-
1
-
-
77957367950
-
Chemical space: missing pieces in cheminformatics
-
COI: 1:CAS:528:DC%2BC3cXps1egtLg%3D, PID: 20683645
-
Ekins S, Gupta RR, Gifford E, Bunin BA, Waller CL. Chemical space: missing pieces in cheminformatics. Pharm Res. 2010;27(10):2035–9.
-
(2010)
Pharm Res
, vol.27
, Issue.10
, pp. 2035-2039
-
-
Ekins, S.1
Gupta, R.R.2
Gifford, E.3
Bunin, B.A.4
Waller, C.L.5
-
2
-
-
84981709993
-
Protein function in precision medicine: deep understanding with machine learning
-
Rost B, Radivojac P, Bromberg Y. Protein function in precision medicine: deep understanding with machine learning. FEBS Lett. 2016;590(15):2327–41.
-
(2016)
FEBS Lett
, vol.590
, Issue.15
, pp. 2327-2341
-
-
Rost, B.1
Radivojac, P.2
Bromberg, Y.3
-
3
-
-
84904993806
-
Machine learning methods in chemoinformatics
-
COI: 1:CAS:528:DC%2BC2cXht1ans77J, PID: 25285160
-
Mitchell JB. Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci. 2014;4(5):468–81.
-
(2014)
Wiley Interdiscip Rev Comput Mol Sci
, vol.4
, Issue.5
, pp. 468-481
-
-
Mitchell, J.B.1
-
4
-
-
84908137021
-
Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants
-
COI: 1:CAS:528:DC%2BC2cXhsV2hurzF, PID: 25195622
-
Zhu H, Zhang J, Kim MT, Boison A, Sedykh A, Moran K. Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants. Chem Res Toxicol. 2014;27(10):1643–51.
-
(2014)
Chem Res Toxicol
, vol.27
, Issue.10
, pp. 1643-1651
-
-
Zhu, H.1
Zhang, J.2
Kim, M.T.3
Boison, A.4
Sedykh, A.5
Moran, K.6
-
5
-
-
84934926160
-
Open source bayesian models: 2. Mining a “big dataset” to create and validate models with ChEMBL
-
COI: 1:CAS:528:DC%2BC2MXos1Kqu70%3D, PID: 25995041
-
Clark AM, Ekins S. Open source bayesian models: 2. Mining a “big dataset” to create and validate models with ChEMBL. J Chem Inf Model. 2015;55:1246–60.
-
(2015)
J Chem Inf Model
, vol.55
, pp. 1246-1260
-
-
Clark, A.M.1
Ekins, S.2
-
6
-
-
84924911498
-
Bigger data, collaborative tools and the future of predictive drug discovery
-
COI: 1:CAS:528:DC%2BC2cXhtVSgs7nL, PID: 24943138
-
Ekins S, Clark AM, Swamidass SJ, Litterman N, Williams AJ. Bigger data, collaborative tools and the future of predictive drug discovery. J Comput Aided Mol Des. 2014;28(10):997–1008.
-
(2014)
J Comput Aided Mol Des
, vol.28
, Issue.10
, pp. 997-1008
-
-
Ekins, S.1
Clark, A.M.2
Swamidass, S.J.3
Litterman, N.4
Williams, A.J.5
-
7
-
-
84904962426
-
Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for mycobacterium tuberculosis
-
COI: 1:CAS:528:DC%2BC2cXhtVCqsrjK, PID: 24968215
-
Ekins S, Freundlich JS, Reynolds RC. Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for mycobacterium tuberculosis. J Chem Inf Model. 2014;54:2157–65.
-
(2014)
J Chem Inf Model
, vol.54
, pp. 2157-2165
-
-
Ekins, S.1
Freundlich, J.S.2
Reynolds, R.C.3
-
8
-
-
35648980041
-
Future directions for drug transporter modelling
-
COI: 1:CAS:528:DC%2BD2sXht1ahu7vF, PID: 17968741
-
Ekins S, Ecker GF, Chiba P, Swaan PW. Future directions for drug transporter modelling. Xenobiotica. 2007;37(10):1152–70.
