메뉴 건너뛰기




Volumn 33, Issue 11, 2016, Pages 2594-2603

The Next Era: Deep Learning in Pharmaceutical Research

Author keywords

artificial intelligence; deep Learning; drug discovery; machine learning; pharmaceutics

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOINFORMATICS; DRUG DEVELOPMENT; HUMAN; MACHINE LEARNING; NONHUMAN; PHARMACEUTICS; PRIORITY JOURNAL; QUANTITATIVE STRUCTURE ACTIVITY RELATION; SUPPORT VECTOR MACHINE; ALGORITHM; DRUG RESEARCH; PROCEDURES; SOFTWARE;

EID: 84986243956     PISSN: 07248741     EISSN: 1573904X     Source Type: Journal    
DOI: 10.1007/s11095-016-2029-7     Document Type: Article
Times cited : (184)

References (96)
  • 1
    • 77957367950 scopus 로고    scopus 로고
    • Chemical space: missing pieces in cheminformatics
    • COI: 1:CAS:528:DC%2BC3cXps1egtLg%3D, PID: 20683645
    • Ekins S, Gupta RR, Gifford E, Bunin BA, Waller CL. Chemical space: missing pieces in cheminformatics. Pharm Res. 2010;27(10):2035–9.
    • (2010) Pharm Res , vol.27 , Issue.10 , pp. 2035-2039
    • Ekins, S.1    Gupta, R.R.2    Gifford, E.3    Bunin, B.A.4    Waller, C.L.5
  • 2
    • 84981709993 scopus 로고    scopus 로고
    • Protein function in precision medicine: deep understanding with machine learning
    • Rost B, Radivojac P, Bromberg Y. Protein function in precision medicine: deep understanding with machine learning. FEBS Lett. 2016;590(15):2327–41.
    • (2016) FEBS Lett , vol.590 , Issue.15 , pp. 2327-2341
    • Rost, B.1    Radivojac, P.2    Bromberg, Y.3
  • 3
    • 84904993806 scopus 로고    scopus 로고
    • Machine learning methods in chemoinformatics
    • COI: 1:CAS:528:DC%2BC2cXht1ans77J, PID: 25285160
    • Mitchell JB. Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci. 2014;4(5):468–81.
    • (2014) Wiley Interdiscip Rev Comput Mol Sci , vol.4 , Issue.5 , pp. 468-481
    • Mitchell, J.B.1
  • 4
    • 84908137021 scopus 로고    scopus 로고
    • Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants
    • COI: 1:CAS:528:DC%2BC2cXhsV2hurzF, PID: 25195622
    • Zhu H, Zhang J, Kim MT, Boison A, Sedykh A, Moran K. Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants. Chem Res Toxicol. 2014;27(10):1643–51.
    • (2014) Chem Res Toxicol , vol.27 , Issue.10 , pp. 1643-1651
    • Zhu, H.1    Zhang, J.2    Kim, M.T.3    Boison, A.4    Sedykh, A.5    Moran, K.6
  • 5
    • 84934926160 scopus 로고    scopus 로고
    • Open source bayesian models: 2. Mining a “big dataset” to create and validate models with ChEMBL
    • COI: 1:CAS:528:DC%2BC2MXos1Kqu70%3D, PID: 25995041
    • Clark AM, Ekins S. Open source bayesian models: 2. Mining a “big dataset” to create and validate models with ChEMBL. J Chem Inf Model. 2015;55:1246–60.
    • (2015) J Chem Inf Model , vol.55 , pp. 1246-1260
    • Clark, A.M.1    Ekins, S.2
  • 6
    • 84924911498 scopus 로고    scopus 로고
    • Bigger data, collaborative tools and the future of predictive drug discovery
    • COI: 1:CAS:528:DC%2BC2cXhtVSgs7nL, PID: 24943138
    • Ekins S, Clark AM, Swamidass SJ, Litterman N, Williams AJ. Bigger data, collaborative tools and the future of predictive drug discovery. J Comput Aided Mol Des. 2014;28(10):997–1008.
    • (2014) J Comput Aided Mol Des , vol.28 , Issue.10 , pp. 997-1008
    • Ekins, S.1    Clark, A.M.2    Swamidass, S.J.3    Litterman, N.4    Williams, A.J.5
  • 7
    • 84904962426 scopus 로고    scopus 로고
    • Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for mycobacterium tuberculosis
    • COI: 1:CAS:528:DC%2BC2cXhtVCqsrjK, PID: 24968215
    • Ekins S, Freundlich JS, Reynolds RC. Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for mycobacterium tuberculosis. J Chem Inf Model. 2014;54:2157–65.
    • (2014) J Chem Inf Model , vol.54 , pp. 2157-2165
    • Ekins, S.1    Freundlich, J.S.2    Reynolds, R.C.3
  • 8
    • 35648980041 scopus 로고    scopus 로고
    • Future directions for drug transporter modelling
    • COI: 1:CAS:528:DC%2BD2sXht1ahu7vF, PID: 17968741
    • Ekins S, Ecker GF, Chiba P, Swaan PW. Future directions for drug transporter modelling. Xenobiotica. 2007;37(10):1152–70.
    • (2007) Xenobiotica , vol.37 , Issue.10 , pp. 1152-1170
    • Ekins, S.1    Ecker, G.F.2    Chiba, P.3    Swaan, P.W.4
  • 9
    • 84906551223 scopus 로고    scopus 로고
    • New target predictions and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0
    • PID: 25302078
    • Clark AM, Sarker M, Ekins S. New target predictions and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0. J Cheminform. 2014;6:38.
