. M. Wu, and J. C. Y. Dunn. Effect of scaffold architecture and pore size on smooth muscle cell growth. J. Biomed. Mater. Res. A 87A:1010–1016, 2008.
    • (2008) J. Biomed. Mater. Res. A , vol.87A , pp. 1010-1016
    • Lee, M.1    Wu, B.M.2    Dunn, J.C.Y.3
  • 44
    • 77955886715 scopus 로고    scopus 로고
    • In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres
    • COI: 1:CAS:528:DC%2BC3cXosFelsb8%3D, PID: 19398393
    • Li, L. H., K. P. Kommareddy, C. Pilz, C. R. Zhou, P. Fratzl, and I. Manjubala. In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres. Acta Biomater. 6:2525–2531, 2010.
    • (2010) Acta Biomater. , vol.6 , pp. 2525-2531
    • Li, L.H.1    Kommareddy, K.P.2    Pilz, C.3    Zhou, C.R.4    Fratzl, P.5    Manjubala, I.6
  • 45
    • 34147196091 scopus 로고    scopus 로고
    • Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds
    • COI: 1:CAS:528:DC%2BD2sXivVSlt7s%3D, PID: 17319795
    • Liao, E., M. Yaszemski, P. Krebsbach, and S. Hollister. Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng. 13:537–550, 2007.
    • (2007) Tissue Eng. , vol.13 , pp. 537-550
    • Liao, E.1    Yaszemski, M.2    Krebsbach, P.3    Hollister, S.4
  • 46
    • 1842866910 scopus 로고    scopus 로고
    • Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method
    • COI: 1:CAS:528:DC%2BD2cXitlagsg%3D%3D, PID: 15007466
    • Lim, D., Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama. Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 3:318–323, 2003.
    • (2003) Lab Chip , vol.3 , pp. 318-323
    • Lim, D.1    Kamotani, Y.2    Cho, B.3    Mazumder, J.4    Takayama, S.5
  • 47
    • 0036976296 scopus 로고    scopus 로고
    • Manufacture of biomaterials by a novel printing process
    • COI: 1:CAS:528:DC%2BD38XoslGmtrY%3D, PID: 15348660
    • Limpanuphap, S., and B. Derby. Manufacture of biomaterials by a novel printing process. J. Mater. Sci. Mater. Med. 13:1163–1166, 2002.
    • (2002) J. Mater. Sci. Mater. Med. , vol.13 , pp. 1163-1166
    • Limpanuphap, S.1    Derby, B.2
  • 48
    • 27644595283 scopus 로고    scopus 로고
    • Functional bone engineering using ex vivi gene therapy and topology-optimized, biodegradable polymer composite scaffolds
    • COI: 1:CAS:528:DC%2BD2MXhtFKlsLzM, PID: 16259612
    • Lin, C.-Y., R. Schek, A. Mistry, X. Shi, A. G. Mikos, P. H. Krebsbach, and S. J. Hollister. Functional bone engineering using ex vivi gene therapy and topology-optimized, biodegradable polymer composite scaffolds. Tissue Eng. 11:1589–1598, 2005.
    • (2005) Tissue Eng. , vol.11 , pp. 1589-1598
    • Lin, C.-Y.1    Schek, R.2    Mistry, A.3    Shi, X.4    Mikos, A.G.5    Krebsbach, P.H.6    Hollister, S.J.7
  • 49
    • 25444472676 scopus 로고    scopus 로고
    • Water-soluble photopolymers for rapid prototyping of cellular materials
    • COI: 1:CAS:528:DC%2BD2MXntlCgsrg%3D
    • Liska, R., F. Schwager, C. Maier, R. Cano-Vives, and J. Stampfl. Water-soluble photopolymers for rapid prototyping of cellular materials. J. Appl. Polym. Sci. 97:2286–2298, 2005.
    • (2005) J. Appl. Polym. Sci. , vol.97 , pp. 2286-2298
    • Liska, R.1    Schwager, F.2    Maier, C.3    Cano-Vives, R.4    Stampfl, J.5
  • 50
    • 84872293178 scopus 로고    scopus 로고
    • The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography
    • COI: 1:STN:280:DC%2BC38zntFGqsQ%3D%3D, PID: 22055004, Image (Table 2) was reprinted with permission from Springer
    • Liu, M. J. J., S. M. Chou, C. K. Chua, B. C. M. Tay, and B. K. Ng. The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography. Med. Eng. Phys. 35:253–262, 2013; (Image (Table 2) was reprinted with permission from Springer.).
