메뉴 건너뛰기




Volumn 45, Issue 1, 2017, Pages 23-44

3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery

Author keywords

3D printing; Binder jetting; Bone; Drug delivery; Material extrusion; Powder bed fusion; Tissue engineering; Vat polymerization

Indexed keywords

ADDITIVES; BINDERS; BIOCOMPATIBILITY; BONE; CALCIUM PHOSPHATE; CERAMIC MATERIALS; CONTROLLED DRUG DELIVERY; DRUG DELIVERY; EXTRUSION; FUNCTIONAL POLYMERS; INDUSTRIAL RESEARCH; PHOSPHORUS COMPOUNDS; POLYMERIZATION; TARGETED DRUG DELIVERY; TISSUE; TISSUE ENGINEERING;

EID: 84975297327     PISSN: 00906964     EISSN: 15739686     Source Type: Journal    
DOI: 10.1007/s10439-016-1678-3     Document Type: Article
Times cited : (297)

References (99)
  • 1
    • 84944274278 scopus 로고    scopus 로고
    • 3D plotting of growth factor loaded calcium phosphate cement scaffolds
    • COI: 1:CAS:528:DC%2BC2MXhsVyis7nP, PID: 26318366
    • Akkineni, A. R., Y. Luo, M. Schumacher, B. Nies, A. Lode, and M. Gelinsky. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 27:264–274, 2015.
    • (2015) Acta Biomater. , vol.27 , pp. 264-274
    • Akkineni, A.R.1    Luo, Y.2    Schumacher, M.3    Nies, B.4    Lode, A.5    Gelinsky, M.6
  • 2
    • 84896505907 scopus 로고    scopus 로고
    • Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation
    • COI: 1:CAS:528:DC%2BC3sXhvVKit7nF, PID: 24211731
    • Almeida, C. R., T. Serra, M. I. Oliveira, J. A. Planell, M. A. Barbosa, and M. Navarro. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater. 10:613–622, 2014.
    • (2014) Acta Biomater. , vol.10 , pp. 613-622
    • Almeida, C.R.1    Serra, T.2    Oliveira, M.I.3    Planell, J.A.4    Barbosa, M.A.5    Navarro, M.6
  • 3
    • 84856744773 scopus 로고    scopus 로고
    • Standard Terminology for Additive Manufacturing Technologies West Conshohocken
    • ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies West Conshohocken, PA, 2012. doi: 10.1520/F2792-12A, http://www.astm.org/.
    • (2012) PA
  • 5
    • 67650685814 scopus 로고    scopus 로고
    • Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release
    • COI: 1:CAS:528:DC%2BD1MXos1Squrw%3D
    • Barralet, J., U. Gbureck, P. Habibovic, E. Vorndran, C. Gerard, and C. J. Doillon. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng. A 15:1601–1609, 2009. doi:10.1089/ten.tea.2007.0370.
    • (2009) Tissue Eng. A , vol.15 , pp. 1601-1609
    • Barralet, J.1    Gbureck, U.2    Habibovic, P.3    Vorndran, E.4    Gerard, C.5    Doillon, C.J.6
  • 6
    • 34548732504 scopus 로고    scopus 로고
    • Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics
    • COI: 1:CAS:528:DC%2BD28Xhtlantb7F
    • Barrere, F., C. A. van Blitterswijk, and K. de Groot. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomed. 1:317–332, 2006.
    • (2006) Int. J. Nanomed. , vol.1 , pp. 317-332
    • Barrere, F.1    van Blitterswijk, C.A.2    de Groot, K.3
  • 9
    • 0242383932 scopus 로고    scopus 로고
    • New hydraulic cements based on alpha-tricalcium phosphate-calcium sulfate dihydrate mixtures
    • COI: 1:CAS:528:DC%2BD3sXosFOrt7g%3D, PID: 14607514
    • Bohner, M. New hydraulic cements based on alpha-tricalcium phosphate-calcium sulfate dihydrate mixtures. Biomaterials 25:741–749, 2004.
    • (2004) Biomaterials , vol.25 , pp. 741-749
    • Bohner, M.1
  • 10
    • 84857784368 scopus 로고    scopus 로고
    • Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review
    • PID: 22127225
    • Bose, S., and S. Tarafder. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8(4):1401–1421, 2011.
    • (2011) Acta Biomater. , vol.8 , Issue.4 , pp. 1401-1421
    • Bose, S.1    Tarafder, S.2
  • 11
    • 34548528027 scopus 로고    scopus 로고
    • Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction
    • COI: 1:CAS:528:DC%2BD2sXhtV2isrbE
    • Brunner, T. J., R. N. Grass, M. Bohner, and W. J. Stark. Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J. Mater. Chem. 17:4072, 2007.
    • (2007) J. Mater. Chem. , vol.17 , pp. 4072
    • Brunner, T.J.1    Grass, R.N.2    Bohner, M.3    Stark, W.J.4
  • 12
    • 84855956567 scopus 로고    scopus 로고
    • Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds
    • COI: 1:CAS:528:DC%2BC3MXhsFGjtL%2FL, PID: 21925623
    • Butscher, A., M. Bohner, C. Roth, A. Ernstberger, R. Heuberger, N. Doebelin, P. R. von Rohr, and R. Muller. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater. 8:373–385, 2012.
    • (2012) Acta Biomater , vol.8 , pp. 373-385
    • Butscher, A.1    Bohner, M.2    Roth, C.3    Ernstberger, A.4    Heuberger, R.5    Doebelin, N.6    von Rohr, P.R.7    Muller, R.8
  • 13
    • 84899499112 scopus 로고    scopus 로고
    • Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement
    • PID: 24658159
    • Castilho, M., M. Dias, E. Vorndran, U. Gbureck, P. Fernandes, I. Pires, B. Gouveia, H. Armes, E. Pires, and J. Rodrigues. Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement. Biofabrication 6:025005, 2014. doi:10.1088/1758-5082/6/2/025005.