    • (2014) J Cheminform , vol.6 , pp. 38
    • Clark, A.M.1    Sarker, M.2    Ekins, S.3
  • 10
    • 84946211417 scopus 로고    scopus 로고
    • Making transporter models for drug-drug interaction prediction mobile
    • COI: 1:CAS:528:DC%2BC2MXhs1SjsrvO, PID: 26199424
    • Ekins S, Clark AM, Wright SH. Making transporter models for drug-drug interaction prediction mobile. Drug Metab Dispos. 2015;43:1642–5.
    • (2015) Drug Metab Dispos , vol.43 , pp. 1642-1645
    • Ekins, S.1    Clark, A.M.2    Wright, S.H.3
  • 11
    • 84978792062 scopus 로고    scopus 로고
    • A renaissance of neural networks in drug discovery
    • COI: 1:CAS:528:DC%2BC28XhtFehsrvJ
    • Baskin II, Winkler D, Tetko IV. A renaissance of neural networks in drug discovery. Expert Opin Drug Discovery. 2016;11:785–95.
    • (2016) Expert Opin Drug Discovery , vol.11 , pp. 785-795
    • Baskin, I.I.1    Winkler, D.2    Tetko, I.V.3
  • 12
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • COI: 1:CAS:528:DC%2BC2MXht1WlurzP, PID: 26017442
    • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 13
    • 58149381237 scopus 로고    scopus 로고
    • Bayesian regularization of neural networks
    • PID: 19065804
    • Burden F, Winkler D. Bayesian regularization of neural networks. Methods Mol Biol. 2008;458:25–44.
    • (2008) Methods Mol Biol , vol.458 , pp. 25-44
    • Burden, F.1    Winkler, D.2
  • 14
    • 84954372459 scopus 로고    scopus 로고
    • Deep learning in drug discovery
    • COI: 1:CAS:528:DC%2BC2MXitV2rs7bE
    • Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inf. 2016;35(1):3–14.
    • (2016) Mol Inf , vol.35 , Issue.1 , pp. 3-14
    • Gawehn, E.1    Hiss, J.A.2    Schneider, G.3
  • 15
    • 84968861400 scopus 로고    scopus 로고
    • Applications of deep learning in biomedicine
    • COI: 1:CAS:528:DC%2BC28Xks1eht7g%3D, PID: 27007977
    • Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm. 2016;13(5):1445–54.
    • (2016) Mol Pharm , vol.13 , Issue.5 , pp. 1445-1454
    • Mamoshina, P.1    Vieira, A.2    Putin, E.3    Zhavoronkov, A.4
  • 16
    • 84989331891 scopus 로고    scopus 로고
    • Chow J-F. Things to try after useR! – Part 1: Deep Learning with H2O. 2016 Aug 8th
    • Chow J-F. Things to try after useR! – Part 1: Deep Learning with H2O. 2016 Aug 8th Available from: http://www.r-bloggers.com/things-to-try-after-user-part-1-deep-learning-with-h2o/.
  • 19
    • 84989307767 scopus 로고    scopus 로고
    • Aug 8th
    • Novet J. Facebook open-sources its cutting-edge deep learning tools. 2016 Aug 8th. Available from: http://venturebeat.com/2015/01/16/facebook-opens-up-about-more-of-its-cutting-edge-deep-learning-tools/.
    • (2016) Available from:
  • 20
    • 84989331897 scopus 로고    scopus 로고
    • Aug 8th
    • Chintala S. FAIR open sources deep-learning modules for Torch. 2016 Aug 8th. Available from: https://research.facebook.com/blog/fair-open-sources-deep-learning-modules-for-torch/.
    • (2016) Available from:
  • 21
    • 84989351445 scopus 로고    scopus 로고
    • Aug 8th
    • Linn A. Microsoft releases CNTK, its open source deep learning toolkit, on GitHub. 2016 Aug 8th. Available from: http://blogs.microsoft.com/next/2016/01/25/microsoft-releases-cntk-its-open-source-deep-learning-toolkit-on-github/#sm.00013j280xp1sdctrgg21w81es5ov.
    • (2016) Available from:
    • releases, L.A.M.1
  • 23
    • 85032586119 scopus 로고    scopus 로고
    • Deep learning in bioinformatics
    • Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 2016. doi:10.1093/bib/bbw068.
    • (2016) Brief Bioinform
    • Min, S.1    Lee, B.2    Yoon, S.3
  • 24
    • 84937019610 scopus 로고    scopus 로고
    • An overview of practical applications of protein disorder prediction and drive for faster, more accurate predictions
    • PID: 26198229
    • Deng X, Gumm J, Karki S, Eickholt J, Cheng J. An overview of practical applications of protein disorder prediction and drive for faster, more accurate predictions. Int J Mol Sci. 2015;16(7):15384–404.
    • (2015) Int J Mol Sci , vol.16 , Issue.7 , pp. 15384-15404
    • Deng, X.1    Gumm, J.2    Karki, S.3    Eickholt, J.4    Cheng, J.5
  • 25
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
    • COI: 1:CAS:528:DC%2BC3sXpvVGht7g%3D, PID: 23795551
    • Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013;53(7):1563–75.
    • (2013) J Chem Inf Model , vol.53 , Issue.7 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 26
    • 84945557463 scopus 로고    scopus 로고
    • Deep learning for drug-induced liver injury
    • COI: 1:CAS:528:DC%2BC2MXhs1ShsLvO, PID: 26437739
    • Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L. Deep learning for drug-induced liver injury. J Chem Inf Model. 2015;55(10):2085–93.
    • (2015) J Chem Inf Model , vol.55 , Issue.10 , pp. 2085-2093
    • Xu, Y.1    Dai, Z.2    Chen, F.3    Gao, S.4    Pei, J.5    Lai, L.6
  • 27
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • COI: 1:CAS:528:DC%2BC2MXhvFGns70%3D, PID: 25635324
    • Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model. 2015;55(2):263–74.