    • (2013) Med. Eng. Phys. , vol.35 , pp. 253-262
    • Liu, M.J.J.1    Chou, S.M.2    Chua, C.K.3    Tay, B.C.M.4    Ng, B.K.5
  • 51
    • 34249752062 scopus 로고    scopus 로고
    • On the manufacturability of scaffold mould using a 3D printing technology
    • Liu, C. Z., E. Sachlos, D. A. Wahl, Z. W. Han, and J. T. Czernuszka. On the manufacturability of scaffold mould using a 3D printing technology. Rapid Prototyp. J. 13:163–174, 2007.
    • (2007) Rapid Prototyp. J. , vol.13 , pp. 163-174
    • Liu, C.Z.1    Sachlos, E.2    Wahl, D.A.3    Han, Z.W.4    Czernuszka, J.T.5
  • 53
  • 54
    • 84867097728 scopus 로고    scopus 로고
    • Biocompatibility and biodegradation studies of PCL/b-TCP bone tissue scaffold fabricated by structural porogen method
    • COI: 1:CAS:528:DC%2BC38Xht1Ogtb7I, PID: 22669285, Image (Table 1) was reprinted with permission from Elsevier
    • Lu, L., Q. Zhang, D. Wootton, R. Chiou, D. Li, B. Lu, P. Lelkes, and J. Zhou. Biocompatibility and biodegradation studies of PCL/b-TCP bone tissue scaffold fabricated by structural porogen method. J. Mater. Sci. Mater. Med. 23:2217–2226, 2012; (Image (Table 1) was reprinted with permission from Elsevier).
    • (2012) J. Mater. Sci. Mater. Med. , vol.23 , pp. 2217-2226
    • Lu, L.1    Zhang, Q.2    Wootton, D.3    Chiou, R.4    Li, D.5    Lu, B.6    Lelkes, P.7    Zhou, J.8
  • 59
    • 77953651502 scopus 로고    scopus 로고
    • A review on stereolithography and its applications in biomedical engineering
    • COI: 1:CAS:528:DC%2BC3cXnt12rt7k%3D, PID: 20478613
    • Melchels, F. P. W., J. Feijen, and D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130, 2010.
    • (2010) Biomaterials , vol.31 , pp. 6121-6130
    • Melchels, F.P.W.1    Feijen, J.2    Grijpma, D.W.3
  • 61
    • 84879201066 scopus 로고    scopus 로고
    • The history of tissue engineering and regenerative medicine in perspective
    • Meyer U, Meyer Th, Handschel J, Wiesmann JP, (eds), Springer, Berlin
    • Meyer, U. The history of tissue engineering and regenerative medicine in perspective. In: Fundamentals of Tissue Engineering and Regenerative Medicine, edited by U. Meyer, Th Meyer, J. Handschel, and J. P. Wiesmann. Berlin: Springer, 2009, pp. 5–12.
    • (2009) Fundamentals of Tissue Engineering and Regenerative Medicine , pp. 5-12
    • Meyer, U.1
  • 63
    • 33646519215 scopus 로고    scopus 로고
    • Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering
    • COI: 1:CAS:528:DC%2BD28XkvVajsbo%3D, PID: 16678255
    • Mondrinos, M. J., R. Dembzynski, L. Lu, V. K. C. Byrapogu, D. M. Wootton, P. I. Lelkes, and J. Zhou. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408, 2006.
    • (2006) Biomaterials , vol.27 , pp. 4399-4408
    • Mondrinos, M.J.1    Dembzynski, R.2    Lu, L.3    Byrapogu, V.K.C.4    Wootton, D.M.5    Lelkes, P.I.6    Zhou, J.7
  • 65
    • 38449087800 scopus 로고    scopus 로고
    • 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation
    • COI: 1:CAS:528:DC%2BD1cXhsV2qsrg%3D
    • Moroni, L., R. Schotel, D. Hamann, J. R. de Wijn, and C. A. van Blitterswijk. 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv. Funct. Mater. 18:53–60, 2008.
