-
1
-
-
84944274278
-
3D plotting of growth factor loaded calcium phosphate cement scaffolds
-
COI: 1:CAS:528:DC%2BC2MXhsVyis7nP, PID: 26318366
-
Akkineni, A. R., Y. Luo, M. Schumacher, B. Nies, A. Lode, and M. Gelinsky. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 27:264–274, 2015.
-
(2015)
Acta Biomater.
, vol.27
, pp. 264-274
-
-
Akkineni, A.R.1
Luo, Y.2
Schumacher, M.3
Nies, B.4
Lode, A.5
Gelinsky, M.6
-
2
-
-
84896505907
-
Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation
-
COI: 1:CAS:528:DC%2BC3sXhvVKit7nF, PID: 24211731
-
Almeida, C. R., T. Serra, M. I. Oliveira, J. A. Planell, M. A. Barbosa, and M. Navarro. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater. 10:613–622, 2014.
-
(2014)
Acta Biomater.
, vol.10
, pp. 613-622
-
-
Almeida, C.R.1
Serra, T.2
Oliveira, M.I.3
Planell, J.A.4
Barbosa, M.A.5
Navarro, M.6
-
3
-
-
84856744773
-
Standard Terminology for Additive Manufacturing Technologies West Conshohocken
-
ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies West Conshohocken, PA, 2012. doi: 10.1520/F2792-12A, http://www.astm.org/.
-
(2012)
PA
-
-
-
4
-
-
84877858264
-
Synthetic bone substitute engineered with amniotic epithelial cells enhances bone regeneration after maxillary sinus augmentation
-
COI: 1:CAS:528:DC%2BC3sXoslantL0%3D, PID: 23696804
-
Barboni, B., C. Mangano, L. Valbonetti, G. Marruchella, P. Berardinelli, A. Martelli, A. Muttini, A. Mauro, R. Bedini, M. Turriani, R. Pecci, D. Nardinocchi, V. L. Zizzari, S. Tete, A. Piattelli, and M. Mattioli. Synthetic bone substitute engineered with amniotic epithelial cells enhances bone regeneration after maxillary sinus augmentation. PLoS One 8:e63256, 2013. doi:10.1371/journal.pone.0063256.
-
(2013)
PLoS One
, vol.8
-
-
Barboni, B.1
Mangano, C.2
Valbonetti, L.3
Marruchella, G.4
Berardinelli, P.5
Martelli, A.6
Muttini, A.7
Mauro, A.8
Bedini, R.9
Turriani, M.10
Pecci, R.11
Nardinocchi, D.12
Zizzari, V.L.13
Tete, S.14
Piattelli, A.15
Mattioli, M.16
-
5
-
-
67650685814
-
Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release
-
COI: 1:CAS:528:DC%2BD1MXos1Squrw%3D
-
Barralet, J., U. Gbureck, P. Habibovic, E. Vorndran, C. Gerard, and C. J. Doillon. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng. A 15:1601–1609, 2009. doi:10.1089/ten.tea.2007.0370.
-
(2009)
Tissue Eng. A
, vol.15
, pp. 1601-1609
-
-
Barralet, J.1
Gbureck, U.2
Habibovic, P.3
Vorndran, E.4
Gerard, C.5
Doillon, C.J.6
-
6
-
-
34548732504
-
Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics
-
COI: 1:CAS:528:DC%2BD28Xhtlantb7F
-
Barrere, F., C. A. van Blitterswijk, and K. de Groot. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomed. 1:317–332, 2006.
-
(2006)
Int. J. Nanomed.
, vol.1
, pp. 317-332
-
-
Barrere, F.1
van Blitterswijk, C.A.2
de Groot, K.3
-
7
-
-
84944916785
-
Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation
-
COI: 1:CAS:528:DC%2BC2MXhslansb7J, PID: 26652403
-
Bergemann, C., M. Cornelsen, A. Quade, T. Laube, M. Schnabelrauch, H. Rebl, V. Weissmann, H. Seitz, and B. Nebe. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation. Mater. Sci. Eng. C Mater. Biol. Appl. 59:514–523, 2016. doi:10.1016/j.msec.2015.1010.1048.
-
(2016)
Mater. Sci. Eng. C Mater. Biol. Appl.
, vol.59
, pp. 514-523
-
-
Bergemann, C.1
Cornelsen, M.2
Quade, A.3
Laube, T.4
Schnabelrauch, M.5
Rebl, H.6
Weissmann, V.7
Seitz, H.8
Nebe, B.9
-
9
-
-
0242383932
-
New hydraulic cements based on alpha-tricalcium phosphate-calcium sulfate dihydrate mixtures
-
COI: 1:CAS:528:DC%2BD3sXosFOrt7g%3D, PID: 14607514
-
Bohner, M. New hydraulic cements based on alpha-tricalcium phosphate-calcium sulfate dihydrate mixtures. Biomaterials 25:741–749, 2004.
-
(2004)
Biomaterials
, vol.25
, pp. 741-749
-
-
Bohner, M.1
-
10
-
-
84857784368
-
Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review
-
PID: 22127225
-
Bose, S., and S. Tarafder. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8(4):1401–1421, 2011.
-
(2011)
Acta Biomater.
, vol.8
, Issue.4
, pp. 1401-1421
-
-
Bose, S.1
Tarafder, S.2
-
11
-
-
34548528027
-
Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction
-
COI: 1:CAS:528:DC%2BD2sXhtV2isrbE
-
Brunner, T. J., R. N. Grass, M. Bohner, and W. J. Stark. Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J. Mater. Chem. 17:4072, 2007.
-
(2007)
J. Mater. Chem.
, vol.17
, pp. 4072
-
-
Brunner, T.J.1
Grass, R.N.2
Bohner, M.3
Stark, W.J.4
-
12
-
-
84855956567
-
Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds
-
COI: 1:CAS:528:DC%2BC3MXhsFGjtL%2FL, PID: 21925623
-
Butscher, A., M. Bohner, C. Roth, A. Ernstberger, R. Heuberger, N. Doebelin, P. R. von Rohr, and R. Muller. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater. 8:373–385, 2012.
-
(2012)
Acta Biomater
, vol.8
, pp. 373-385
-
-
Butscher, A.1
Bohner, M.2
Roth, C.3
Ernstberger, A.4
Heuberger, R.5
Doebelin, N.6
von Rohr, P.R.7
Muller, R.8
-
13
-
-
84899499112
-
Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement
-
PID: 24658159
-
Castilho, M., M. Dias, E. Vorndran, U. Gbureck, P. Fernandes, I. Pires, B. Gouveia, H. Armes, E. Pires, and J. Rodrigues. Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement. Biofabrication 6:025005, 2014. doi:10.1088/1758-5082/6/2/025005.
-
(2014)
Biofabrication
, vol.6
, pp. 025005
-
-
Castilho, M.1
Dias, M.2
Vorndran, E.3
Gbureck, U.4
Fernandes, P.5
Pires, I.6
Gouveia, B.7
Armes, H.8
Pires, E.9
Rodrigues, J.10
-
14
-
-
84896792598
-
Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects
-
PID: 24429776
-
Castilho, M., C. Moseke, A. Ewald, U. Gbureck, J. Groll, I. Pires, J. Tessmar, and E. Vorndran. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6:015006, 2014. doi:10.1088/1758-5082/6/1/015006.