    • (2014) Biofabrication , vol.6 , pp. 025005
    • Castilho, M.1    Dias, M.2    Vorndran, E.3    Gbureck, U.4    Fernandes, P.5    Pires, I.6    Gouveia, B.7    Armes, H.8    Pires, E.9    Rodrigues, J.10
  • 14
    • 84896792598 scopus 로고    scopus 로고
    • Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects
    • PID: 24429776
    • Castilho, M., C. Moseke, A. Ewald, U. Gbureck, J. Groll, I. Pires, J. Tessmar, and E. Vorndran. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6:015006, 2014. doi:10.1088/1758-5082/6/1/015006.
    • (2014) Biofabrication , vol.6 , pp. 015006
    • Castilho, M.1    Moseke, C.2    Ewald, A.3    Gbureck, U.4    Groll, J.5    Pires, I.6    Tessmar, J.7    Vorndran, E.8
  • 15
    • 84924310031 scopus 로고    scopus 로고
    • Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing
    • PID: 25562119
    • Castilho, M., J. Rodrigues, I. Pires, B. Gouveia, M. Pereira, C. Moseke, J. Groll, A. Ewald, and E. Vorndran. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 7:015004, 2015. doi:10.1088/1758-5090/7/1/015004.
    • (2015) Biofabrication , vol.7 , pp. 015004
    • Castilho, M.1    Rodrigues, J.2    Pires, I.3    Gouveia, B.4    Pereira, M.5    Moseke, C.6    Groll, J.7    Ewald, A.8    Vorndran, E.9
  • 16
    • 84873973425 scopus 로고    scopus 로고
    • Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies
    • COI: 1:CAS:528:DC%2BC38XhsVCisbbM, PID: 22796326
    • Chai, Y. C., A. Carlier, J. Bolander, S. J. Roberts, L. Geris, J. Schrooten, H. Van Oosterwyck, and F. P. Luyten. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 8:3876–3887, 2012.
    • (2012) Acta Biomater. , vol.8 , pp. 3876-3887
    • Chai, Y.C.1    Carlier, A.2    Bolander, J.3    Roberts, S.J.4    Geris, L.5    Schrooten, J.6    Van Oosterwyck, H.7    Luyten, F.P.8
  • 17
    • 63449129756 scopus 로고    scopus 로고
    • Next generation calcium phosphate-based biomaterials
    • COI: 1:CAS:528:DC%2BD1MXks1Oku7s%3D, PID: 19280963
    • Chow, L. C. Next generation calcium phosphate-based biomaterials. Dent. Mater. J. 28:1–10, 2009.
    • (2009) Dent. Mater. J. , vol.28 , pp. 1-10
    • Chow, L.C.1
  • 18
    • 0034957704 scopus 로고    scopus 로고
    • Hydroxyapatite implants with designed internal architecture
    • COI: 1:CAS:528:DC%2BD3MXlt1aisL8%3D, PID: 15348260
    • Chu, T. M., J. W. Halloran, S. J. Hollister, and S. E. Feinberg. Hydroxyapatite implants with designed internal architecture. J. Mater. Sci. Mater. Med. 12:471–478, 2001.
    • (2001) J. Mater. Sci. Mater. Med. , vol.12 , pp. 471-478
    • Chu, T.M.1    Halloran, J.W.2    Hollister, S.J.3    Feinberg, S.E.4
  • 19
    • 84934880846 scopus 로고    scopus 로고
    • Toward smart implant synthesis: bonding bioceramics of different resorbability to match bone growth rates
    • COI: 1:CAS:528:DC%2BC2MXhtFOrsL3L, PID: 26032983
    • Comesana, R., F. Lusquinos, J. Del Val, F. Quintero, A. Riveiro, M. Boutinguiza, J. R. Jones, R. G. Hill, and J. Pou. Toward smart implant synthesis: bonding bioceramics of different resorbability to match bone growth rates. Sci. Rep. 5:10677, 2015. doi:10.1038/srep10677.
    • (2015) Sci. Rep. , vol.5 , pp. 10677
    • Comesana, R.1    Lusquinos, F.2    Del Val, J.3    Quintero, F.4    Riveiro, A.5    Boutinguiza, M.6    Jones, J.R.7    Hill, R.G.8    Pou, J.9
  • 20
    • 84893500059 scopus 로고    scopus 로고
    • Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure
    • COI: 1:CAS:528:DC%2BC2cXitFOisL0%3D, PID: 24304192
    • Costa, P. F., C. Vaquette, Q. Zhang, R. L. Reis, S. Ivanovski, and D. W. Hutmacher. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J. Clin. Periodontol. 41:283–294, 2014. doi:10.1111/jcpe.12214.
    • (2014) J. Clin. Periodontol. , vol.41 , pp. 283-294
    • Costa, P.F.1    Vaquette, C.2    Zhang, Q.3    Reis, R.L.4    Ivanovski, S.5    Hutmacher, D.W.6
  • 21
    • 80051550066 scopus 로고    scopus 로고
    • In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds
    • COI: 1:CAS:528:DC%2BC3MXhsVWjsbzM, PID: 20659962
    • Detsch, R., S. Schaefer, U. Deisinger, G. Ziegler, H. Seitz, and B. Leukers. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J. Biomater. Appl. 26:359–380, 2011. doi:10.1177/0885328210373285.
    • (2011) J. Biomater. Appl. , vol.26 , pp. 359-380
    • Detsch, R.1    Schaefer, S.2    Deisinger, U.3    Ziegler, G.4    Seitz, H.5    Leukers, B.6
  • 22
    • 40849141369 scopus 로고    scopus 로고
    • 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique
    • COI: 1:CAS:528:DC%2BD1cXjt1Snsr8%3D, PID: 17990079
    • Detsch, R., F. Uhl, U. Deisinger, and G. Ziegler. 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J. Mater. Sci. Mater. Med. 19:1491–1496, 2008.
    • (2008) J. Mater. Sci. Mater. Med. , vol.19 , pp. 1491-1496
    • Detsch, R.1    Uhl, F.2    Deisinger, U.3    Ziegler, G.4
  • 23
    • 77957147532 scopus 로고    scopus 로고
    • Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor
    • COI: 1:CAS:528:DC%2BC3cXht1Wgsr%2FP, PID: 20504805
    • Duan, B., and M. Wang. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. R. Soc. Interface 7(Suppl 5):S615–S629, 2010.