    • (2008) Adv. Funct. Mater. , vol.18 , pp. 53-60
    • Moroni, L.1    Schotel, R.2    Hamann, D.3    de Wijn, J.R.4    van Blitterswijk, C.A.5
  • 66
    • 77953025978 scopus 로고    scopus 로고
    • Cell-laden microengineered gelatin methacrylate hydrogels
    • COI: 1:CAS:528:DC%2BC3cXmtlKitbo%3D, PID: 20417964
    • Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544, 2010.
    • (2010) Biomaterials , vol.31 , pp. 5536-5544
    • Nichol, J.W.1    Koshy, S.T.2    Bae, H.3    Hwang, C.M.4    Yamanlar, S.5    Khademhosseini, A.6
  • 67
    • 79953897232 scopus 로고    scopus 로고
    • Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering
    • COI: 1:CAS:528:DC%2BC3MXisFyitLw%3D, PID: 21366287
    • Ovsianikov, A., A. Deiwick, S. Van Vlierberghe, P. Dubruel, M. Lena, G. Dräger, and B. Chichkov. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12:851–858, 2011.
    • (2011) Biomacromolecules , vol.12 , pp. 851-858
    • Ovsianikov, A.1    Deiwick, A.2    Van Vlierberghe, S.3    Dubruel, P.4    Lena, M.5    Dräger, G.6    Chichkov, B.7
  • 70
    • 34247634561 scopus 로고    scopus 로고
    • Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine
    • COI: 1:CAS:528:DC%2BD2sXlt1WrtL8%3D
    • Ovsianikov, A., A. Ostendorf, and B. N. Chichkov. Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl. Surf. Sci. 253:6599–6602, 2007.
    • (2007) Appl. Surf. Sci. , vol.253 , pp. 6599-6602
    • Ovsianikov, A.1    Ostendorf, A.2    Chichkov, B.N.3
  • 71
    • 58549094696 scopus 로고    scopus 로고
    • 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system
    • COI: 1:CAS:528:DC%2BD1MXlvFGqtA%3D%3D, PID: 18758915
    • Park, S., G. Kim, Y. C. Jeon, Y. Koh, and W. Kim. 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J. Mater. Sci. Mater. Med. 20:229–234, 2009.
    • (2009) J. Mater. Sci. Mater. Med. , vol.20 , pp. 229-234
    • Park, S.1    Kim, G.2    Jeon, Y.C.3    Koh, Y.4    Kim, W.5
  • 72
    • 77953808787 scopus 로고    scopus 로고
    • Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces
    • COI: 1:CAS:528:DC%2BC3cXnslamt74%3D, PID: 20471083
    • Park, C. H., H. F. Rios, Q. Jin, M. E. Bland, C. L. Flanagan, S. J. Hollister, and W. V. Giannobile. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials 31:5945–5952, 2010.
    • (2010) Biomaterials , vol.31 , pp. 5945-5952
    • Park, C.H.1    Rios, H.F.2    Jin, Q.3    Bland, M.E.4    Flanagan, C.L.5    Hollister, S.J.6    Giannobile, W.V.7
  • 75
    • 33947193947 scopus 로고    scopus 로고
    • Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds
    • COI: 1:CAS:528:DC%2BD2sXjsVSlsLo%3D
    • Rumpler, M., A. Woesz, F. Varga, I. Manjubala, K. Klaushofer, and P. Fratzl. Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds. J. Biomed. Mater. Res. 81A:40–50, 2007.
    • (2007) J. Biomed. Mater. Res. , vol.81A , pp. 40-50
    • Rumpler, M.1    Woesz, A.2    Varga, F.3    Manjubala, I.4    Klaushofer, K.5    Fratzl, P.6
  • 76
    • 34250214157 scopus 로고    scopus 로고
    • Propagation of blood clotting in the complex biochemical network of hemostasis is described by a simple mechanism
    • COI: 1:CAS:528:DC%2BD2sXltV2itro%3D, PID: 17497790
    • Runyon, M. K., B. L. Johnson-Kerner, C. J. Kastrup, T. G. Van Ha, and R. F. Ismagilov. Propagation of blood clotting in the complex biochemical network of hemostasis is described by a simple mechanism. J. Am. Chem. Soc. 129:7014–7015, 2007.