-
(2014)
Biofabrication
, vol.6
, pp. 015006
-
-
Castilho, M.1
Moseke, C.2
Ewald, A.3
Gbureck, U.4
Groll, J.5
Pires, I.6
Tessmar, J.7
Vorndran, E.8
-
15
-
-
84924310031
-
Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing
-
PID: 25562119
-
Castilho, M., J. Rodrigues, I. Pires, B. Gouveia, M. Pereira, C. Moseke, J. Groll, A. Ewald, and E. Vorndran. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 7:015004, 2015. doi:10.1088/1758-5090/7/1/015004.
-
(2015)
Biofabrication
, vol.7
, pp. 015004
-
-
Castilho, M.1
Rodrigues, J.2
Pires, I.3
Gouveia, B.4
Pereira, M.5
Moseke, C.6
Groll, J.7
Ewald, A.8
Vorndran, E.9
-
16
-
-
84873973425
-
Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies
-
COI: 1:CAS:528:DC%2BC38XhsVCisbbM, PID: 22796326
-
Chai, Y. C., A. Carlier, J. Bolander, S. J. Roberts, L. Geris, J. Schrooten, H. Van Oosterwyck, and F. P. Luyten. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 8:3876–3887, 2012.
-
(2012)
Acta Biomater.
, vol.8
, pp. 3876-3887
-
-
Chai, Y.C.1
Carlier, A.2
Bolander, J.3
Roberts, S.J.4
Geris, L.5
Schrooten, J.6
Van Oosterwyck, H.7
Luyten, F.P.8
-
17
-
-
63449129756
-
Next generation calcium phosphate-based biomaterials
-
COI: 1:CAS:528:DC%2BD1MXks1Oku7s%3D, PID: 19280963
-
Chow, L. C. Next generation calcium phosphate-based biomaterials. Dent. Mater. J. 28:1–10, 2009.
-
(2009)
Dent. Mater. J.
, vol.28
, pp. 1-10
-
-
Chow, L.C.1
-
18
-
-
0034957704
-
Hydroxyapatite implants with designed internal architecture
-
COI: 1:CAS:528:DC%2BD3MXlt1aisL8%3D, PID: 15348260
-
Chu, T. M., J. W. Halloran, S. J. Hollister, and S. E. Feinberg. Hydroxyapatite implants with designed internal architecture. J. Mater. Sci. Mater. Med. 12:471–478, 2001.
-
(2001)
J. Mater. Sci. Mater. Med.
, vol.12
, pp. 471-478
-
-
Chu, T.M.1
Halloran, J.W.2
Hollister, S.J.3
Feinberg, S.E.4
-
19
-
-
84934880846
-
Toward smart implant synthesis: bonding bioceramics of different resorbability to match bone growth rates
-
COI: 1:CAS:528:DC%2BC2MXhtFOrsL3L, PID: 26032983
-
Comesana, R., F. Lusquinos, J. Del Val, F. Quintero, A. Riveiro, M. Boutinguiza, J. R. Jones, R. G. Hill, and J. Pou. Toward smart implant synthesis: bonding bioceramics of different resorbability to match bone growth rates. Sci. Rep. 5:10677, 2015. doi:10.1038/srep10677.
-
(2015)
Sci. Rep.
, vol.5
, pp. 10677
-
-
Comesana, R.1
Lusquinos, F.2
Del Val, J.3
Quintero, F.4
Riveiro, A.5
Boutinguiza, M.6
Jones, J.R.7
Hill, R.G.8
Pou, J.9
-
20
-
-
84893500059
-
Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure
-
COI: 1:CAS:528:DC%2BC2cXitFOisL0%3D, PID: 24304192
-
Costa, P. F., C. Vaquette, Q. Zhang, R. L. Reis, S. Ivanovski, and D. W. Hutmacher. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J. Clin. Periodontol. 41:283–294, 2014. doi:10.1111/jcpe.12214.
-
(2014)
J. Clin. Periodontol.
, vol.41
, pp. 283-294
-
-
Costa, P.F.1
Vaquette, C.2
Zhang, Q.3
Reis, R.L.4
Ivanovski, S.5
Hutmacher, D.W.6
-
21
-
-
80051550066
-
In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds
-
COI: 1:CAS:528:DC%2BC3MXhsVWjsbzM, PID: 20659962
-
Detsch, R., S. Schaefer, U. Deisinger, G. Ziegler, H. Seitz, and B. Leukers. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J. Biomater. Appl. 26:359–380, 2011. doi:10.1177/0885328210373285.
-
(2011)
J. Biomater. Appl.
, vol.26
, pp. 359-380
-
-
Detsch, R.1
Schaefer, S.2
Deisinger, U.3
Ziegler, G.4
Seitz, H.5
Leukers, B.6
-
22
-
-
40849141369
-
3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique
-
COI: 1:CAS:528:DC%2BD1cXjt1Snsr8%3D, PID: 17990079
-
Detsch, R., F. Uhl, U. Deisinger, and G. Ziegler. 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J. Mater. Sci. Mater. Med. 19:1491–1496, 2008.
-
(2008)
J. Mater. Sci. Mater. Med.
, vol.19
, pp. 1491-1496
-
-
Detsch, R.1
Uhl, F.2
Deisinger, U.3
Ziegler, G.4
-
23
-
-
77957147532
-
Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor
-
COI: 1:CAS:528:DC%2BC3cXht1Wgsr%2FP, PID: 20504805
-
Duan, B., and M. Wang. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. R. Soc. Interface 7(Suppl 5):S615–S629, 2010.
-
(2010)
J. R. Soc. Interface
, vol.7
, pp. S615-S629
-
-
Duan, B.1
Wang, M.2
-
24
-
-
77958101381
-
Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering
-
COI: 1:CAS:528:DC%2BC3cXht12ksbbE, PID: 20601244
-
Duan, B., M. Wang, W. Y. Zhou, W. L. Cheung, Z. Y. Li, and W. W. Lu. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6:4495–4505, 2010. doi:10.1016/j.actbio.2010.4406.4024.
-
(2010)
Acta Biomater.
, vol.6
, pp. 4495-4505
-
-
Duan, B.1
Wang, M.2
Zhou, W.Y.3
Cheung, W.L.4
Li, Z.Y.5
Lu, W.W.6
-
25
-
-
0036502570
-
Reactivity of alpha-tricalcium phosphate
-
COI: 1:CAS:528:DC%2BD38XivV2ntr4%3D
-
Durucan, C., and P. W. Brown. Reactivity of alpha-tricalcium phosphate. J. Mater. Sci. 37:963–969, 2002.
-
(2002)
J. Mater. Sci.
, vol.37
, pp. 963-969
-
-
Durucan, C.1
Brown, P.W.2
-
26
-
-
34447579031
-
Bone engineering of the rabbit ulna
-
PID: 17656274
-
El-Ghannam, A., L. Cunningham, Jr, D. Pienkowski, and A. Hart. Bone engineering of the rabbit ulna. J. Oral Maxillofac. Surg. 65:1495–1502, 2007.