    • (2010) J. R. Soc. Interface , vol.7 , pp. S615-S629
    • Duan, B.1    Wang, M.2
  • 24
    • 77958101381 scopus 로고    scopus 로고
    • Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering
    • COI: 1:CAS:528:DC%2BC3cXht12ksbbE, PID: 20601244
    • Duan, B., M. Wang, W. Y. Zhou, W. L. Cheung, Z. Y. Li, and W. W. Lu. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6:4495–4505, 2010. doi:10.1016/j.actbio.2010.4406.4024.
    • (2010) Acta Biomater. , vol.6 , pp. 4495-4505
    • Duan, B.1    Wang, M.2    Zhou, W.Y.3    Cheung, W.L.4    Li, Z.Y.5    Lu, W.W.6
  • 25
    • 0036502570 scopus 로고    scopus 로고
    • Reactivity of alpha-tricalcium phosphate
    • COI: 1:CAS:528:DC%2BD38XivV2ntr4%3D
    • Durucan, C., and P. W. Brown. Reactivity of alpha-tricalcium phosphate. J. Mater. Sci. 37:963–969, 2002.
    • (2002) J. Mater. Sci. , vol.37 , pp. 963-969
    • Durucan, C.1    Brown, P.W.2
  • 27
    • 84883225907 scopus 로고    scopus 로고
    • Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique
    • PID: 23504981
    • El-Ghannam, A., A. Hart, D. White, and L. Cunningham. Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique. J. Biomed. Mater. Res. A 101:2851–2861, 2013.
    • (2013) J. Biomed. Mater. Res. A , vol.101 , pp. 2851-2861
    • El-Ghannam, A.1    Hart, A.2    White, D.3    Cunningham, L.4
  • 28
    • 8444251789 scopus 로고    scopus 로고
    • Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery
    • COI: 1:STN:280:DC%2BD2crltFSisQ%3D%3D, PID: 15470721
    • El-Ghannam, A., C. Q. Ning, and J. Mehta. Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery. J. Biomed. Mater. Res. A 71:377–390, 2004.
    • (2004) J. Biomed. Mater. Res. A , vol.71 , pp. 377-390
    • El-Ghannam, A.1    Ning, C.Q.2    Mehta, J.3
  • 29
    • 84885077192 scopus 로고    scopus 로고
    • 2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo
    • COI: 1:CAS:528:DC%2BC3sXhsVSkurzM, PID: 23871941
    • 2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 9:9137–9148, 2013. doi:10.1016/j.actbio.2013.9107.9009.
    • (2013) Acta Biomater. , vol.9 , pp. 9137-9148
    • Fielding, G.1    Bose, S.2
  • 30
    • 80052273289 scopus 로고    scopus 로고
    • Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration
    • COI: 1:CAS:528:DC%2BC3MXhtFSqs7zO, PID: 21745606
    • Fu, Q., E. Saiz, and A. P. Tomsia. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater. 7:3547–3554, 2011.
    • (2011) Acta Biomater. , vol.7 , pp. 3547-3554
    • Fu, Q.1    Saiz, E.2    Tomsia, A.P.3
  • 31
    • 33748105789 scopus 로고    scopus 로고
    • Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone
    • COI: 1:CAS:528:DC%2BD28XosFWqtL0%3D, PID: 16932863
    • Gao, Y., W. L. Cao, X. Y. Wang, Y. D. Gong, J. M. Tian, N. M. Zhao, and X. F. Zhang. Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone. J. Mater. Sci. Mater. Med. 17:815–823, 2006.
    • (2006) J. Mater. Sci. Mater. Med. , vol.17 , pp. 815-823
    • Gao, Y.1    Cao, W.L.2    Wang, X.Y.3    Gong, Y.D.4    Tian, J.M.5    Zhao, N.M.6    Zhang, X.F.7
  • 32
    • 84908496206 scopus 로고    scopus 로고
    • Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
    • COI: 1:CAS:528:DC%2BC2cXhsFWitrvF, PID: 25130390
    • Gao, G., A. F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9:1304–1311, 2014.
    • (2014) Biotechnol. J. , vol.9 , pp. 1304-1311
    • Gao, G.1    Schilling, A.F.2    Yonezawa, T.3    Wang, J.4    Dai, G.5    Cui, X.6
  • 33
    • 0038692860 scopus 로고    scopus 로고
    • Mechanical activation and cement formation of β-tricalcium phosphate
    • COI: 1:CAS:528:DC%2BD3sXltFCltrs%3D, PID: 12853242
    • Gbureck, U. Mechanical activation and cement formation of β-tricalcium phosphate. Biomaterials 24:4123–4131, 2003.
    • (2003) Biomaterials , vol.24 , pp. 4123-4131
    • Gbureck, U.1
  • 34
    • 34250670480 scopus 로고    scopus 로고
    • Direct printing of bioceramic implants with spatially localized angiogenic factors
    • COI: 1:CAS:528:DC%2BD2sXjvVSntL4%3D
    • Gbureck, U., T. Hölzel, C. J. Doillon, F. A. Müller, and J. E. Barralet. Direct printing of bioceramic implants with spatially localized angiogenic factors. Adv. Mater. 19:795–800, 2007.
    • (2007) Adv. Mater. , vol.19 , pp. 795-800
    • Gbureck, U.1    Hölzel, T.2    Doillon, C.J.3    Müller, F.A.4    Barralet, J.E.5
  • 35
    • 38049110241 scopus 로고    scopus 로고
    • Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing
    • COI: 1:CAS:528:DC%2BD1cXosVWl
    • Gbureck, U., T. Hölzel, U. Klammert, K. Würzler, F. A. Müller, and J. E. Barralet. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv. Funct. Mater. 17:3940–3945, 2007.
    • (2007) Adv. Funct. Mater. , vol.17 , pp. 3940-3945
    • Gbureck, U.1    Hölzel, T.2    Klammert, U.3    Würzler, K.4    Müller, F.A.5    Barralet, J.E.6
  • 36
    • 48549084335 scopus 로고    scopus 로고
    • Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions
    • COI: 1:CAS:528:DC%2BD1cXht1CjtbvJ, PID: 18485844
    • Gbureck, U., E. Vorndran, and J. E. Barralet. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions. Acta Biomater. 4:1480–1486, 2008.