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 7014-7015
    • Runyon, M.K.1    Johnson-Kerner, B.L.2    Kastrup, C.J.3    Van Ha, T.G.4    Ismagilov, R.F.5
  • 79
    • 0037376632 scopus 로고    scopus 로고
    • Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication
    • COI: 1:CAS:528:DC%2BD3sXis1SnsQ%3D%3D, PID: 12527290
    • Sachlos, E., N. Reis, C. Ainsley, B. Derby, and J. T. Czernuszka. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24:1487–1497, 2003.
    • (2003) Biomaterials , vol.24 , pp. 1487-1497
    • Sachlos, E.1    Reis, N.2    Ainsley, C.3    Derby, B.4    Czernuszka, J.T.5
  • 80
    • 77952836095 scopus 로고    scopus 로고
    • Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications
    • COI: 1:CAS:528:DC%2BC3cXpvFWjtLs%3D, PID: 20524047, Image (Table 2) was reprinted with permission from Springer
    • Saito, E., H. Kang, J. M. Taboas, A. Diggs, C. L. Flanagan, and S. J. Hollister. Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications. J. Mater. Sci. Mater. Med. 21:2371–2383, 2010; (Image (Table 2) was reprinted with permission from Springer.).
    • (2010) J. Mater. Sci. Mater. Med. , vol.21 , pp. 2371-2383
    • Saito, E.1    Kang, H.2    Taboas, J.M.3    Diggs, A.4    Flanagan, C.L.5    Hollister, S.J.6
  • 81
    • 78651283946 scopus 로고    scopus 로고
    • Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties
    • COI: 1:CAS:528:DC%2BC3cXhsVKis7%2FN, PID: 20953674
    • Schumacher, M., U. Deisinger, R. Detsch, and G. Ziegler. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. J. Mater. Sci. Mater. Med. 21:3119–3127, 2010.
    • (2010) J. Mater. Sci. Mater. Med. , vol.21 , pp. 3119-3127
    • Schumacher, M.1    Deisinger, U.2    Detsch, R.3    Ziegler, G.4
  • 82
    • 78349311839 scopus 로고    scopus 로고
    • Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique
    • COI: 1:CAS:528:DC%2BC3cXhtlyrsLzJ, PID: 20857322
    • Schumacher, M., F. Uhl, R. Detsch, U. Deisinger, and G. Ziegler. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J. Mater. Sci. Mater. Med. 21:3039–3048, 2010.
    • (2010) J. Mater. Sci. Mater. Med. , vol.21 , pp. 3039-3048
    • Schumacher, M.1    Uhl, F.2    Detsch, R.3    Deisinger, U.4    Ziegler, G.5
  • 83
    • 67349099426 scopus 로고    scopus 로고
    • Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology
    • COI: 1:CAS:528:DC%2BD1MXlvFCrur0%3D
    • Seol, Y. J., J. Y. Kim, E. K. Park, S. Y. Kim, and D. W. Cho. Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology. Microelectron. Eng. 86:1443–1446, 2009.
    • (2009) Microelectron. Eng. , vol.86 , pp. 1443-1446
    • Seol, Y.J.1    Kim, J.Y.2    Park, E.K.3    Kim, S.Y.4    Cho, D.W.5
  • 86
    • 0033996295 scopus 로고    scopus 로고
    • Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering
    • COI: 1:CAS:528:DC%2BD3cXjtF2lsbw%3D, PID: 10941212
    • Sodian, R., J. S. Sperling, D. P. Martin, A. Egozy, U. Stock, J. E. Mayer, and J. P. Vacanti. Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng. 6:183–188, 2000.
    • (2000) Tissue Eng. , vol.6 , pp. 183-188
    • Sodian, R.1    Sperling, J.S.2    Martin, D.P.3    Egozy, A.4    Stock, U.5    Mayer, J.E.6    Vacanti, J.P.7
  • 87
    • 0037210053 scopus 로고    scopus 로고
    • Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds
    • COI: 1:CAS:528:DC%2BD38XotlKgsr0%3D, PID: 12417192
    • Taboas, J. M., R. D. Maddox, P. H. Krebsbach, and S. J. Hollister. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194, 2003.
    • (2003) Biomaterials , vol.24 , pp. 181-194
    • Taboas, J.M.1    Maddox, R.D.2    Krebsbach, P.H.3    Hollister, S.J.4
  • 88
    • 77952574628 scopus 로고    scopus 로고
    • Indirect fabrication of gelatin scaffolds using rapid prototyping technology
    • Tan, J. Y., C. K. Chua, and K. F. Leong. Indirect fabrication of gelatin scaffolds using rapid prototyping technology. Virtual Phys. Prototyp. 5:45–53, 2010.