    • (2015) J Chem Inf Model , vol.55 , Issue.2 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 28
    • 84976407069 scopus 로고    scopus 로고
    • Deep biomarkers of human aging: application of deep neural networks to biomarker development
    • Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, et al. Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging (Albany NY). 2016;8(5):1021–33.
    • (2016) Aging (Albany NY) , vol.8 , Issue.5 , pp. 1021-1033
    • Putin, E.1    Mamoshina, P.2    Aliper, A.3    Korzinkin, M.4    Moskalev, A.5    Kolosov, A.6
  • 29
    • 84867316765 scopus 로고    scopus 로고
    • Deep architectures for protein contact map prediction
    • PID: 22847931
    • Di Lena P, Nagata K, Baldi P. Deep architectures for protein contact map prediction. Bioinformatics. 2012;28(19):2449–57.
    • (2012) Bioinformatics , vol.28 , Issue.19 , pp. 2449-2457
    • Di Lena, P.1    Nagata, K.2    Baldi, P.3
  • 31
    • 84930203768 scopus 로고    scopus 로고
    • Deep convolutional neural networks for annotating gene expression patterns in the mouse brain
    • Zeng T, Li R, Mukkamala R, Ye J, Ji S. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain. BMC Bioinf. 2015;16:147.
    • (2015) BMC Bioinf , vol.16 , pp. 147
    • Zeng, T.1    Li, R.2    Mukkamala, R.3    Ye, J.4    Ji, S.5
  • 32
    • 84960503750 scopus 로고    scopus 로고
    • A deep learning framework for modeling structural features of RNA-binding protein targets
    • PID: 26467480
    • Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, et al. A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 2016;44(4):e32.
    • (2016) Nucleic Acids Res , vol.44 , Issue.4
    • Zhang, S.1    Zhou, J.2    Hu, H.3    Gong, H.4    Chen, L.5    Cheng, C.6
  • 33
    • 84959185539 scopus 로고    scopus 로고
    • High-content analysis of breast cancer using single-cell deep transfer learning
    • COI: 1:CAS:528:DC%2BC28XpvVegtLc%3D, PID: 26746583
    • Kandaswamy C, Silva LM, Alexandre LA, Santos JM. High-content analysis of breast cancer using single-cell deep transfer learning. J Biomol Screen. 2016;21(3):252–9.
    • (2016) J Biomol Screen , vol.21 , Issue.3 , pp. 252-259
    • Kandaswamy, C.1    Silva, L.M.2    Alexandre, L.A.3    Santos, J.M.4
  • 34
    • 84945573112 scopus 로고    scopus 로고
    • Modeling epoxidation of drug-like molecules with a deep machine learning network
    • COI: 1:CAS:528:DC%2BC2MXhtVars7jL, PID: 27162970
    • Hughes TB, Miller GP, Swamidass SJ. Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Cent Sci. 2015;1(4):168–80.
    • (2015) ACS Cent Sci , vol.1 , Issue.4 , pp. 168-180
    • Hughes, T.B.1    Miller, G.P.2    Swamidass, S.J.3
  • 36
    • 85063821675 scopus 로고    scopus 로고
    • Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge
    • Abdelaziz A, Spahn-Langguth H, Schramm K-W, Tetko IV. Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge. Front Environ Sci. 2016;4:2.
    • (2016) Front Environ Sci , vol.4 , pp. 2
    • Abdelaziz, A.1    Spahn-Langguth, H.2    Schramm, K.-W.3    Tetko, I.V.4
  • 37
    • 84979019529 scopus 로고    scopus 로고
    • Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
    • COI: 1:CAS:528:DC%2BC28Xot1ers7w%3D, PID: 27200455
    • Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524–30.
    • (2016) Mol Pharm , vol.13 , Issue.7 , pp. 2524-2530
    • Aliper, A.1    Plis, S.2    Artemov, A.3    Ulloa, A.4    Mamoshina, P.5    Zhavoronkov, A.6
  • 38
  • 39
    • 84976510674 scopus 로고    scopus 로고
    • Classifying and segmenting microscopy images with deep multiple instance learning
    • PID: 27307644
    • Kraus OZ, Ba JL, Frey BJ. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics. 2016;32(12):i52–9.
    • (2016) Bioinformatics , vol.32 , Issue.12 , pp. i52-i59
    • Kraus, O.Z.1    Ba, J.L.2    Frey, B.J.3
  • 40
    • 84963801154 scopus 로고    scopus 로고
    • Intra- and inter-fractional variation prediction of lung tumors using fuzzy deep learning
    • PID: 27170914
    • Park S, Lee SJ, Weiss E, Motai Y. Intra- and inter-fractional variation prediction of lung tumors using fuzzy deep learning. IEEE J Transl Eng Health Med. 2016;4:4300112.
    • (2016) IEEE J Transl Eng Health Med , vol.4 , pp. 4300112
    • Park, S.1    Lee, S.J.2    Weiss, E.3    Motai, Y.4
  • 41
    • 84922788059 scopus 로고    scopus 로고
    • Pairwise input neural network for target-ligand interaction prediction
    • Wang C, Liu J, Luo F, Tan Y. Pairwise input neural network for target-ligand interaction prediction. IEEE Int Conf Bioinf and Biomed. 2014:67-70. doi:10.1109/BIBM.2014.6999129.
    • (2014) IEEE Int Conf Bioinf and Biomed , pp. 67-70
    • Wang, C.1    Liu, J.2    Luo, F.3    Tan, Y.4
  • 42
    • 84957705357 scopus 로고    scopus 로고
    • Accurate refinement of docked protein complexes using evolutionary information and deep learning
    • COI: 1:CAS:528:DC%2BC28XpslOqt74%3D, PID: 26846813
    • Akbal-Delibas B, Farhoodi R, Pomplun M, Haspel N. Accurate refinement of docked protein complexes using evolutionary information and deep learning. J Bioinform Comput Biol. 2016;14(3):1642002.