    • (2008) Acta Biomater. , vol.4 , pp. 1480-1486
    • Gbureck, U.1    Vorndran, E.2    Barralet, J.E.3
  • 37
    • 34548404586 scopus 로고    scopus 로고
    • Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices
    • COI: 1:CAS:528:DC%2BD2sXhtVSktbnL, PID: 17655962
    • Gbureck, U., E. Vorndran, F. A. Muller, and J. E. Barralet. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J. Control Release 122:173–180, 2007.
    • (2007) J. Control Release , vol.122 , pp. 173-180
    • Gbureck, U.1    Vorndran, E.2    Muller, F.A.3    Barralet, J.E.4
  • 38
    • 0042978778 scopus 로고    scopus 로고
    • Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption
    • COI: 1:CAS:528:DC%2BD3sXnsVymurc%3D, PID: 12968667
    • Gerstenfeld, L. C., T. J. Cho, T. Kon, T. Aizawa, A. Tsay, J. Fitch, G. L. Barnes, D. T. Graves, and T. A. Einhorn. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J. Bone Miner. Res. 18:1584–1592, 2003.
    • (2003) J. Bone Miner. Res. , vol.18 , pp. 1584-1592
    • Gerstenfeld, L.C.1    Cho, T.J.2    Kon, T.3    Aizawa, T.4    Tsay, A.5    Fitch, J.6    Barnes, G.L.7    Graves, D.T.8    Einhorn, T.A.9
  • 39
    • 37349085843 scopus 로고    scopus 로고
    • Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants
    • COI: 1:CAS:528:DC%2BD2sXhsVGltbjE, PID: 18055009
    • Habibovic, P., U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29:944–953, 2008.
    • (2008) Biomaterials , vol.29 , pp. 944-953
    • Habibovic, P.1    Gbureck, U.2    Doillon, C.J.3    Bassett, D.C.4    van Blitterswijk, C.A.5    Barralet, J.E.6
  • 40
    • 84940703775 scopus 로고    scopus 로고
    • Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study
    • PID: 26380018
    • He, H. Y., J. Y. Zhang, X. Mi, Y. Hu, and X. Y. Gu. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study. Int. J. Clin. Exp. Med. 8:11777–11785, 2015.
    • (2015) Int. J. Clin. Exp. Med. , vol.8 , pp. 11777-11785
    • He, H.Y.1    Zhang, J.Y.2    Mi, X.3    Hu, Y.4    Gu, X.Y.5
  • 41
    • 0003256215 scopus 로고
    • Apparatus for production of three-dimensional objects by stereolithography
    • Hull C. W. Apparatus for production of three-dimensional objects by stereolithography. Google Patents, 1986.
    • (1986) Google Patents
    • Hull, C.W.1
  • 43
    • 84896715739 scopus 로고    scopus 로고
    • 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration
    • COI: 1:CAS:528:DC%2BC2cXisFSnu7g%3D, PID: 24529628
    • Inzana, J. A., D. Olvera, S. M. Fuller, J. P. Kelly, O. A. Graeve, E. M. Schwarz, S. L. Kates, and H. A. Awad. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034, 2014. doi:10.1016/j.biomaterials.2014.4001.4064.
    • (2014) Biomaterials , vol.35 , pp. 4026-4034
    • Inzana, J.A.1    Olvera, D.2    Fuller, S.M.3    Kelly, J.P.4    Graeve, O.A.5    Schwarz, E.M.6    Kates, S.L.7    Awad, H.A.8
  • 44
    • 84947062378 scopus 로고    scopus 로고
    • 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection
    • COI: 1:STN:280:DC%2BC28zptFGjsw%3D%3D, PID: 26535494
    • Inzana, J. A., R. P. Trombetta, E. M. Schwarz, S. L. Kates, and H. A. Awad. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur. Cell Mater. 30:232–247, 2015.
    • (2015) Eur. Cell Mater. , vol.30 , pp. 232-247
    • Inzana, J.A.1    Trombetta, R.P.2    Schwarz, E.M.3    Kates, S.L.4    Awad, H.A.5
  • 45
    • 84949257018 scopus 로고    scopus 로고
    • Bone regeneration in critical bone defects using three-dimensionally printed beta-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2
    • PID: 26513656
    • Ishack, S., A. Mediero, T. Wilder, J. L. Ricci, and B. N. Cronstein. Bone regeneration in critical bone defects using three-dimensionally printed beta-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J. Biomed. Mater. Res. B Appl. Biomater. 2015. doi:10.1002/jbm.b.33561.
    • (2015) J. Biomed. Mater. Res. B Appl. Biomater.
    • Ishack, S.1    Mediero, A.2    Wilder, T.3    Ricci, J.L.4    Cronstein, B.N.5
  • 46
    • 0026569897 scopus 로고
    • The role of brushite and octacalcium phosphate in apatite formation
    • COI: 1:STN:280:DyaK387htVCrug%3D%3D, PID: 1730071
    • Johnsson, M. S., and G. H. Nancollas. The role of brushite and octacalcium phosphate in apatite formation. Crit. Rev. Oral Biol. Med. 3:61–82, 1992.
    • (1992) Crit. Rev. Oral Biol. Med. , vol.3 , pp. 61-82
    • Johnsson, M.S.1    Nancollas, G.H.2
  • 47
    • 0142059732 scopus 로고    scopus 로고
    • Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling
    • Kalita, S. J., S. Bose, H. L. Hosick, and A. Bandyopadhyay. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C 23:611–620, 2003.
    • (2003) Mater. Sci. Eng. C , vol.23 , pp. 611-620
    • Kalita, S.J.1    Bose, S.2    Hosick, H.L.3    Bandyopadhyay, A.4
  • 48
    • 84960905071 scopus 로고    scopus 로고
    • A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
    • COI: 1:CAS:528:DC%2BC28XisFKhsbg%3D, PID: 26878319
    • Kang, H. W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34(3):312–319, 2016.