    • (2010) Virtual Phys. Prototyp. , vol.5 , pp. 45-53
    • Tan, J.Y.1    Chua, C.K.2    Leong, K.F.3
  • 89
    • 84872607223 scopus 로고    scopus 로고
    • Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect
    • COI: 1:CAS:528:DC%2BC3sXptlWqtA%3D%3D, Image (Table 1) was reprinted with permission from Elsevier
    • Tan, J. Y., C. K. Chua, and K. F. Leong. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect. Rapid Prototyp. Tech. 15:83–96, 2013. doi:10.1007/s10544-012-9690-3; (Image (Table 1) was reprinted with permission from Elsevier).
    • (2013) Rapid Prototyp. Tech. , vol.15 , pp. 83-96
    • Tan, J.Y.1    Chua, C.K.2    Leong, K.F.3
  • 90
    • 14844315100 scopus 로고    scopus 로고
    • Fugitive inks for direct-write assembly of three-dimensional microvascular networks
    • COI: 1:CAS:528:DC%2BD2MXitl2ku7g%3D
    • Therriault, D., R. F. Shepherd, S. R. White, and J. A. Lewis. Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Adv. Mater. 17:395–399, 2005.
    • (2005) Adv. Mater. , vol.17 , pp. 395-399
    • Therriault, D.1    Shepherd, R.F.2    White, S.R.3    Lewis, J.A.4
  • 91
    • 0038545277 scopus 로고    scopus 로고
    • Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly
    • COI: 1:CAS:528:DC%2BD3sXisFWgs7o%3D, PID: 12690401
    • Therriault, D., S. R. White, and J. A. Lewis. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2:265–271, 2003.
    • (2003) Nat. Mater. , vol.2 , pp. 265-271
    • Therriault, D.1    White, S.R.2    Lewis, J.A.3
  • 93
    • 37249054616 scopus 로고    scopus 로고
    • Development of biodegradable scaffolds based on patient-specific arterial configuration
    • COI: 1:CAS:528:DC%2BD2sXhsVOltrbM, PID: 17868940
    • Uchida, T., S. Ikeda, H. Oura, M. Tada, T. Nakano, T. Fukuda, T. Matsuda, M. Negoro, and F. Arai. Development of biodegradable scaffolds based on patient-specific arterial configuration. J. Biotechnol. 133:213–218, 2008.
    • (2008) J. Biotechnol. , vol.133 , pp. 213-218
    • Uchida, T.1    Ikeda, S.2    Oura, H.3    Tada, M.4    Nakano, T.5    Fukuda, T.6    Matsuda, T.7    Negoro, M.8    Arai, F.9
  • 99
    • 79955793532 scopus 로고    scopus 로고
    • Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review
    • PID: 21388145
    • Van Vlierberghe, S., P. Dubruel, and E. Schacht. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408, 2011.
    • (2011) Biomacromolecules , vol.12 , pp. 1387-1408
    • Van Vlierberghe, S.1    Dubruel, P.2    Schacht, E.3
  • 100
    • 78049513369 scopus 로고    scopus 로고
    • Hydrogel network formation revised: high-resolution magic angle spinning nuclear magnetic resonance as a powerful tool for measuring absolute hydrogel cross-link efficiencies
    • PID: 20925989
    • Van Vlierberghe, S., B. Fritzinger, J. C. Martins, and P. Dubruel. Hydrogel network formation revised: high-resolution magic angle spinning nuclear magnetic resonance as a powerful tool for measuring absolute hydrogel cross-link efficiencies. Appl. Spectrosc. 64:1176–1180, 2010.
    • (2010) Appl. Spectrosc. , vol.64 , pp. 1176-1180
    • Van Vlierberghe, S.1    Fritzinger, B.2    Martins, J.C.3    Dubruel, P.4
  • 101
    • 79954610765 scopus 로고    scopus 로고
    • Reversible gelatin-based hydrogels: finetuning of material properties
    • Van Vlierberghe, S., E. Schacht, and P. Dubruel. Reversible gelatin-based hydrogels: finetuning of material properties. Eur. Polym. J. 47:1039–1047, 2011.