-
(2007)
J. Oral Maxillofac. Surg.
, vol.65
, pp. 1495-1502
-
-
El-Ghannam, A.1
Cunningham, L.2
Pienkowski, D.3
Hart, A.4
-
27
-
-
84883225907
-
Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique
-
PID: 23504981
-
El-Ghannam, A., A. Hart, D. White, and L. Cunningham. Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique. J. Biomed. Mater. Res. A 101:2851–2861, 2013.
-
(2013)
J. Biomed. Mater. Res. A
, vol.101
, pp. 2851-2861
-
-
El-Ghannam, A.1
Hart, A.2
White, D.3
Cunningham, L.4
-
28
-
-
8444251789
-
Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery
-
COI: 1:STN:280:DC%2BD2crltFSisQ%3D%3D, PID: 15470721
-
El-Ghannam, A., C. Q. Ning, and J. Mehta. Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery. J. Biomed. Mater. Res. A 71:377–390, 2004.
-
(2004)
J. Biomed. Mater. Res. A
, vol.71
, pp. 377-390
-
-
El-Ghannam, A.1
Ning, C.Q.2
Mehta, J.3
-
29
-
-
84885077192
-
2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo
-
COI: 1:CAS:528:DC%2BC3sXhsVSkurzM, PID: 23871941
-
2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 9:9137–9148, 2013. doi:10.1016/j.actbio.2013.9107.9009.
-
(2013)
Acta Biomater.
, vol.9
, pp. 9137-9148
-
-
Fielding, G.1
Bose, S.2
-
30
-
-
80052273289
-
Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration
-
COI: 1:CAS:528:DC%2BC3MXhtFSqs7zO, PID: 21745606
-
Fu, Q., E. Saiz, and A. P. Tomsia. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater. 7:3547–3554, 2011.
-
(2011)
Acta Biomater.
, vol.7
, pp. 3547-3554
-
-
Fu, Q.1
Saiz, E.2
Tomsia, A.P.3
-
31
-
-
33748105789
-
Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone
-
COI: 1:CAS:528:DC%2BD28XosFWqtL0%3D, PID: 16932863
-
Gao, Y., W. L. Cao, X. Y. Wang, Y. D. Gong, J. M. Tian, N. M. Zhao, and X. F. Zhang. Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone. J. Mater. Sci. Mater. Med. 17:815–823, 2006.
-
(2006)
J. Mater. Sci. Mater. Med.
, vol.17
, pp. 815-823
-
-
Gao, Y.1
Cao, W.L.2
Wang, X.Y.3
Gong, Y.D.4
Tian, J.M.5
Zhao, N.M.6
Zhang, X.F.7
-
32
-
-
84908496206
-
Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
-
COI: 1:CAS:528:DC%2BC2cXhsFWitrvF, PID: 25130390
-
Gao, G., A. F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9:1304–1311, 2014.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 1304-1311
-
-
Gao, G.1
Schilling, A.F.2
Yonezawa, T.3
Wang, J.4
Dai, G.5
Cui, X.6
-
33
-
-
0038692860
-
Mechanical activation and cement formation of β-tricalcium phosphate
-
COI: 1:CAS:528:DC%2BD3sXltFCltrs%3D, PID: 12853242
-
Gbureck, U. Mechanical activation and cement formation of β-tricalcium phosphate. Biomaterials 24:4123–4131, 2003.
-
(2003)
Biomaterials
, vol.24
, pp. 4123-4131
-
-
Gbureck, U.1
-
34
-
-
34250670480
-
Direct printing of bioceramic implants with spatially localized angiogenic factors
-
COI: 1:CAS:528:DC%2BD2sXjvVSntL4%3D
-
Gbureck, U., T. Hölzel, C. J. Doillon, F. A. Müller, and J. E. Barralet. Direct printing of bioceramic implants with spatially localized angiogenic factors. Adv. Mater. 19:795–800, 2007.
-
(2007)
Adv. Mater.
, vol.19
, pp. 795-800
-
-
Gbureck, U.1
Hölzel, T.2
Doillon, C.J.3
Müller, F.A.4
Barralet, J.E.5
-
35
-
-
38049110241
-
Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing
-
COI: 1:CAS:528:DC%2BD1cXosVWl
-
Gbureck, U., T. Hölzel, U. Klammert, K. Würzler, F. A. Müller, and J. E. Barralet. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv. Funct. Mater. 17:3940–3945, 2007.
-
(2007)
Adv. Funct. Mater.
, vol.17
, pp. 3940-3945
-
-
Gbureck, U.1
Hölzel, T.2
Klammert, U.3
Würzler, K.4
Müller, F.A.5
Barralet, J.E.6
-
36
-
-
48549084335
-
Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions
-
COI: 1:CAS:528:DC%2BD1cXht1CjtbvJ, PID: 18485844
-
Gbureck, U., E. Vorndran, and J. E. Barralet. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions. Acta Biomater. 4:1480–1486, 2008.
-
(2008)
Acta Biomater.
, vol.4
, pp. 1480-1486
-
-
Gbureck, U.1
Vorndran, E.2
Barralet, J.E.3
-
37
-
-
34548404586
-
Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices
-
COI: 1:CAS:528:DC%2BD2sXhtVSktbnL, PID: 17655962
-
Gbureck, U., E. Vorndran, F. A. Muller, and J. E. Barralet. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J. Control Release 122:173–180, 2007.
-
(2007)
J. Control Release
, vol.122
, pp. 173-180
-
-
Gbureck, U.1
Vorndran, E.2
Muller, F.A.3
Barralet, J.E.4
-
38
-
-
0042978778
-
Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption
-
COI: 1:CAS:528:DC%2BD3sXnsVymurc%3D, PID: 12968667
-
Gerstenfeld, L. C., T. J. Cho, T. Kon, T. Aizawa, A. Tsay, J. Fitch, G. L. Barnes, D. T. Graves, and T. A. Einhorn. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J. Bone Miner. Res. 18:1584–1592, 2003.
-
(2003)
J. Bone Miner. Res.
, vol.18
, pp. 1584-1592
-
-
Gerstenfeld, L.C.1
Cho, T.J.2
Kon, T.3
Aizawa, T.4
Tsay, A.5
Fitch, J.6
Barnes, G.L.7
Graves, D.T.8
Einhorn, T.A.9
-
39
-
-
37349085843
-
Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants
-
COI: 1:CAS:528:DC%2BD2sXhsVGltbjE, PID: 18055009
-
Habibovic, P., U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29:944–953, 2008.
-
(2008)
Biomaterials
, vol.29
, pp. 944-953
-
-
Habibovic, P.1
Gbureck, U.2
Doillon, C.J.3
Bassett, D.C.4
van Blitterswijk, C.A.5
Barralet, J.E.6
-
40
-
-
84940703775
-
Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study
-
PID: 26380018
-
He, H. Y., J. Y. Zhang, X. Mi, Y. Hu, and X. Y. Gu. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study. Int. J. Clin. Exp. Med. 8:11777–11785, 2015.
-
(2015)
Int. J. Clin. Exp. Med.
, vol.8
, pp. 11777-11785
-
-
He, H.Y.1
Zhang, J.Y.2
Mi, X.3
Hu, Y.4
Gu, X.Y.5
-
41
-
-
0003256215
-
Apparatus for production of three-dimensional objects by stereolithography
-
Hull C. W. Apparatus for production of three-dimensional objects by stereolithography. Google Patents, 1986.