    • (2016) J Bioinform Comput Biol , vol.14 , Issue.3 , pp. 1642002
    • Akbal-Delibas, B.1    Farhoodi, R.2    Pomplun, M.3    Haspel, N.4
  • 43
    • 84976293888 scopus 로고    scopus 로고
    • Computational intelligence modeling of the macromolecules release from PLGA microspheres-focus on feature selection
    • PID: 27315205
    • Zawbaa HM, Szlek J, Grosan C, Jachowicz R, Mendyk A. Computational intelligence modeling of the macromolecules release from PLGA microspheres-focus on feature selection. PLoS One. 2016;11(6):e0157610.
    • (2016) PLoS One , vol.11 , Issue.6
    • Zawbaa, H.M.1    Szlek, J.2    Grosan, C.3    Jachowicz, R.4    Mendyk, A.5
  • 44
    • 78649621062 scopus 로고    scopus 로고
    • A predictive ligand-based Bayesian model for human drug induced liver injury
    • COI: 1:CAS:528:DC%2BC3cXhsFGgurfN, PID: 20843939
    • Ekins S, Williams AJ, Xu JJ. A predictive ligand-based Bayesian model for human drug induced liver injury. Drug Metab Dispos. 2010;38:2302–8.
    • (2010) Drug Metab Dispos , vol.38 , pp. 2302-2308
    • Ekins, S.1    Williams, A.J.2    Xu, J.J.3
  • 45
    • 84935038144 scopus 로고    scopus 로고
    • Open source bayesian models: 1. Application to ADME/Tox and drug discovery datasets
    • COI: 1:CAS:528:DC%2BC2MXos1Kqu78%3D, PID: 25994950
    • Clark AM, Dole K, Coulon-Spector A, McNutt A, Grass G, Freundlich JS, et al. Open source bayesian models: 1. Application to ADME/Tox and drug discovery datasets. J Chem Inf Model. 2015;55:1231–45.
    • (2015) J Chem Inf Model , vol.55 , pp. 1231-1245
    • Clark, A.M.1    Dole, K.2    Coulon-Spector, A.3    McNutt, A.4    Grass, G.5    Freundlich, J.S.6
  • 46
    • 79952229990 scopus 로고    scopus 로고
    • Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection
    • COI: 1:CAS:528:DC%2BC3MXivFegsg%3D%3D, PID: 21214224
    • Cheng T, Li Q, Wang Y, Bryant SH. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. J Chem Inf Model. 2011;51(2):229–36.
    • (2011) J Chem Inf Model , vol.51 , Issue.2 , pp. 229-236
    • Cheng, T.1    Li, Q.2    Wang, Y.3    Bryant, S.H.4
  • 47
    • 80051727852 scopus 로고    scopus 로고
    • Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches
    • COI: 1:CAS:528:DC%2BC3MXptVOjt7s%3D, PID: 21699217
    • Low Y, Uehara T, Minowa Y, Yamada H, Ohno Y, Urushidani T, et al. Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem Res Toxicol. 2011;24(8):1251–62.
    • (2011) Chem Res Toxicol , vol.24 , Issue.8 , pp. 1251-1262
    • Low, Y.1    Uehara, T.2    Minowa, Y.3    Yamada, H.4    Ohno, Y.5    Urushidani, T.6
  • 48
    • 84892856465 scopus 로고    scopus 로고
    • Progress in computational toxicology
    • COI: 1:CAS:528:DC%2BC2cXksVWks7s%3D, PID: 24361690
    • Ekins S. Progress in computational toxicology. J Pharmacol Toxicol Methods. 2014;69(2):115–40.
    • (2014) J Pharmacol Toxicol Methods , vol.69 , Issue.2 , pp. 115-140
    • Ekins, S.1
  • 49
    • 84859345561 scopus 로고    scopus 로고
    • ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage
    • COI: 1:CAS:528:DC%2BC38XjtFWhsLs%3D, PID: 22380484
    • Wang S, Li Y, Wang J, Chen L, Zhang L, Yu H, et al. ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage. Mol Pharm. 2012;9(4):996–1010.
    • (2012) Mol Pharm , vol.9 , Issue.4 , pp. 996-1010
    • Wang, S.1    Li, Y.2    Wang, J.3    Chen, L.4    Zhang, L.5    Yu, H.6
  • 50
    • 46749128531 scopus 로고    scopus 로고
    • New predictive models for blood brain barrier permeability of drug-like molecules
    • COI: 1:CAS:528:DC%2BD1cXot1Whsrc%3D, PID: 18415049
    • Kortagere S, Chekmarev DS, Welsh WJ, Ekins S. New predictive models for blood brain barrier permeability of drug-like molecules. Pharm Res. 2008;25:1836–45.
    • (2008) Pharm Res , vol.25 , pp. 1836-1845
    • Kortagere, S.1    Chekmarev, D.S.2    Welsh, W.J.3    Ekins, S.4
  • 51
    • 33947183028 scopus 로고    scopus 로고
    • A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability
    • COI: 1:CAS:528:DC%2BD2sXhtVensb8%3D, PID: 17261034
    • Leong MK. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability. Chem Res Toxicol. 2007;20(2):217–26.
    • (2007) Chem Res Toxicol , vol.20 , Issue.2 , pp. 217-226
    • Leong, M.K.1
  • 52
    • 84954285101 scopus 로고    scopus 로고
    • Predicting mouse liver microsomal stability with “pruned” machine learning models and public data
    • PID: 26415647
    • Perryman AL, Stratton TP, Ekins S, Freundlich JS. Predicting mouse liver microsomal stability with “pruned” machine learning models and public data. Pharm Res. 2015;33:433–49.