    • (2016) Nat. Biotechnol. , vol.34 , Issue.3 , pp. 312-319
    • Kang, H.W.1    Lee, S.J.2    Ko, I.K.3    Kengla, C.4    Yoo, J.J.5    Atala, A.6
  • 49
    • 34248562050 scopus 로고    scopus 로고
    • Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants
    • COI: 1:CAS:528:DC%2BD2sXlt1Klu7w%3D, PID: 17216579
    • Khalyfa, A., S. Vogt, J. Weisser, G. Grimm, A. Rechtenbach, W. Meyer, and M. Schnabelrauch. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J. Mater. Sci. Mater. Med. 18:909–916, 2007.
    • (2007) J. Mater. Sci. Mater. Med. , vol.18 , pp. 909-916
    • Khalyfa, A.1    Vogt, S.2    Weisser, J.3    Grimm, G.4    Rechtenbach, A.5    Meyer, W.6    Schnabelrauch, M.7
  • 51
    • 77957309354 scopus 로고    scopus 로고
    • Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression
    • COI: 1:CAS:528:DC%2BC3cXhtF2ru7rK
    • Kim, K., A. Yeatts, D. Dean, and J. P. Fisher. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng. B Rev. 16:523–539, 2010.
    • (2010) Tissue Eng. B Rev. , vol.16 , pp. 523-539
    • Kim, K.1    Yeatts, A.2    Dean, D.3    Fisher, J.P.4
  • 52
    • 78349308385 scopus 로고    scopus 로고
    • Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing
    • COI: 1:CAS:528:DC%2BC3cXhtlyrsL%2FK, PID: 20740307
    • Klammert, U., E. Vorndran, T. Reuther, F. A. Muller, K. Zorn, and U. Gbureck. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 21:2947–2953, 2010.
    • (2010) J. Mater. Sci. Mater. Med. , vol.21 , pp. 2947-2953
    • Klammert, U.1    Vorndran, E.2    Reuther, T.3    Muller, F.A.4    Zorn, K.5    Gbureck, U.6
  • 54
    • 79958202747 scopus 로고    scopus 로고
    • Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo
    • PID: 18646204
    • Lam, C. X., D. W. Hutmacher, J. T. Schantz, M. A. Woodruff, and S. H. Teoh. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J. Biomed. Mater. Res. A 90:906–919, 2009.
    • (2009) J. Biomed. Mater. Res. A , vol.90 , pp. 906-919
    • Lam, C.X.1    Hutmacher, D.W.2    Schantz, J.T.3    Woodruff, M.A.4    Teoh, S.H.5
  • 55
    • 67349195980 scopus 로고    scopus 로고
    • Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography
    • COI: 1:CAS:528:DC%2BD1MXlvFCrurc%3D
    • Lee, J. W., G. Ahn, D. S. Kim, and D.-W. Cho. Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron. Eng. 86:1465–1467, 2009.
    • (2009) Microelectron. Eng. , vol.86 , pp. 1465-1467
    • Lee, J.W.1    Ahn, G.2    Kim, D.S.3    Cho, D.-W.4
  • 56
    • 78549257386 scopus 로고    scopus 로고
    • Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres
    • COI: 1:CAS:528:DC%2BC3cXhsVCnurbI, PID: 20933279
    • Lee, J. W., K. S. Kang, S. H. Lee, J. Y. Kim, B. K. Lee, and D. W. Cho. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–752, 2011.
    • (2011) Biomaterials , vol.32 , pp. 744-752
    • Lee, J.W.1    Kang, K.S.2    Lee, S.H.3    Kim, J.Y.4    Lee, B.K.5    Cho, D.W.6
  • 57
    • 34247624498 scopus 로고    scopus 로고
    • Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters
    • COI: 1:CAS:528:DC%2BD2sXitFCmsr8%3D, PID: 17326677
    • Lee, K. W., S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8:1077–1084, 2007.
    • (2007) Biomacromolecules , vol.8 , pp. 1077-1084
    • Lee, K.W.1    Wang, S.2    Fox, B.C.3    Ritman, E.L.4    Yaszemski, M.J.5    Lu, L.6
  • 58
    • 42249092222 scopus 로고    scopus 로고
    • Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites
    • COI: 1:CAS:528:DC%2BD1cXlsV2mt7g%3D, PID: 18403013
    • Lee, K. W., S. Wang, M. J. Yaszemski, and L. Lu. Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials 29:2839–2848, 2008.
    • (2008) Biomaterials , vol.29 , pp. 2839-2848
    • Lee, K.W.1    Wang, S.2    Yaszemski, M.J.3    Lu, L.4
  • 59
    • 84901287283 scopus 로고    scopus 로고
    • The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication
    • PID: 24868523
    • Liao, H. T., Y. Y. Chen, Y. T. Lai, M. F. Hsieh, and C. P. Jiang. The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication. Biomed. Res. Int. 2014:321549, 2014.
    • (2014) Biomed. Res. Int. , vol.2014 , pp. 321549
    • Liao, H.T.1    Chen, Y.Y.2    Lai, Y.T.3    Hsieh, M.F.4    Jiang, C.P.5
  • 60
    • 85027928361 scopus 로고    scopus 로고
    • Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I
    • Liao, H. T., M. Y. Lee, W. W. Tsai, H. C. Wang, and W. C. Lu. Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J. Tissue Eng. Regen. Med. 2013. doi:10.1002/term.1811.
    • (2013) J. Tissue Eng. Regen. Med.
    • Liao, H.T.1    Lee, M.Y.2    Tsai, W.W.3    Wang, H.C.4    Lu, W.C.5
  • 61
    • 84906937062 scopus 로고    scopus 로고
    • Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions
    • COI: 1:CAS:528:DC%2BC2cXhsVWltbzN, PID: 22933381
    • Lode, A., K. Meissner, Y. Luo, F. Sonntag, S. Glorius, B. Nies, C. Vater, F. Despang, T. Hanke, and M. Gelinsky. Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J. Tissue Eng. Regen. Med. 8:682–693, 2014. doi:10.1002/term.1563.