-
(1986)
Google Patents
-
-
Hull, C.W.1
-
42
-
-
33845605941
-
Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer
-
COI: 1:CAS:528:DC%2BD28XhtlWntbnP, PID: 17171402
-
Igawa, K., M. Mochizuki, O. Sugimori, K. Shimizu, K. Yamazawa, H. Kawaguchi, K. Nakamura, T. Takato, R. Nishimura, S. Suzuki, M. Anzai, U. I. Chung, and N. Sasaki. Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer. J. Artif. Organs 9:234–240, 2006.
-
(2006)
J. Artif. Organs
, vol.9
, pp. 234-240
-
-
Igawa, K.1
Mochizuki, M.2
Sugimori, O.3
Shimizu, K.4
Yamazawa, K.5
Kawaguchi, H.6
Nakamura, K.7
Takato, T.8
Nishimura, R.9
Suzuki, S.10
Anzai, M.11
Chung, U.I.12
Sasaki, N.13
-
43
-
-
84896715739
-
3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration
-
COI: 1:CAS:528:DC%2BC2cXisFSnu7g%3D, PID: 24529628
-
Inzana, J. A., D. Olvera, S. M. Fuller, J. P. Kelly, O. A. Graeve, E. M. Schwarz, S. L. Kates, and H. A. Awad. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034, 2014. doi:10.1016/j.biomaterials.2014.4001.4064.
-
(2014)
Biomaterials
, vol.35
, pp. 4026-4034
-
-
Inzana, J.A.1
Olvera, D.2
Fuller, S.M.3
Kelly, J.P.4
Graeve, O.A.5
Schwarz, E.M.6
Kates, S.L.7
Awad, H.A.8
-
44
-
-
84947062378
-
3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection
-
COI: 1:STN:280:DC%2BC28zptFGjsw%3D%3D, PID: 26535494
-
Inzana, J. A., R. P. Trombetta, E. M. Schwarz, S. L. Kates, and H. A. Awad. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur. Cell Mater. 30:232–247, 2015.
-
(2015)
Eur. Cell Mater.
, vol.30
, pp. 232-247
-
-
Inzana, J.A.1
Trombetta, R.P.2
Schwarz, E.M.3
Kates, S.L.4
Awad, H.A.5
-
45
-
-
84949257018
-
Bone regeneration in critical bone defects using three-dimensionally printed beta-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2
-
PID: 26513656
-
Ishack, S., A. Mediero, T. Wilder, J. L. Ricci, and B. N. Cronstein. Bone regeneration in critical bone defects using three-dimensionally printed beta-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J. Biomed. Mater. Res. B Appl. Biomater. 2015. doi:10.1002/jbm.b.33561.
-
(2015)
J. Biomed. Mater. Res. B Appl. Biomater.
-
-
Ishack, S.1
Mediero, A.2
Wilder, T.3
Ricci, J.L.4
Cronstein, B.N.5
-
46
-
-
0026569897
-
The role of brushite and octacalcium phosphate in apatite formation
-
COI: 1:STN:280:DyaK387htVCrug%3D%3D, PID: 1730071
-
Johnsson, M. S., and G. H. Nancollas. The role of brushite and octacalcium phosphate in apatite formation. Crit. Rev. Oral Biol. Med. 3:61–82, 1992.
-
(1992)
Crit. Rev. Oral Biol. Med.
, vol.3
, pp. 61-82
-
-
Johnsson, M.S.1
Nancollas, G.H.2
-
47
-
-
0142059732
-
Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling
-
Kalita, S. J., S. Bose, H. L. Hosick, and A. Bandyopadhyay. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C 23:611–620, 2003.
-
(2003)
Mater. Sci. Eng. C
, vol.23
, pp. 611-620
-
-
Kalita, S.J.1
Bose, S.2
Hosick, H.L.3
Bandyopadhyay, A.4
-
48
-
-
84960905071
-
A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
-
COI: 1:CAS:528:DC%2BC28XisFKhsbg%3D, PID: 26878319
-
Kang, H. W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34(3):312–319, 2016.
-
(2016)
Nat. Biotechnol.
, vol.34
, Issue.3
, pp. 312-319
-
-
Kang, H.W.1
Lee, S.J.2
Ko, I.K.3
Kengla, C.4
Yoo, J.J.5
Atala, A.6
-
49
-
-
34248562050
-
Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants
-
COI: 1:CAS:528:DC%2BD2sXlt1Klu7w%3D, PID: 17216579
-
Khalyfa, A., S. Vogt, J. Weisser, G. Grimm, A. Rechtenbach, W. Meyer, and M. Schnabelrauch. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J. Mater. Sci. Mater. Med. 18:909–916, 2007.
-
(2007)
J. Mater. Sci. Mater. Med.
, vol.18
, pp. 909-916
-
-
Khalyfa, A.1
Vogt, S.2
Weisser, J.3
Grimm, G.4
Rechtenbach, A.5
Meyer, W.6
Schnabelrauch, M.7
-
50
-
-
84863351526
-
Rapid-prototyped PLGA/beta-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model
-
PID: 22427485
-
Kim, J., S. McBride, B. Tellis, P. Alvarez-Urena, Y. H. Song, D. D. Dean, V. L. Sylvia, H. Elgendy, J. Ong, and J. O. Hollinger. Rapid-prototyped PLGA/beta-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication 4:025003, 2012.
-
(2012)
Biofabrication
, vol.4
, pp. 025003
-
-
Kim, J.1
McBride, S.2
Tellis, B.3
Alvarez-Urena, P.4
Song, Y.H.5
Dean, D.D.6
Sylvia, V.L.7
Elgendy, H.8
Ong, J.9
Hollinger, J.O.10
-
51
-
-
77957309354
-
Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression
-
COI: 1:CAS:528:DC%2BC3cXhtF2ru7rK
-
Kim, K., A. Yeatts, D. Dean, and J. P. Fisher. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng. B Rev. 16:523–539, 2010.
-
(2010)
Tissue Eng. B Rev.
, vol.16
, pp. 523-539
-
-
Kim, K.1
Yeatts, A.2
Dean, D.3
Fisher, J.P.4
-
52
-
-
78349308385
-
Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing
-
COI: 1:CAS:528:DC%2BC3cXhtlyrsL%2FK, PID: 20740307
-
Klammert, U., E. Vorndran, T. Reuther, F. A. Muller, K. Zorn, and U. Gbureck. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 21:2947–2953, 2010.
-
(2010)
J. Mater. Sci. Mater. Med.
, vol.21
, pp. 2947-2953
-
-
Klammert, U.1
Vorndran, E.2
Reuther, T.3
Muller, F.A.4
Zorn, K.5
Gbureck, U.6
-
53
-
-
84964084234
-
3D printing of octacalcium phosphate bone substitutes
-
PID: 26106596
-
Komlev, V. S., V. K. Popov, A. V. Mironov, A. Y. Fedotov, A. Y. Teterina, I. V. Smirnov, I. Y. Bozo, V. A. Rybko, and R. V. Deev. 3D printing of octacalcium phosphate bone substitutes. Front Bioeng. Biotechnol. 3:81, 2015. doi:10.3389/fbioe.2015.00081.