    • (2015) Pharm Res , vol.33 , pp. 433-449
    • Perryman, A.L.1    Stratton, T.P.2    Ekins, S.3    Freundlich, J.S.4
  • 53
    • 37249042636 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine
    • COI: 1:CAS:528:DC%2BD2sXhtFGisrvI, PID: 17929911
    • Hou T, Wang J, Li Y. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model. 2007;47(6):2408–15.
    • (2007) J Chem Inf Model , vol.47 , Issue.6 , pp. 2408-2415
    • Hou, T.1    Wang, J.2    Li, Y.3
  • 54
    • 84961145724 scopus 로고    scopus 로고
    • Open source Bayesian models: 3. Composite models for prediction of binned responses
    • COI: 1:CAS:528:DC%2BC28XltlGqsw%3D%3D, PID: 26750305
    • Clark AM, Dole K, Ekins S. Open source Bayesian models: 3. Composite models for prediction of binned responses. J Chem Inf Model. 2016;56:275–85.
    • (2016) J Chem Inf Model , vol.56 , pp. 275-285
    • Clark, A.M.1    Dole, K.2    Ekins, S.3
  • 55
    • 84894270548 scopus 로고    scopus 로고
    • Predicting drug-target interactions using drug-drug interactions
    • PID: 24278248
    • Kim S, Jin D, Lee H. Predicting drug-target interactions using drug-drug interactions. PLoS One. 2013;8(11):e80129.
    • (2013) PLoS One , vol.8 , Issue.11
    • Kim, S.1    Jin, D.2    Lee, H.3
  • 56
    • 84989332345 scopus 로고    scopus 로고
    • Unterthiner T, Mayr A, Klambauer G, Hochreiter S. Toxicity prediction using deep learning
    • Unterthiner T, Mayr A, Klambauer G, Hochreiter S. Toxicity prediction using deep learning. Available from: https://arxiv.org/pdf/1503.01445.pdf.
  • 57
    • 84930181308 scopus 로고    scopus 로고
    • In silico predictions of human skin permeability using nonlinear quantitative structure-property relationship models
    • COI: 1:CAS:528:DC%2BC2MXhsFSjsrc%3D, PID: 25616540
    • Baba H, Takahara J, Mamitsuka H. In silico predictions of human skin permeability using nonlinear quantitative structure-property relationship models. Pharm Res. 2015;32(7):2360–71.
    • (2015) Pharm Res , vol.32 , Issue.7 , pp. 2360-2371
    • Baba, H.1    Takahara, J.2    Mamitsuka, H.3
  • 58
    • 84943582559 scopus 로고    scopus 로고
    • Modeling and prediction of solvent effect on human skin permeability using support vector regression and random forest
    • COI: 1:CAS:528:DC%2BC2MXpsVyktbg%3D, PID: 26033768
    • Baba H, Takahara J, Yamashita F, Hashida M. Modeling and prediction of solvent effect on human skin permeability using support vector regression and random forest. Pharm Res. 2015;32(11):3604–17.
    • (2015) Pharm Res , vol.32 , Issue.11 , pp. 3604-3617
    • Baba, H.1    Takahara, J.2    Yamashita, F.3    Hashida, M.4
  • 59
    • 70350140380 scopus 로고    scopus 로고
    • Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter
    • COI: 1:CAS:528:DC%2BD1MXhtVGjtb3L, PID: 19673539
    • Zheng X, Ekins S, Raufman JP, Polli JE. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol Pharm. 2009;6(5):1591–603.
    • (2009) Mol Pharm , vol.6 , Issue.5 , pp. 1591-1603
    • Zheng, X.1    Ekins, S.2    Raufman, J.P.3    Polli, J.E.4
  • 60
    • 78649929750 scopus 로고    scopus 로고
    • Quantitative structure activity relationship for inhibition of human organic cation/carnitine transporter
    • COI: 1:CAS:528:DC%2BC3cXht1WmtrzL, PID: 20831193
    • Diao L, Ekins S, Polli JE. Quantitative structure activity relationship for inhibition of human organic cation/carnitine transporter. Mol Pharm. 2010;7:2120–30.
    • (2010) Mol Pharm , vol.7 , pp. 2120-2130
    • Diao, L.1    Ekins, S.2    Polli, J.E.3
  • 61
    • 84874588814 scopus 로고    scopus 로고
    • Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP)
    • COI: 1:CAS:528:DC%2BC3sXhtFCnsL8%3D, PID: 23339484
    • Dong Z, Ekins S, Polli JE. Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP). Mol Pharm. 2013;10(3):1008–19.
    • (2013) Mol Pharm , vol.10 , Issue.3 , pp. 1008-1019
    • Dong, Z.1    Ekins, S.2    Polli, J.E.3
  • 62
    • 84943582629 scopus 로고    scopus 로고
    • Computational classification models for predicting the interaction of compounds with hepatic organic ion importers
    • COI: 1:CAS:528:DC%2BC28Xislalurc%3D, PID: 26293543
    • You H, Lee K, Lee S, Hwang SB, Kim KY, Cho KH, et al. Computational classification models for predicting the interaction of compounds with hepatic organic ion importers. Drug Metab Pharmacokinet. 2015;30(5):347–51.
    • (2015) Drug Metab Pharmacokinet , vol.30 , Issue.5 , pp. 347-351
    • You, H.1    Lee, K.2    Lee, S.3    Hwang, S.B.4    Kim, K.Y.5    Cho, K.H.6
  • 64
    • 4043091303 scopus 로고    scopus 로고
    • Prediction of P-glycoprotein substrates by a support vector machine approach
    • COI: 1:CAS:528:DC%2BD2cXjslegtb0%3D, PID: 15272858
    • Xue Y, Yap CW, Sun LZ, Cao ZW, Wang JF, Chen YZ. Prediction of P-glycoprotein substrates by a support vector machine approach. J Chem Inf Comput Sci. 2004;44(4):1497–505.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.4 , pp. 1497-1505
    • Xue, Y.1    Yap, C.W.2    Sun, L.Z.3    Cao, Z.W.4    Wang, J.F.5    Chen, Y.Z.6
  • 65
    • 84869996743 scopus 로고    scopus 로고
    • In silico prediction of chemical Ames mutagenicity
    • COI: 1:CAS:528:DC%2BC38XhsVCgtrnE, PID: 23030379
    • Xu C, Cheng F, Chen L, Du Z, Li W, Liu G, et al. In silico prediction of chemical Ames mutagenicity. J Chem Inf Model. 2012;52(11):2840–7.