    • (2014) J. Tissue Eng. Regen. Med. , vol.8 , pp. 682-693
    • Lode, A.1    Meissner, K.2    Luo, Y.3    Sonntag, F.4    Glorius, S.5    Nies, B.6    Vater, C.7    Despang, F.8    Hanke, T.9    Gelinsky, M.10
  • 62
    • 84873911982 scopus 로고    scopus 로고
    • Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering
    • PID: 23228963
    • Luo, Y., C. Wu, A. Lode, and M. Gelinsky. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 5:015005, 2013.
    • (2013) Biofabrication , vol.5 , pp. 015005
    • Luo, Y.1    Wu, C.2    Lode, A.3    Gelinsky, M.4
  • 64
    • 84922740919 scopus 로고    scopus 로고
    • Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration
    • COI: 1:CAS:528:DC%2BC2MXhtVCku7Y%3D, PID: 25560614
    • Martinez-Vazquez, F. J., M. V. Cabanas, J. L. Paris, D. Lozano, and M. Vallet-Regi. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater. 15:200–209, 2015. doi:10.1016/j.actbio.2014.1012.1021.
    • (2015) Acta Biomater. , vol.15 , pp. 200-209
    • Martinez-Vazquez, F.J.1    Cabanas, M.V.2    Paris, J.L.3    Lozano, D.4    Vallet-Regi, M.5
  • 65
    • 84880674215 scopus 로고    scopus 로고
    • Structural changes to resorbable calcium phosphate bioceramic aged in vitro
    • COI: 1:CAS:528:DC%2BC3sXhsVShsbjO, PID: 23876446
    • Mehrban, N., J. Bowen, E. Vorndran, U. Gbureck, and L. M. Grover. Structural changes to resorbable calcium phosphate bioceramic aged in vitro. Colloids Surf. B Biointerfaces 111:469–478, 2013. doi:10.1016/j.colsurfb.2013.1006.1020.
    • (2013) Colloids Surf. B Biointerfaces , vol.111 , pp. 469-478
    • Mehrban, N.1    Bowen, J.2    Vorndran, E.3    Gbureck, U.4    Grover, L.M.5
  • 66
    • 81755166884 scopus 로고    scopus 로고
    • Harnessing and modulating inflammation in strategies for bone regeneration
    • COI: 1:CAS:528:DC%2BC3MXhsFSks7bI
    • Mountziaris, P. M., P. P. Spicer, F. K. Kasper, and A. G. Mikos. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng. B Rev. 17:393–402, 2011.
    • (2011) Tissue Eng. B Rev. , vol.17 , pp. 393-402
    • Mountziaris, P.M.1    Spicer, P.P.2    Kasper, F.K.3    Mikos, A.G.4
  • 67
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • COI: 1:CAS:528:DC%2BC2cXht1OqtbfK, PID: 25093879
    • Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 70
  • 71
    • 84861539857 scopus 로고    scopus 로고
    • Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions
    • COI: 1:CAS:528:DC%2BC38XhvVOis7nK, PID: 22304383
    • Rath, S. N., L. A. Strobel, A. Arkudas, J. P. Beier, A. K. Maier, P. Greil, R. E. Horch, and U. Kneser. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J. Cell Mol. Med. 16:2350–2361, 2012.
    • (2012) J. Cell Mol. Med. , vol.16 , pp. 2350-2361
    • Rath, S.N.1    Strobel, L.A.2    Arkudas, A.3    Beier, J.P.4    Maier, A.K.5    Greil, P.6    Horch, R.E.7    Kneser, U.8
  • 72
    • 84909949375 scopus 로고    scopus 로고
    • Improvement of bone regeneration capability of ceramic scaffolds by accelerated release of their calcium ions
    • COI: 1:CAS:528:DC%2BC2cXhvFSntb7F
    • Seol, Y. J., J. Y. Park, J. W. Jung, J. Jang, R. Girdhari, S. W. Kim, and D. W. Cho. Improvement of bone regeneration capability of ceramic scaffolds by accelerated release of their calcium ions. Tissue Eng. A 20:2840–2849, 2014. doi:10.1089/ten.TEA.2012.0726.
    • (2014) Tissue Eng. A , vol.20 , pp. 2840-2849
    • Seol, Y.J.1    Park, J.Y.2    Jung, J.W.3    Jang, J.4    Girdhari, R.5    Kim, S.W.6    Cho, D.W.7
  • 73
    • 84873166089 scopus 로고    scopus 로고
    • High-resolution PLA-based composite scaffolds via 3-D printing technology
    • COI: 1:CAS:528:DC%2BC38XhvVSlt7jO, PID: 23142224
    • Serra, T., J. A. Planell, and M. Navarro. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9:5521–5530, 2013.
    • (2013) Acta Biomater. , vol.9 , pp. 5521-5530
    • Serra, T.1    Planell, J.A.2    Navarro, M.3
  • 74
    • 84858862640 scopus 로고    scopus 로고
    • In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone)
    • COI: 1:CAS:528:DC%2BC38Xkt1GhsLk%3D, PID: 22436798
    • Seyednejad, H., D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. Dhert, and W. E. Hennink. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone). Biomaterials 33:4309–4318, 2012.
    • (2012) Biomaterials , vol.33 , pp. 4309-4318
    • Seyednejad, H.1    Gawlitta, D.2    Kuiper, R.V.3    de Bruin, A.4    van Nostrum, C.F.5    Vermonden, T.6    Dhert, W.J.7    Hennink, W.E.8
  • 75
    • 84904211382 scopus 로고    scopus 로고
    • Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect
    • COI: 1:CAS:528:DC%2BC2cXhtFCrurzO
    • Shim, J. H., S. E. Kim, J. Y. Park, J. Kundu, S. W. Kim, S. S. Kang, and D. W. Cho. Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect. Tissue Eng. A 20:1980–1992, 2014.
    • (2014) Tissue Eng. A , vol.20 , pp. 1980-1992
    • Shim, J.H.1    Kim, S.E.2    Park, J.Y.3    Kundu, J.4    Kim, S.W.5    Kang, S.S.6    Cho, D.W.7
  • 76
    • 84873023661 scopus 로고    scopus 로고
    • Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering
    • COI: 1:CAS:528:DC%2BC3sXjtVenur4%3D
    • Shuai, C., P. Li, J. Liu, and S. Peng. Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Mater. Charact. 77:23–31, 2013.