-
(2015)
Front Bioeng. Biotechnol.
, vol.3
, pp. 81
-
-
Komlev, V.S.1
Popov, V.K.2
Mironov, A.V.3
Fedotov, A.Y.4
Teterina, A.Y.5
Smirnov, I.V.6
Bozo, I.Y.7
Rybko, V.A.8
Deev, R.V.9
-
54
-
-
79958202747
-
Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo
-
PID: 18646204
-
Lam, C. X., D. W. Hutmacher, J. T. Schantz, M. A. Woodruff, and S. H. Teoh. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J. Biomed. Mater. Res. A 90:906–919, 2009.
-
(2009)
J. Biomed. Mater. Res. A
, vol.90
, pp. 906-919
-
-
Lam, C.X.1
Hutmacher, D.W.2
Schantz, J.T.3
Woodruff, M.A.4
Teoh, S.H.5
-
55
-
-
67349195980
-
Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography
-
COI: 1:CAS:528:DC%2BD1MXlvFCrurc%3D
-
Lee, J. W., G. Ahn, D. S. Kim, and D.-W. Cho. Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron. Eng. 86:1465–1467, 2009.
-
(2009)
Microelectron. Eng.
, vol.86
, pp. 1465-1467
-
-
Lee, J.W.1
Ahn, G.2
Kim, D.S.3
Cho, D.-W.4
-
56
-
-
78549257386
-
Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres
-
COI: 1:CAS:528:DC%2BC3cXhsVCnurbI, PID: 20933279
-
Lee, J. W., K. S. Kang, S. H. Lee, J. Y. Kim, B. K. Lee, and D. W. Cho. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–752, 2011.
-
(2011)
Biomaterials
, vol.32
, pp. 744-752
-
-
Lee, J.W.1
Kang, K.S.2
Lee, S.H.3
Kim, J.Y.4
Lee, B.K.5
Cho, D.W.6
-
57
-
-
34247624498
-
Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters
-
COI: 1:CAS:528:DC%2BD2sXitFCmsr8%3D, PID: 17326677
-
Lee, K. W., S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8:1077–1084, 2007.
-
(2007)
Biomacromolecules
, vol.8
, pp. 1077-1084
-
-
Lee, K.W.1
Wang, S.2
Fox, B.C.3
Ritman, E.L.4
Yaszemski, M.J.5
Lu, L.6
-
58
-
-
42249092222
-
Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites
-
COI: 1:CAS:528:DC%2BD1cXlsV2mt7g%3D, PID: 18403013
-
Lee, K. W., S. Wang, M. J. Yaszemski, and L. Lu. Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials 29:2839–2848, 2008.
-
(2008)
Biomaterials
, vol.29
, pp. 2839-2848
-
-
Lee, K.W.1
Wang, S.2
Yaszemski, M.J.3
Lu, L.4
-
59
-
-
84901287283
-
The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication
-
PID: 24868523
-
Liao, H. T., Y. Y. Chen, Y. T. Lai, M. F. Hsieh, and C. P. Jiang. The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication. Biomed. Res. Int. 2014:321549, 2014.
-
(2014)
Biomed. Res. Int.
, vol.2014
, pp. 321549
-
-
Liao, H.T.1
Chen, Y.Y.2
Lai, Y.T.3
Hsieh, M.F.4
Jiang, C.P.5
-
60
-
-
85027928361
-
Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I
-
Liao, H. T., M. Y. Lee, W. W. Tsai, H. C. Wang, and W. C. Lu. Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J. Tissue Eng. Regen. Med. 2013. doi:10.1002/term.1811.
-
(2013)
J. Tissue Eng. Regen. Med.
-
-
Liao, H.T.1
Lee, M.Y.2
Tsai, W.W.3
Wang, H.C.4
Lu, W.C.5
-
61
-
-
84906937062
-
Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions
-
COI: 1:CAS:528:DC%2BC2cXhsVWltbzN, PID: 22933381
-
Lode, A., K. Meissner, Y. Luo, F. Sonntag, S. Glorius, B. Nies, C. Vater, F. Despang, T. Hanke, and M. Gelinsky. Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J. Tissue Eng. Regen. Med. 8:682–693, 2014. doi:10.1002/term.1563.
-
(2014)
J. Tissue Eng. Regen. Med.
, vol.8
, pp. 682-693
-
-
Lode, A.1
Meissner, K.2
Luo, Y.3
Sonntag, F.4
Glorius, S.5
Nies, B.6
Vater, C.7
Despang, F.8
Hanke, T.9
Gelinsky, M.10
-
62
-
-
84873911982
-
Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering
-
PID: 23228963
-
Luo, Y., C. Wu, A. Lode, and M. Gelinsky. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 5:015005, 2013.
-
(2013)
Biofabrication
, vol.5
, pp. 015005
-
-
Luo, Y.1
Wu, C.2
Lode, A.3
Gelinsky, M.4
-
63
-
-
84931091430
-
In vivo behavior of a custom-made 3D synthetic bone substitute in sinus augmentation procedures in sheep
-
PID: 23829685
-
Mangano, C., B. Barboni, L. Valbonetti, P. Berardinelli, A. Martelli, A. Muttini, R. Bedini, S. Tete, A. Piattelli, and M. Mattioli. In vivo behavior of a custom-made 3D synthetic bone substitute in sinus augmentation procedures in sheep. J. Oral Implantol. 41:240–250, 2015. doi:10.1563/AAID-JOI-D-1513-00053.
-
(2015)
J. Oral Implantol.
, vol.41
, pp. 240-250
-
-
Mangano, C.1
Barboni, B.2
Valbonetti, L.3
Berardinelli, P.4
Martelli, A.5
Muttini, A.6
Bedini, R.7
Tete, S.8
Piattelli, A.9
Mattioli, M.10
-
64
-
-
84922740919
-
Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration
-
COI: 1:CAS:528:DC%2BC2MXhtVCku7Y%3D, PID: 25560614
-
Martinez-Vazquez, F. J., M. V. Cabanas, J. L. Paris, D. Lozano, and M. Vallet-Regi. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater. 15:200–209, 2015. doi:10.1016/j.actbio.2014.1012.1021.
-
(2015)
Acta Biomater.
, vol.15
, pp. 200-209
-
-
Martinez-Vazquez, F.J.1
Cabanas, M.V.2
Paris, J.L.3
Lozano, D.4
Vallet-Regi, M.5
-
65
-
-
84880674215
-
Structural changes to resorbable calcium phosphate bioceramic aged in vitro
-
COI: 1:CAS:528:DC%2BC3sXhsVShsbjO, PID: 23876446
-
Mehrban, N., J. Bowen, E. Vorndran, U. Gbureck, and L. M. Grover. Structural changes to resorbable calcium phosphate bioceramic aged in vitro. Colloids Surf. B Biointerfaces 111:469–478, 2013. doi:10.1016/j.colsurfb.2013.1006.1020.