    • (2011) Eur. Polym. J. , vol.47 , pp. 1039-1047
    • Van Vlierberghe, S.1    Schacht, E.2    Dubruel, P.3
  • 102
    • 84902449499 scopus 로고    scopus 로고
    • Proof-of-concept demonstration of a total internal reflection based module for fluorescence and absorbance detection using a 3D-printed syringe pump
    • Verschooten, T., H. Ottevaere, M. Vervaeke, J. Van Erps, and H. Thienpont. Proof-of-concept demonstration of a total internal reflection based module for fluorescence and absorbance detection using a 3D-printed syringe pump. Proc. SPIE 9130:91300E–91300E-11, 2014.
    • (2014) Proc. SPIE , vol.9130
    • Verschooten, T.1    Ottevaere, H.2    Vervaeke, M.3    Van Erps, J.4    Thienpont, H.5
  • 104
    • 61549132913 scopus 로고    scopus 로고
    • The engineering of patient-specific, anatomically shaped, digits
    • COI: 1:CAS:528:DC%2BD1MXjtFamsrs%3D, PID: 19203788
    • Wang, P., J. Hu, and P. X. Ma. The engineering of patient-specific, anatomically shaped, digits. Biomaterials 30:2735–2740, 2009.
    • (2009) Biomaterials , vol.30 , pp. 2735-2740
    • Wang, P.1    Hu, J.2    Ma, P.X.3
  • 106
    • 17844401459 scopus 로고    scopus 로고
    • Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting
    • Image (Table 2) was reprinted with permission from Springer
    • Woesz, A., M. Rumpler, J. Stampfl, F. Varga, N. Fratzl-Zelman, P. Roschger, K. Klaushofer, and P. Fratzl. Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting. Mater. Sci. Eng., C 25:181–186, 2005; (Image (Table 2) was reprinted with permission from Springer).
    • (2005) Mater. Sci. Eng., C , vol.25 , pp. 181-186
    • Woesz, A.1    Rumpler, M.2    Stampfl, J.3    Varga, F.4    Fratzl-Zelman, N.5    Roschger, P.6    Klaushofer, K.7    Fratzl, P.8
  • 107
    • 1642319363 scopus 로고    scopus 로고
    • Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique
    • COI: 1:CAS:528:DC%2BD2cXitlWqsLc%3D, PID: 15046905
    • Woodfield, T. B. F., J. Malda, J. de Wijn, F. Péters, J. Riesle, and C. A. van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161, 2004.
    • (2004) Biomaterials , vol.25 , pp. 4149-4161
    • Woodfield, T.B.F.1    Malda, J.2    de Wijn, J.3    Péters, F.4    Riesle, J.5    van Blitterswijk, C.A.6
  • 108
    • 76449091061 scopus 로고    scopus 로고
    • Direct-write assembly of biomimetic microvascular networks for efficient fluid transport
    • COI: 1:CAS:528:DC%2BC3cXhsFGisrY%3D
    • Wu, W., C. J. Hansen, A. M. Aragón, P. H. Geubelle, S. R. White, and J. A. Lewis. Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter 6:739, 2010.
    • (2010) Soft Matter , vol.6 , pp. 739
    • Wu, W.1    Hansen, C.J.2    Aragón, A.M.3    Geubelle, P.H.4    White, S.R.5    Lewis, J.A.6
  • 109
    • 0036191695 scopus 로고    scopus 로고
    • Review the design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
    • COI: 1:CAS:528:DC%2BD38XislChu7g%3D, PID: 11886649
    • Yang, S., K.-F. Leong, D. Zhaohui, and C. Chua. Review the design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8:1–11, 2002.
    • (2002) Tissue Eng. , vol.8 , pp. 1-11
    • Yang, S.1    Leong, K.-F.2    Zhaohui, D.3    Chua, C.4
  • 110
    • 34347343787 scopus 로고    scopus 로고
    • Comparison of drying methods in the fabrication of collagen scaffold via indirect
    • Yeong, W., C. Chua, K. Leong, M. Chandrasekaran, and M. Lee. Comparison of drying methods in the fabrication of collagen scaffold via indirect. Rapid Prototyp. 82:260–266, 2006. doi:10.1002/jbmb.
    • (2006) Rapid Prototyp. , vol.82 , pp. 260-266
    • Yeong, W.1    Chua, C.2    Leong, K.3    Chandrasekaran, M.4    Lee, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.