    • (2013) Mater. Charact. , vol.77 , pp. 23-31
    • Shuai, C.1    Li, P.2    Liu, J.3    Peng, S.4
  • 77
    • 79251617418 scopus 로고    scopus 로고
    • Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency
    • COI: 1:CAS:528:DC%2BC3MXht12hs7k%3D, PID: 21056125
    • Sobral, J. M., S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7:1009–1018, 2011.
    • (2011) Acta Biomater. , vol.7 , pp. 1009-1018
    • Sobral, J.M.1    Caridade, S.G.2    Sousa, R.A.3    Mano, J.F.4    Reis, R.L.5
  • 78
    • 84895526092 scopus 로고    scopus 로고
    • Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts
    • COI: 1:CAS:528:DC%2BC2cXktV2gsr8%3D, PID: 22740314
    • Strobel, L. A., S. N. Rath, A. K. Maier, J. P. Beier, A. Arkudas, P. Greil, R. E. Horch, and U. Kneser. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. J. Tissue Eng. Regen. Med. 8:176–185, 2014. doi:10.1002/term.1511.
    • (2014) J. Tissue Eng. Regen. Med. , vol.8 , pp. 176-185
    • Strobel, L.A.1    Rath, S.N.2    Maier, A.K.3    Beier, J.P.4    Arkudas, A.5    Greil, P.6    Horch, R.E.7    Kneser, U.8
  • 79
    • 77951253248 scopus 로고    scopus 로고
    • Low temperature preparation of calcium phosphate structure via phosphorization of 3D-printed calcium sulfate hemihydrate based material
    • COI: 1:CAS:528:DC%2BC3cXhslKltb8%3D, PID: 19784760
    • Suwanprateeb, J., W. Suvannapruk, and K. Wasoontararat. Low temperature preparation of calcium phosphate structure via phosphorization of 3D-printed calcium sulfate hemihydrate based material. J. Mater. Sci. Mater. Med. 21:419–429, 2010. doi:10.1007/s10856-10009-13883-10851.
    • (2010) J. Mater. Sci. Mater. Med. , vol.21 , pp. 419-429
    • Suwanprateeb, J.1    Suvannapruk, W.2    Wasoontararat, K.3
  • 80
    • 84956623176 scopus 로고    scopus 로고
    • Geometrical versus random beta-TCP scaffolds: exploring the effects on Schwann Cell growth and behavior
    • PID: 26444999
    • Sweet, L., Y. Kang, C. Czisch, L. Witek, Y. Shi, J. Smay, G. W. Plant, and Y. Yang. Geometrical versus random beta-TCP scaffolds: exploring the effects on Schwann Cell growth and behavior. PLoS One 10:e0139820, 2015. doi:10.1371/journal.pone.0139820.
    • (2015) PLoS One , vol.10
    • Sweet, L.1    Kang, Y.2    Czisch, C.3    Witek, L.4    Shi, Y.5    Smay, J.6    Plant, G.W.7    Yang, Y.8
  • 81
    • 84899489830 scopus 로고    scopus 로고
    • Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site
    • COI: 1:CAS:528:DC%2BC2cXmtVSjt70%3D, PID: 24726538
    • Tamimi, F., J. Torres, K. Al-Abedalla, E. Lopez-Cabarcos, M. H. Alkhraisat, D. C. Bassett, U. Gbureck, and J. E. Barralet. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials 35:5436–5445, 2014. doi:10.1016/j.biomaterials.2014.5403.5050.
    • (2014) Biomaterials , vol.35 , pp. 5436-5445
    • Tamimi, F.1    Torres, J.2    Al-Abedalla, K.3    Lopez-Cabarcos, E.4    Alkhraisat, M.H.5    Bassett, D.C.6    Gbureck, U.7    Barralet, J.E.8
  • 82
    • 60849103485 scopus 로고    scopus 로고
    • Calcium sulfate: properties and clinical applications
    • PID: 19025981
    • Thomas, M. V., and D. A. Puleo. Calcium sulfate: properties and clinical applications. J. Biomed. Mater. Res. B Appl. Biomater. 88:597–610, 2009.
    • (2009) J. Biomed. Mater. Res. B Appl. Biomater. , vol.88 , pp. 597-610
    • Thomas, M.V.1    Puleo, D.A.2
  • 86
    • 84889801229 scopus 로고    scopus 로고
    • Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time- and dose-controlled delivery of dual growth factors
    • van der Stok, J., H. Wang, S. Amin Yavari, M. Siebelt, M. Sandker, J. H. Waarsing, J. A. Verhaar, H. Jahr, A. A. Zadpoor, S. C. Leeuwenburgh, and H. Weinans. Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time- and dose-controlled delivery of dual growth factors. Tissue Eng. A 19:2605–2614, 2013.
    • (2013) Tissue Eng. A , vol.19 , pp. 2605-2614
    • van der Stok, J.1    Wang, H.2    Amin Yavari, S.3    Siebelt, M.4    Sandker, M.5    Waarsing, J.H.6    Verhaar, J.A.7    Jahr, H.8    Zadpoor, A.A.9    Leeuwenburgh, S.C.10    Weinans, H.11
  • 87
    • 43149112284 scopus 로고    scopus 로고
    • Photo-cross-linked hybrid polymer networks consisting of poly(propylene fumarate) and poly(caprolactone fumarate): controlled physical properties and regulated bone and nerve cell responses
    • COI: 1:CAS:528:DC%2BD1cXis1ektL0%3D, PID: 18307311
    • Wang, S., D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu. Photo-cross-linked hybrid polymer networks consisting of poly(propylene fumarate) and poly(caprolactone fumarate): controlled physical properties and regulated bone and nerve cell responses. Biomacromolecules 9:1229–1241, 2008.