-
(2013)
Colloids Surf. B Biointerfaces
, vol.111
, pp. 469-478
-
-
Mehrban, N.1
Bowen, J.2
Vorndran, E.3
Gbureck, U.4
Grover, L.M.5
-
66
-
-
81755166884
-
Harnessing and modulating inflammation in strategies for bone regeneration
-
COI: 1:CAS:528:DC%2BC3MXhsFSks7bI
-
Mountziaris, P. M., P. P. Spicer, F. K. Kasper, and A. G. Mikos. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng. B Rev. 17:393–402, 2011.
-
(2011)
Tissue Eng. B Rev.
, vol.17
, pp. 393-402
-
-
Mountziaris, P.M.1
Spicer, P.P.2
Kasper, F.K.3
Mikos, A.G.4
-
67
-
-
84905725612
-
3D bioprinting of tissues and organs
-
COI: 1:CAS:528:DC%2BC2cXht1OqtbfK, PID: 25093879
-
Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
68
-
-
84873145736
-
Monolithic and assembled polymer-ceramic composites for bone regeneration
-
COI: 1:CAS:528:DC%2BC38XhvVSltrbN, PID: 23142480
-
Nandakumar, A., C. Cruz, A. Mentink, Z. Tahmasebi Birgani, L. Moroni, C. van Blitterswijk, and P. Habibovic. Monolithic and assembled polymer-ceramic composites for bone regeneration. Acta Biomater. 9:5708–5717, 2013. doi:10.1016/j.actbio.2012.5710.5044.
-
(2013)
Acta Biomater.
, vol.9
, pp. 5708-5717
-
-
Nandakumar, A.1
Cruz, C.2
Mentink, A.3
Tahmasebi Birgani, Z.4
Moroni, L.5
van Blitterswijk, C.6
Habibovic, P.7
-
69
-
-
84899800867
-
Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture
-
COI: 1:CAS:528:DC%2BC2cXosl2gt7k%3D
-
Poldervaart, M. T., H. Gremmels, K. van Deventer, J. O. Fledderus, F. C. Oner, M. C. Verhaar, W. J. Dhert, and J. Alblas. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. J. Controlled Release 184:58–66, 2014.
-
(2014)
J. Controlled Release
, vol.184
, pp. 58-66
-
-
Poldervaart, M.T.1
Gremmels, H.2
van Deventer, K.3
Fledderus, J.O.4
Oner, F.C.5
Verhaar, M.C.6
Dhert, W.J.7
Alblas, J.8
-
70
-
-
84899822379
-
Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats
-
COI: 1:CAS:528:DC%2BC3sXhtlGju7zI, PID: 23977328
-
Poldervaart, M. T., H. Wang, J. van der Stok, H. Weinans, S. C. Leeuwenburgh, F. C. Oner, W. J. Dhert, and J. Alblas. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS One 8:e72610, 2013. doi:10.1371/journal.pone.0072610.
-
(2013)
PLoS One
, vol.8
-
-
Poldervaart, M.T.1
Wang, H.2
van der Stok, J.3
Weinans, H.4
Leeuwenburgh, S.C.5
Oner, F.C.6
Dhert, W.J.7
Alblas, J.8
-
71
-
-
84861539857
-
Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions
-
COI: 1:CAS:528:DC%2BC38XhvVOis7nK, PID: 22304383
-
Rath, S. N., L. A. Strobel, A. Arkudas, J. P. Beier, A. K. Maier, P. Greil, R. E. Horch, and U. Kneser. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J. Cell Mol. Med. 16:2350–2361, 2012.
-
(2012)
J. Cell Mol. Med.
, vol.16
, pp. 2350-2361
-
-
Rath, S.N.1
Strobel, L.A.2
Arkudas, A.3
Beier, J.P.4
Maier, A.K.5
Greil, P.6
Horch, R.E.7
Kneser, U.8
-
72
-
-
84909949375
-
Improvement of bone regeneration capability of ceramic scaffolds by accelerated release of their calcium ions
-
COI: 1:CAS:528:DC%2BC2cXhvFSntb7F
-
Seol, Y. J., J. Y. Park, J. W. Jung, J. Jang, R. Girdhari, S. W. Kim, and D. W. Cho. Improvement of bone regeneration capability of ceramic scaffolds by accelerated release of their calcium ions. Tissue Eng. A 20:2840–2849, 2014. doi:10.1089/ten.TEA.2012.0726.
-
(2014)
Tissue Eng. A
, vol.20
, pp. 2840-2849
-
-
Seol, Y.J.1
Park, J.Y.2
Jung, J.W.3
Jang, J.4
Girdhari, R.5
Kim, S.W.6
Cho, D.W.7
-
73
-
-
84873166089
-
High-resolution PLA-based composite scaffolds via 3-D printing technology
-
COI: 1:CAS:528:DC%2BC38XhvVSlt7jO, PID: 23142224
-
Serra, T., J. A. Planell, and M. Navarro. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9:5521–5530, 2013.
-
(2013)
Acta Biomater.
, vol.9
, pp. 5521-5530
-
-
Serra, T.1
Planell, J.A.2
Navarro, M.3
-
74
-
-
84858862640
-
In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone)
-
COI: 1:CAS:528:DC%2BC38Xkt1GhsLk%3D, PID: 22436798
-
Seyednejad, H., D. Gawlitta, R. V. Kuiper, A. de Bruin, C. F. van Nostrum, T. Vermonden, W. J. Dhert, and W. E. Hennink. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone). Biomaterials 33:4309–4318, 2012.
-
(2012)
Biomaterials
, vol.33
, pp. 4309-4318
-
-
Seyednejad, H.1
Gawlitta, D.2
Kuiper, R.V.3
de Bruin, A.4
van Nostrum, C.F.5
Vermonden, T.6
Dhert, W.J.7
Hennink, W.E.8
-
75
-
-
84904211382
-
Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect
-
COI: 1:CAS:528:DC%2BC2cXhtFCrurzO
-
Shim, J. H., S. E. Kim, J. Y. Park, J. Kundu, S. W. Kim, S. S. Kang, and D. W. Cho. Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect. Tissue Eng. A 20:1980–1992, 2014.
-
(2014)
Tissue Eng. A
, vol.20
, pp. 1980-1992
-
-
Shim, J.H.1
Kim, S.E.2
Park, J.Y.3
Kundu, J.4
Kim, S.W.5
Kang, S.S.6
Cho, D.W.7
-
76
-
-
84873023661
-
Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering
-
COI: 1:CAS:528:DC%2BC3sXjtVenur4%3D
-
Shuai, C., P. Li, J. Liu, and S. Peng. Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Mater. Charact. 77:23–31, 2013.
-
(2013)
Mater. Charact.
, vol.77
, pp. 23-31
-
-
Shuai, C.1
Li, P.2
Liu, J.3
Peng, S.4
-
77
-
-
79251617418
-
Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency
-
COI: 1:CAS:528:DC%2BC3MXht12hs7k%3D, PID: 21056125
-
Sobral, J. M., S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7:1009–1018, 2011.
-
(2011)
Acta Biomater.
, vol.7
, pp. 1009-1018
-
-
Sobral, J.M.1
Caridade, S.G.2
Sousa, R.A.3
Mano, J.F.4
Reis, R.L.5
-
78
-
-
84895526092
-
Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts
-
COI: 1:CAS:528:DC%2BC2cXktV2gsr8%3D, PID: 22740314
-
Strobel, L. A., S. N. Rath, A. K. Maier, J. P. Beier, A. Arkudas, P. Greil, R. E. Horch, and U. Kneser. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. J. Tissue Eng. Regen. Med. 8:176–185, 2014. doi:10.1002/term.1511.