    • (2012) J Chem Inf Model , vol.52 , Issue.11 , pp. 2840-2847
    • Xu, C.1    Cheng, F.2    Chen, L.3    Du, Z.4    Li, W.5    Liu, G.6
  • 66
    • 70349910465 scopus 로고    scopus 로고
    • Benchmark data set for in silico prediction of Ames mutagenicity
    • COI: 1:CAS:528:DC%2BD1MXhtVartbbN, PID: 19702240
    • Hansen K, Mika S, Schroeter T, Sutter A, ter Laak A, Steger-Hartmann T, et al. Benchmark data set for in silico prediction of Ames mutagenicity. J Chem Inf Model. 2009;49(9):2077–81.
    • (2009) J Chem Inf Model , vol.49 , Issue.9 , pp. 2077-2081
    • Hansen, K.1    Mika, S.2    Schroeter, T.3    Sutter, A.4    ter Laak, A.5    Steger-Hartmann, T.6
  • 67
    • 83655201097 scopus 로고    scopus 로고
    • The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers
    • COI: 1:CAS:528:DC%2BC3MXhs1Cqt7fN, PID: 22101136
    • Moss GP, Shah AJ, Adams RG, Davey N, Wilkinson SC, Pugh WJ, et al. The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers. Eur J Pharm Sci. 2012;45(1-2):116–27.
    • (2012) Eur J Pharm Sci , vol.45 , Issue.1-2 , pp. 116-127
    • Moss, G.P.1    Shah, A.J.2    Adams, R.G.3    Davey, N.4    Wilkinson, S.C.5    Pugh, W.J.6
  • 68
    • 84962440559 scopus 로고    scopus 로고
    • Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting
    • PID: 26992568
    • Vock DM, Wolfson J, Bandyopadhyay S, Adomavicius G, Johnson PE, Vazquez-Benitez G, et al. Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting. J Biomed Inform. 2016;61:119–31.
    • (2016) J Biomed Inform , vol.61 , pp. 119-131
    • Vock, D.M.1    Wolfson, J.2    Bandyopadhyay, S.3    Adomavicius, G.4    Johnson, P.E.5    Vazquez-Benitez, G.6
  • 70
    • 84929501877 scopus 로고    scopus 로고
    • A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data
    • PID: 25332356
    • Rochefort CM, Verma AD, Eguale T, Lee TC, Buckeridge DL. A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data. J Am Med Inform Assoc. 2015;22(1):155–65.
    • (2015) J Am Med Inform Assoc , vol.22 , Issue.1 , pp. 155-165
    • Rochefort, C.M.1    Verma, A.D.2    Eguale, T.3    Lee, T.C.4    Buckeridge, D.L.5
  • 71
    • 84969835320 scopus 로고    scopus 로고
    • Near infrared spectroscopy for counterfeit detection using a large database of pharmaceutical tablets
    • COI: 1:CAS:528:DC%2BC28Xos1anurY%3D, PID: 27236101
    • Degardin K, Guillemain A, Guerreiro NV, Roggo Y. Near infrared spectroscopy for counterfeit detection using a large database of pharmaceutical tablets. J Pharm Biomed Anal. 2016;128:89–97.
    • (2016) J Pharm Biomed Anal , vol.128 , pp. 89-97
    • Degardin, K.1    Guillemain, A.2    Guerreiro, N.V.3    Roggo, Y.4
  • 72
    • 84928585769 scopus 로고    scopus 로고
    • Machine learning in computational docking
    • PID: 25724101
    • Khamis MA, Gomaa W, Ahmed WF. Machine learning in computational docking. Artif Intell Med. 2015;63(3):135–52.
    • (2015) Artif Intell Med , vol.63 , Issue.3 , pp. 135-152
    • Khamis, M.A.1    Gomaa, W.2    Ahmed, W.F.3
  • 73
    • 80051551297 scopus 로고    scopus 로고
    • Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information
    • COI: 1:CAS:528:DC%2BC3MXosFCgsrg%3D, PID: 21660515
    • Sushko I, Novotarskyi S, Korner R, Pandey AK, Rupp M, Teetz W, et al. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J Comput Aided Mol Des. 2011;25(6):533–54.
    • (2011) J Comput Aided Mol Des , vol.25 , Issue.6 , pp. 533-554
    • Sushko, I.1    Novotarskyi, S.2    Korner, R.3    Pandey, A.K.4    Rupp, M.5    Teetz, W.6
  • 74
    • 78449275390 scopus 로고    scopus 로고
    • Chembench: a cheminformatics workbench
    • COI: 1:CAS:528:DC%2BC3cXhsVKjtL3J, PID: 20889496
    • Walker T, Grulke CM, Pozefsky D, Tropsha A. Chembench: a cheminformatics workbench. Bioinformatics. 2010;26(23):3000–1.
    • (2010) Bioinformatics , vol.26 , Issue.23 , pp. 3000-3001
    • Walker, T.1    Grulke, C.M.2    Pozefsky, D.3    Tropsha, A.4
  • 75
    • 79953707970 scopus 로고    scopus 로고
    • Pioneering use of the cloud for development of the collaborative drug discovery (cdd) database
    • Ekins S, Hupcey MAZ, Williams AJ, (eds), Wiley, Hoboken
    • Ekins S, Hohman M, Bunin BA. Pioneering use of the cloud for development of the collaborative drug discovery (cdd) database. In: Ekins S, Hupcey MAZ, Williams AJ, editors. Collaborative computational technologies for biomedical research. Hoboken: Wiley; 2011.