    • (2008) Biomacromolecules , vol.9 , pp. 1229-1241
    • Wang, S.1    Kempen, D.H.2    Simha, N.K.3    Lewis, J.L.4    Windebank, A.J.5    Yaszemski, M.J.6    Lu, L.7
  • 88
    • 67349133157 scopus 로고    scopus 로고
    • The roles of matrix polymer crystallinity and hydroxyapatite nanoparticles in modulating material properties of photo-crosslinked composites and bone marrow stromal cell responses
    • COI: 1:CAS:528:DC%2BD1MXlvFGqt7w%3D, PID: 19339048
    • Wang, S., D. H. Kempen, M. J. Yaszemski, and L. Lu. The roles of matrix polymer crystallinity and hydroxyapatite nanoparticles in modulating material properties of photo-crosslinked composites and bone marrow stromal cell responses. Biomaterials 30:3359–3370, 2009.
    • (2009) Biomaterials , vol.30 , pp. 3359-3370
    • Wang, S.1    Kempen, D.H.2    Yaszemski, M.J.3    Lu, L.4
  • 89
    • 84905566469 scopus 로고    scopus 로고
    • Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds
    • COI: 1:CAS:528:DC%2BC2cXlvVWnsbo%3D, PID: 24711251
    • Wang, J., M. Yang, Y. Zhu, L. Wang, A. P. Tomsia, and C. Mao. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Adv. Mater. 26:4961–4966, 2014. doi:10.1002/adma.201400154.
    • (2014) Adv. Mater. , vol.26 , pp. 4961-4966
    • Wang, J.1    Yang, M.2    Zhu, Y.3    Wang, L.4    Tomsia, A.P.5    Mao, C.6
  • 90
    • 56349116248 scopus 로고    scopus 로고
    • Photo-crosslinked poly(epsilon-caprolactone fumarate) networks: roles of crystallinity and crosslinking density in determining mechanical properties
    • COI: 1:CAS:528:DC%2BD1cXhsVKht7nO
    • Wang, S., M. J. Yaszemski, J. A. Gruetzmacher, and L. Lu. Photo-crosslinked poly(epsilon-caprolactone fumarate) networks: roles of crystallinity and crosslinking density in determining mechanical properties. Polymer (Guildf) 49:5692–5699, 2008.
    • (2008) Polymer (Guildf) , vol.49 , pp. 5692-5699
    • Wang, S.1    Yaszemski, M.J.2    Gruetzmacher, J.A.3    Lu, L.4
  • 93
    • 14844322862 scopus 로고    scopus 로고
    • Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
    • COI: 1:CAS:528:DC%2BD2MXitV2gs7g%3D, PID: 15763261
    • Williams, J. M., A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.
    • (2005) Biomaterials , vol.26 , pp. 4817-4827
    • Williams, J.M.1    Adewunmi, A.2    Schek, R.M.3    Flanagan, C.L.4    Krebsbach, P.H.5    Feinberg, S.E.6    Hollister, S.J.7    Das, S.8
  • 94
    • 79955613975 scopus 로고    scopus 로고
    • Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability
    • COI: 1:CAS:528:DC%2BC3MXlsVCltbw%3D, PID: 21402182
    • Wu, C., Y. Luo, G. Cuniberti, Y. Xiao, and M. Gelinsky. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 7:2644–2650, 2011.
    • (2011) Acta Biomater. , vol.7 , pp. 2644-2650
    • Wu, C.1    Luo, Y.2    Cuniberti, G.3    Xiao, Y.4    Gelinsky, M.5
  • 95
    • 84887331253 scopus 로고    scopus 로고
    • Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications
    • Xia, Y., P. Zhou, X. Cheng, Y. Xie, C. Liang, C. Li, and S. Xu. Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications. Int. J. Nanomed. 8:4197–4213, 2013.
    • (2013) Int. J. Nanomed. , vol.8 , pp. 4197-4213
    • Xia, Y.1    Zhou, P.2    Cheng, X.3    Xie, Y.4    Liang, C.5    Li, C.6    Xu, S.7
  • 96
    • 36148989585 scopus 로고    scopus 로고
    • Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice
    • COI: 1:CAS:528:DC%2BD2sXhtlGjtr3K, PID: 17921078
    • Yang, X., B. F. Ricciardi, A. Hernandez-Soria, Y. Shi, N. Pleshko Camacho, and M. P. Bostrom. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41:928–936, 2007.
    • (2007) Bone , vol.41 , pp. 928-936
    • Yang, X.1    Ricciardi, B.F.2    Hernandez-Soria, A.3    Shi, Y.4    Pleshko Camacho, N.5    Bostrom, M.P.6
  • 97
    • 84892532635 scopus 로고    scopus 로고
    • Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration
    • COI: 1:CAS:528:DC%2BC2cXms1CnurY%3D, PID: 24441182
    • Yang, S., J. Wang, L. Tang, H. Ao, H. Tan, T. Tang, and C. Liu. Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration. Colloids Surf. B Biointerfaces 116:72–80, 2014.
    • (2014) Colloids Surf. B Biointerfaces , vol.116 , pp. 72-80
    • Yang, S.1    Wang, J.2    Tang, L.3    Ao, H.4    Tan, H.5    Tang, T.6    Liu, C.7
  • 98
    • 84947203525 scopus 로고    scopus 로고
    • Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis
    • COI: 1:CAS:528:DC%2BC2MXhs1OmsrrL, PID: 26525451
    • Zhang, Y., L. Xia, D. Zhai, M. Shi, Y. Luo, C. Feng, B. Fang, J. Yin, J. Chang, and C. Wu. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale 7:19207–19221, 2015. doi:10.11039/c19205nr05421d.
    • (2015) Nanoscale , vol.7 , pp. 19207-19221
    • Zhang, Y.1    Xia, L.2    Zhai, D.3    Shi, M.4    Luo, Y.5    Feng, C.6    Fang, B.7    Yin, J.8    Chang, J.9    Wu, C.10
  • 99
    • 84893864973 scopus 로고    scopus 로고
    • Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique
    • COI: 1:CAS:528:DC%2BC2cXksFyrsb4%3D, PID: 24656346
    • Zhou, Z., F. Buchanan, C. Mitchell, and N. Dunne. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater. Sci. Eng. C Mater. Biol. Appl. 38:1–10, 2014.
    • (2014) Mater. Sci. Eng. C Mater. Biol. Appl. , vol.38 , pp. 1-10
    • Zhou, Z.1    Buchanan, F.2    Mitchell, C.3    Dunne, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.