-
(2014)
J. Tissue Eng. Regen. Med.
, vol.8
, pp. 176-185
-
-
Strobel, L.A.1
Rath, S.N.2
Maier, A.K.3
Beier, J.P.4
Arkudas, A.5
Greil, P.6
Horch, R.E.7
Kneser, U.8
-
79
-
-
77951253248
-
Low temperature preparation of calcium phosphate structure via phosphorization of 3D-printed calcium sulfate hemihydrate based material
-
COI: 1:CAS:528:DC%2BC3cXhslKltb8%3D, PID: 19784760
-
Suwanprateeb, J., W. Suvannapruk, and K. Wasoontararat. Low temperature preparation of calcium phosphate structure via phosphorization of 3D-printed calcium sulfate hemihydrate based material. J. Mater. Sci. Mater. Med. 21:419–429, 2010. doi:10.1007/s10856-10009-13883-10851.
-
(2010)
J. Mater. Sci. Mater. Med.
, vol.21
, pp. 419-429
-
-
Suwanprateeb, J.1
Suvannapruk, W.2
Wasoontararat, K.3
-
80
-
-
84956623176
-
Geometrical versus random beta-TCP scaffolds: exploring the effects on Schwann Cell growth and behavior
-
PID: 26444999
-
Sweet, L., Y. Kang, C. Czisch, L. Witek, Y. Shi, J. Smay, G. W. Plant, and Y. Yang. Geometrical versus random beta-TCP scaffolds: exploring the effects on Schwann Cell growth and behavior. PLoS One 10:e0139820, 2015. doi:10.1371/journal.pone.0139820.
-
(2015)
PLoS One
, vol.10
-
-
Sweet, L.1
Kang, Y.2
Czisch, C.3
Witek, L.4
Shi, Y.5
Smay, J.6
Plant, G.W.7
Yang, Y.8
-
81
-
-
84899489830
-
Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site
-
COI: 1:CAS:528:DC%2BC2cXmtVSjt70%3D, PID: 24726538
-
Tamimi, F., J. Torres, K. Al-Abedalla, E. Lopez-Cabarcos, M. H. Alkhraisat, D. C. Bassett, U. Gbureck, and J. E. Barralet. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials 35:5436–5445, 2014. doi:10.1016/j.biomaterials.2014.5403.5050.
-
(2014)
Biomaterials
, vol.35
, pp. 5436-5445
-
-
Tamimi, F.1
Torres, J.2
Al-Abedalla, K.3
Lopez-Cabarcos, E.4
Alkhraisat, M.H.5
Bassett, D.C.6
Gbureck, U.7
Barralet, J.E.8
-
83
-
-
82055186692
-
Vertical bone augmentation with 3D-synthetic monetite blocks in the rabbit calvaria
-
PID: 22092695
-
Torres, J., F. Tamimi, M. H. Alkhraisat, J. C. Prados-Frutos, E. Rastikerdar, U. Gbureck, J. E. Barralet, and E. Lopez-Cabarcos. Vertical bone augmentation with 3D-synthetic monetite blocks in the rabbit calvaria. J. Clin. Periodontol. 38:1147–1153, 2011. doi:10.1111/j.1600-1051X.2011.01787.x.
-
(2011)
J. Clin. Periodontol.
, vol.38
, pp. 1147-1153
-
-
Torres, J.1
Tamimi, F.2
Alkhraisat, M.H.3
Prados-Frutos, J.C.4
Rastikerdar, E.5
Gbureck, U.6
Barralet, J.E.7
Lopez-Cabarcos, E.8
-
84
-
-
84925264033
-
Additive manufacturing. Continuous liquid interface production of 3D objects
-
COI: 1:CAS:528:DC%2BC2MXksVOqu7g%3D, PID: 25780246
-
Tumbleston, J. R., D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone. Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347:1349–1352, 2015.
-
(2015)
Science
, vol.347
, pp. 1349-1352
-
-
Tumbleston, J.R.1
Shirvanyants, D.2
Ermoshkin, N.3
Janusziewicz, R.4
Johnson, A.R.5
Kelly, D.6
Chen, K.7
Pinschmidt, R.8
Rolland, J.P.9
Ermoshkin, A.10
Samulski, E.T.11
DeSimone, J.M.12
-
85
-
-
84875209842
-
Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects
-
PID: 23255164
-
Van der Stok, J., O. P. Van der Jagt, S. Amin Yavari, M. F. De Haas, J. H. Waarsing, H. Jahr, E. M. Van Lieshout, P. Patka, J. A. Verhaar, A. A. Zadpoor, and H. Weinans. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J. Orthop. Res. 31:792–799, 2013.
-
(2013)
J. Orthop. Res.
, vol.31
, pp. 792-799
-
-
Van der Stok, J.1
Van der Jagt, O.P.2
Amin Yavari, S.3
De Haas, M.F.4
Waarsing, J.H.5
Jahr, H.6
Van Lieshout, E.M.7
Patka, P.8
Verhaar, J.A.9
Zadpoor, A.A.10
Weinans, H.11
-
86
-
-
84889801229
-
Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time- and dose-controlled delivery of dual growth factors
-
van der Stok, J., H. Wang, S. Amin Yavari, M. Siebelt, M. Sandker, J. H. Waarsing, J. A. Verhaar, H. Jahr, A. A. Zadpoor, S. C. Leeuwenburgh, and H. Weinans. Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time- and dose-controlled delivery of dual growth factors. Tissue Eng. A 19:2605–2614, 2013.
-
(2013)
Tissue Eng. A
, vol.19
, pp. 2605-2614
-
-
van der Stok, J.1
Wang, H.2
Amin Yavari, S.3
Siebelt, M.4
Sandker, M.5
Waarsing, J.H.6
Verhaar, J.A.7
Jahr, H.8
Zadpoor, A.A.9
Leeuwenburgh, S.C.10
Weinans, H.11
-
87
-
-
43149112284
-
Photo-cross-linked hybrid polymer networks consisting of poly(propylene fumarate) and poly(caprolactone fumarate): controlled physical properties and regulated bone and nerve cell responses
-
COI: 1:CAS:528:DC%2BD1cXis1ektL0%3D, PID: 18307311
-
Wang, S., D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu. Photo-cross-linked hybrid polymer networks consisting of poly(propylene fumarate) and poly(caprolactone fumarate): controlled physical properties and regulated bone and nerve cell responses. Biomacromolecules 9:1229–1241, 2008.