    • (2011) Collaborative computational technologies for biomedical research
    • Ekins, S.1    Hohman, M.2    Bunin, B.A.3
  • 76
    • 84952871924 scopus 로고    scopus 로고
    • Thermodynamic proxies to compensate for biases in drug discovery methods
    • COI: 1:CAS:528:DC%2BC2MXhsVWqurbJ, PID: 26311555
    • Ekins S, Litterman NK, Lipinski CA, Bunin BA. Thermodynamic proxies to compensate for biases in drug discovery methods. Pharm Res. 2016;33(1):194–205.
    • (2016) Pharm Res , vol.33 , Issue.1 , pp. 194-205
    • Ekins, S.1    Litterman, N.K.2    Lipinski, C.A.3    Bunin, B.A.4
  • 77
    • 84920578407 scopus 로고    scopus 로고
    • Predicting drug substances autoxidation
    • COI: 1:CAS:528:DC%2BC2cXhtlCitrnO, PID: 25115828
    • Lienard P, Gavartin J, Boccardi G, Meunier M. Predicting drug substances autoxidation. Pharm Res. 2015;32(1):300–10.
    • (2015) Pharm Res , vol.32 , Issue.1 , pp. 300-310
    • Lienard, P.1    Gavartin, J.2    Boccardi, G.3    Meunier, M.4
  • 78
    • 84921441274 scopus 로고    scopus 로고
    • Computational prediction of drug solubility in fasted simulated and aspirated human intestinal fluid
    • COI: 1:CAS:528:DC%2BC2cXhsV2ks7%2FI, PID: 25186438
    • Fagerberg JH, Karlsson E, Ulander J, Hanisch G, Bergstrom CA. Computational prediction of drug solubility in fasted simulated and aspirated human intestinal fluid. Pharm Res. 2015;32(2):578–89.
    • (2015) Pharm Res , vol.32 , Issue.2 , pp. 578-589
    • Fagerberg, J.H.1    Karlsson, E.2    Ulander, J.3    Hanisch, G.4    Bergstrom, C.A.5
  • 79
    • 84923036771 scopus 로고    scopus 로고
    • Combining structure- and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates
    • COI: 1:CAS:528:DC%2BC2cXhsFagtb%2FM, PID: 25208877
    • Kingsley LJ, Wilson GL, Essex ME, Lill MA. Combining structure- and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates. Pharm Res. 2015;32(3):986–1001.
    • (2015) Pharm Res , vol.32 , Issue.3 , pp. 986-1001
    • Kingsley, L.J.1    Wilson, G.L.2    Essex, M.E.3    Lill, M.A.4
  • 80
    • 84938739311 scopus 로고    scopus 로고
    • Developing enhanced blood-brain barrier permeability models: integrating external bio-assay data in QSAR modeling
    • COI: 1:CAS:528:DC%2BC2MXmsVWrt7k%3D, PID: 25862462
    • Wang W, Kim MT, Sedykh A, Zhu H. Developing enhanced blood-brain barrier permeability models: integrating external bio-assay data in QSAR modeling. Pharm Res. 2015;32(9):3055–65.
    • (2015) Pharm Res , vol.32 , Issue.9 , pp. 3055-3065
    • Wang, W.1    Kim, M.T.2    Sedykh, A.3    Zhu, H.4
  • 81
    • 84946486502 scopus 로고    scopus 로고
    • In silico estimation of skin concentration following the dermal exposure to chemicals
    • COI: 1:CAS:528:DC%2BC2MXht1SgtbvN, PID: 26195007
    • Hatanaka T, Yoshida S, Kadhum WR, Todo H, Sugibayashi K. In silico estimation of skin concentration following the dermal exposure to chemicals. Pharm Res. 2015;32(12):3965–74.
    • (2015) Pharm Res , vol.32 , Issue.12 , pp. 3965-3974
    • Hatanaka, T.1    Yoshida, S.2    Kadhum, W.R.3    Todo, H.4    Sugibayashi, K.5
  • 82
    • 84989342082 scopus 로고    scopus 로고
    • Anon. Special report: the return of the machinery question. In: The Economist; 2016 June 25th
    • Anon. Special report: the return of the machinery question. In: The Economist; 2016 June 25th. Available from: http://www.economist.com/news/special-report/21700761-after-many-false-starts-artificialintelligence-has-taken-will-it-cause-mass.
  • 83
    • 84875428496 scopus 로고    scopus 로고
    • Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery
    • COI: 1:CAS:528:DC%2BC3sXksFOgt7g%3D, PID: 23521795
    • Ekins S, Reynolds R, Kim H, Koo M-S, Ekonomidis M, Talaue M, et al. Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery. Chem Biol. 2013;20:370–8.
    • (2013) Chem Biol , vol.20 , pp. 370-378
    • Ekins, S.1    Reynolds, R.2    Kim, H.3    Koo, M.-S.4    Ekonomidis, M.5    Talaue, M.6
  • 84
    • 84874425485 scopus 로고    scopus 로고
    • Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening
    • COI: 1:CAS:528:DC%2BC38XhvVKmsbzJ, PID: 23252936
    • Zhang L, Fourches D, Sedykh A, Zhu H, Golbraikh A, Ekins S, et al. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J Chem Inf Model. 2013;53(2):475–92.
    • (2013) J Chem Inf Model , vol.53 , Issue.2 , pp. 475-492
    • Zhang, L.1    Fourches, D.2    Sedykh, A.3    Zhu, H.4    Golbraikh, A.5    Ekins, S.6
  • 85
    • 4344629341 scopus 로고    scopus 로고
    • Intelligent software for laboratory automation
    • COI: 1:CAS:528:DC%2BD2cXntFCjt7o%3D, PID: 15331223
    • Whelan KE, King RD. Intelligent software for laboratory automation. Trends Biotechnol. 2004;22(9):440–5.
    • (2004) Trends Biotechnol , vol.22 , Issue.9 , pp. 440-445
    • Whelan, K.E.1    King, R.D.2
  • 86
    • 33745821727 scopus 로고    scopus 로고
    • Can we estimate the accuracy of ADME-Tox predictions?
    • COI: 1:CAS:528:DC%2BD28XntFSgtrw%3D, PID: 16846797
    • Tetko IV, Bruneau P, Mewes HW, Rohrer DC, Poda GI. Can we estimate the accuracy of ADME-Tox predictions? Drug Discov Today. 2006;11(15-16):700–7.
    • (2006) Drug Discov Today , vol.11 , Issue.15-16 , pp. 700-707
    • Tetko, I.V.1    Bruneau, P.2    Mewes, H.W.3    Rohrer, D.C.4    Poda, G.I.5
  • 87
    • 78049349961 scopus 로고    scopus 로고
    • Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research
    • COI: 1:CAS:528:DC%2BC3cXnvVeitLk%3D, PID: 20572635
    • Fourches D, Muratov E, Tropsha A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model. 2010;50(7):1189–204.
    • (2010) J Chem Inf Model , vol.50 , Issue.7 , pp. 1189-1204
    • Fourches, D.1    Muratov, E.2    Tropsha, A.3
  • 88
    • 84863531180 scopus 로고    scopus 로고
    • Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation
    • COI: 1:CAS:528:DC%2BC38XksFensL4%3D, PID: 22426180
    • Williams AJ, Ekins S, Tkachenko V. Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation. Drug Discov Today. 2012;17:685–701.
    • (2012) Drug Discov Today , vol.17 , pp. 685-701
    • Williams, A.J.1    Ekins, S.2    Tkachenko, V.3
  • 89
    • 33745808006 scopus 로고    scopus 로고
    • Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study
    • COI: 1:CAS:528:DC%2BD28Xot1Kltrg%3D, PID: 16815767
    • Vracko M, Bandelj V, Barbieri P, Benfenati E, Chaudhry Q, Cronin M, et al. Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study. SAR QSAR Environ Res. 2006;17(3):265–84.
    • (2006) SAR QSAR Environ Res , vol.17 , Issue.3 , pp. 265-284
    • Vracko, M.1    Bandelj, V.2    Barbieri, P.3    Benfenati, E.4    Chaudhry, Q.5    Cronin, M.6
  • 90
    • 84960416231 scopus 로고    scopus 로고
    • Incentives for Starting Small Companies Focused on Rare and Neglected Diseases
    • COI: 1:CAS:528:DC%2BC2MXitVSrsLjF, PID: 26666772
    • Ekins S, Wood J. Incentives for Starting Small Companies Focused on Rare and Neglected Diseases. Pharm Res. 2016;33:809–15.
    • (2016) Pharm Res , vol.33 , pp. 809-815
    • Ekins, S.1    Wood, J.2
  • 91
    • 84896729192 scopus 로고    scopus 로고
    • Computational models for neglected diseases: gaps and opportunities
    • COI: 1:CAS:528:DC%2BC3sXhtlGltbvN, PID: 23990313
    • Ponder EL, Freundlich JS, Sarker M, Ekins S. Computational models for neglected diseases: gaps and opportunities. Pharm Res. 2014;31(2):271–7.
    • (2014) Pharm Res , vol.31 , Issue.2 , pp. 271-277
    • Ponder, E.L.1    Freundlich, J.S.2    Sarker, M.3    Ekins, S.4
  • 92
    • 84989313446 scopus 로고    scopus 로고
    • Murnane K. What is deep learning and how is it useful? Forbes
    • Murnane K. What is deep learning and how is it useful? Forbes. Available from: http://www.forbes.com/sites/kevinmurnane/2016/04/01/what-is-deep-learning-and-how-is-it-useful/#715d1eaf10f0.
  • 93
    • 84989342088 scopus 로고    scopus 로고
    • Murnane K. Thirteen companies that use deep learning to produce actionable results. Forbes
    • Murnane K. Thirteen companies that use deep learning to produce actionable results. Forbes. Available from: http://www.forbes.com/sites/kevinmurnane/2016/04/01/thirteen-companies-that-use-deep-learning-to-produce-actionable-results/#4e710eb07967.
  • 94
    • 84960397109 scopus 로고    scopus 로고
    • The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS
    • PID: 26807157
    • Tetko IV, M Lowe D, Williams AJ. The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS. J Cheminform. 2016;8:2.
    • (2016) J Cheminform , vol.8 , pp. 2
    • Tetko, I.V.1    M Lowe, D.2    Williams, A.J.3
  • 95
    • 84883238632 scopus 로고    scopus 로고
    • Development of dimethyl sulfoxide solubility models using 163,000 molecules: using a domain applicability metric to select more reliable predictions
    • COI: 1:CAS:528:DC%2BC3sXhtFSisL3P, PID: 23855787
    • Tetko IV, Novotarskyi S, Sushko I, Ivanov V, Petrenko AE, Dieden R, et al. Development of dimethyl sulfoxide solubility models using 163,000 molecules: using a domain applicability metric to select more reliable predictions. J Chem Inf Model. 2013;53(8):1990–2000.
    • (2013) J Chem Inf Model , vol.53 , Issue.8 , pp. 1990-2000
    • Tetko, I.V.1    Novotarskyi, S.2    Sushko, I.3    Ivanov, V.4    Petrenko, A.E.5    Dieden, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.