-
(2008)
Biomacromolecules
, vol.9
, pp. 1229-1241
-
-
Wang, S.1
Kempen, D.H.2
Simha, N.K.3
Lewis, J.L.4
Windebank, A.J.5
Yaszemski, M.J.6
Lu, L.7
-
88
-
-
67349133157
-
The roles of matrix polymer crystallinity and hydroxyapatite nanoparticles in modulating material properties of photo-crosslinked composites and bone marrow stromal cell responses
-
COI: 1:CAS:528:DC%2BD1MXlvFGqt7w%3D, PID: 19339048
-
Wang, S., D. H. Kempen, M. J. Yaszemski, and L. Lu. The roles of matrix polymer crystallinity and hydroxyapatite nanoparticles in modulating material properties of photo-crosslinked composites and bone marrow stromal cell responses. Biomaterials 30:3359–3370, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 3359-3370
-
-
Wang, S.1
Kempen, D.H.2
Yaszemski, M.J.3
Lu, L.4
-
89
-
-
84905566469
-
Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds
-
COI: 1:CAS:528:DC%2BC2cXlvVWnsbo%3D, PID: 24711251
-
Wang, J., M. Yang, Y. Zhu, L. Wang, A. P. Tomsia, and C. Mao. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Adv. Mater. 26:4961–4966, 2014. doi:10.1002/adma.201400154.
-
(2014)
Adv. Mater.
, vol.26
, pp. 4961-4966
-
-
Wang, J.1
Yang, M.2
Zhu, Y.3
Wang, L.4
Tomsia, A.P.5
Mao, C.6
-
90
-
-
56349116248
-
Photo-crosslinked poly(epsilon-caprolactone fumarate) networks: roles of crystallinity and crosslinking density in determining mechanical properties
-
COI: 1:CAS:528:DC%2BD1cXhsVKht7nO
-
Wang, S., M. J. Yaszemski, J. A. Gruetzmacher, and L. Lu. Photo-crosslinked poly(epsilon-caprolactone fumarate) networks: roles of crystallinity and crosslinking density in determining mechanical properties. Polymer (Guildf) 49:5692–5699, 2008.
-
(2008)
Polymer (Guildf)
, vol.49
, pp. 5692-5699
-
-
Wang, S.1
Yaszemski, M.J.2
Gruetzmacher, J.A.3
Lu, L.4
-
91
-
-
77949503635
-
Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations
-
PID: 20091914
-
Warnke, P. H., H. Seitz, F. Warnke, S. T. Becker, S. Sivananthan, E. Sherry, Q. Liu, J. Wiltfang, and T. Douglas. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J. Biomed. Mater. Res. B Appl. Biomater. 93:212–217, 2010. doi:10.1002/jbm.b.31577.
-
(2010)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.93
, pp. 212-217
-
-
Warnke, P.H.1
Seitz, H.2
Warnke, F.3
Becker, S.T.4
Sivananthan, S.5
Sherry, E.6
Liu, Q.7
Wiltfang, J.8
Douglas, T.9
-
92
-
-
44949223637
-
Porous ceramic bone scaffolds for vascularized bone tissue regeneration
-
COI: 1:CAS:528:DC%2BD1cXms1yqs74%3D, PID: 18305907
-
Will, J., R. Melcher, C. Treul, N. Travitzky, U. Kneser, E. Polykandriotis, R. Horch, and P. Greil. Porous ceramic bone scaffolds for vascularized bone tissue regeneration. J. Mater. Sci. Mater. Med. 19:2781–2790, 2008. doi:10.1007/s10856-10007-13346-10855.
-
(2008)
J. Mater. Sci. Mater. Med.
, vol.19
, pp. 2781-2790
-
-
Will, J.1
Melcher, R.2
Treul, C.3
Travitzky, N.4
Kneser, U.5
Polykandriotis, E.6
Horch, R.7
Greil, P.8
-
93
-
-
14844322862
-
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
-
COI: 1:CAS:528:DC%2BD2MXitV2gs7g%3D, PID: 15763261
-
Williams, J. M., A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.
-
(2005)
Biomaterials
, vol.26
, pp. 4817-4827
-
-
Williams, J.M.1
Adewunmi, A.2
Schek, R.M.3
Flanagan, C.L.4
Krebsbach, P.H.5
Feinberg, S.E.6
Hollister, S.J.7
Das, S.8
-
94
-
-
79955613975
-
Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability
-
COI: 1:CAS:528:DC%2BC3MXlsVCltbw%3D, PID: 21402182
-
Wu, C., Y. Luo, G. Cuniberti, Y. Xiao, and M. Gelinsky. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 7:2644–2650, 2011.
-
(2011)
Acta Biomater.
, vol.7
, pp. 2644-2650
-
-
Wu, C.1
Luo, Y.2
Cuniberti, G.3
Xiao, Y.4
Gelinsky, M.5
-
95
-
-
84887331253
-
Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications
-
Xia, Y., P. Zhou, X. Cheng, Y. Xie, C. Liang, C. Li, and S. Xu. Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications. Int. J. Nanomed. 8:4197–4213, 2013.
-
(2013)
Int. J. Nanomed.
, vol.8
, pp. 4197-4213
-
-
Xia, Y.1
Zhou, P.2
Cheng, X.3
Xie, Y.4
Liang, C.5
Li, C.6
Xu, S.7
-
96
-
-
36148989585
-
Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice
-
COI: 1:CAS:528:DC%2BD2sXhtlGjtr3K, PID: 17921078
-
Yang, X., B. F. Ricciardi, A. Hernandez-Soria, Y. Shi, N. Pleshko Camacho, and M. P. Bostrom. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41:928–936, 2007.
-
(2007)
Bone
, vol.41
, pp. 928-936
-
-
Yang, X.1
Ricciardi, B.F.2
Hernandez-Soria, A.3
Shi, Y.4
Pleshko Camacho, N.5
Bostrom, M.P.6
-
97
-
-
84892532635
-
Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration
-
COI: 1:CAS:528:DC%2BC2cXms1CnurY%3D, PID: 24441182
-
Yang, S., J. Wang, L. Tang, H. Ao, H. Tan, T. Tang, and C. Liu. Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration. Colloids Surf. B Biointerfaces 116:72–80, 2014.
-
(2014)
Colloids Surf. B Biointerfaces
, vol.116
, pp. 72-80
-
-
Yang, S.1
Wang, J.2
Tang, L.3
Ao, H.4
Tan, H.5
Tang, T.6
Liu, C.7
-
98
-
-
84947203525
-
Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis
-
COI: 1:CAS:528:DC%2BC2MXhs1OmsrrL, PID: 26525451
-
Zhang, Y., L. Xia, D. Zhai, M. Shi, Y. Luo, C. Feng, B. Fang, J. Yin, J. Chang, and C. Wu. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale 7:19207–19221, 2015. doi:10.11039/c19205nr05421d.
-
(2015)
Nanoscale
, vol.7
, pp. 19207-19221
-
-
Zhang, Y.1
Xia, L.2
Zhai, D.3
Shi, M.4
Luo, Y.5
Feng, C.6
Fang, B.7
Yin, J.8
Chang, J.9
Wu, C.10
-
99
-
-
84893864973
-
Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique
-
COI: 1:CAS:528:DC%2BC2cXksFyrsb4%3D, PID: 24656346
-
Zhou, Z., F. Buchanan, C. Mitchell, and N. Dunne. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater. Sci. Eng. C Mater. Biol. Appl. 38:1–10, 2014.
-
(2014)
Mater. Sci. Eng. C Mater. Biol. Appl.
, vol.38
, pp. 1-10
-
-
Zhou, Z.1
Buchanan, F.2
Mitchell, C.3
Dunne, N.4
|