-
(2007)
Xenobiotica
, vol.37
, Issue.10
, pp. 1152-1170
-
-
Ekins, S.1
Ecker, G.F.2
Chiba, P.3
Swaan, P.W.4
-
9
-
-
84906551223
-
New target predictions and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0
-
PID: 25302078
-
Clark AM, Sarker M, Ekins S. New target predictions and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0. J Cheminform. 2014;6:38.
-
(2014)
J Cheminform
, vol.6
, pp. 38
-
-
Clark, A.M.1
Sarker, M.2
Ekins, S.3
-
10
-
-
84946211417
-
Making transporter models for drug-drug interaction prediction mobile
-
COI: 1:CAS:528:DC%2BC2MXhs1SjsrvO, PID: 26199424
-
Ekins S, Clark AM, Wright SH. Making transporter models for drug-drug interaction prediction mobile. Drug Metab Dispos. 2015;43:1642–5.
-
(2015)
Drug Metab Dispos
, vol.43
, pp. 1642-1645
-
-
Ekins, S.1
Clark, A.M.2
Wright, S.H.3
-
11
-
-
84978792062
-
A renaissance of neural networks in drug discovery
-
COI: 1:CAS:528:DC%2BC28XhtFehsrvJ
-
Baskin II, Winkler D, Tetko IV. A renaissance of neural networks in drug discovery. Expert Opin Drug Discovery. 2016;11:785–95.
-
(2016)
Expert Opin Drug Discovery
, vol.11
, pp. 785-795
-
-
Baskin, I.I.1
Winkler, D.2
Tetko, I.V.3
-
12
-
-
84930630277
-
Deep learning
-
COI: 1:CAS:528:DC%2BC2MXht1WlurzP, PID: 26017442
-
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
13
-
-
58149381237
-
Bayesian regularization of neural networks
-
PID: 19065804
-
Burden F, Winkler D. Bayesian regularization of neural networks. Methods Mol Biol. 2008;458:25–44.
-
(2008)
Methods Mol Biol
, vol.458
, pp. 25-44
-
-
Burden, F.1
Winkler, D.2
-
14
-
-
84954372459
-
Deep learning in drug discovery
-
COI: 1:CAS:528:DC%2BC2MXitV2rs7bE
-
Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inf. 2016;35(1):3–14.
-
(2016)
Mol Inf
, vol.35
, Issue.1
, pp. 3-14
-
-
Gawehn, E.1
Hiss, J.A.2
Schneider, G.3
-
15
-
-
84968861400
-
Applications of deep learning in biomedicine
-
COI: 1:CAS:528:DC%2BC28Xks1eht7g%3D, PID: 27007977
-
Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm. 2016;13(5):1445–54.
-
(2016)
Mol Pharm
, vol.13
, Issue.5
, pp. 1445-1454
-
-
Mamoshina, P.1
Vieira, A.2
Putin, E.3
Zhavoronkov, A.4
-
16
-
-
84989331891
-
-
Chow J-F. Things to try after useR! – Part 1: Deep Learning with H2O. 2016 Aug 8th
-
Chow J-F. Things to try after useR! – Part 1: Deep Learning with H2O. 2016 Aug 8th Available from: http://www.r-bloggers.com/things-to-try-after-user-part-1-deep-learning-with-h2o/.
-
-
-
-
19
-
-
84989307767
-
Aug 8th
-
Novet J. Facebook open-sources its cutting-edge deep learning tools. 2016 Aug 8th. Available from: http://venturebeat.com/2015/01/16/facebook-opens-up-about-more-of-its-cutting-edge-deep-learning-tools/.
-
(2016)
Available from:
-
-
-
20
-
-
84989331897
-
Aug 8th
-
Chintala S. FAIR open sources deep-learning modules for Torch. 2016 Aug 8th. Available from: https://research.facebook.com/blog/fair-open-sources-deep-learning-modules-for-torch/.
-
(2016)
Available from:
-
-
-
21
-
-
84989351445
-
Aug 8th
-
Linn A. Microsoft releases CNTK, its open source deep learning toolkit, on GitHub. 2016 Aug 8th. Available from: http://blogs.microsoft.com/next/2016/01/25/microsoft-releases-cntk-its-open-source-deep-learning-toolkit-on-github/#sm.00013j280xp1sdctrgg21w81es5ov.
-
(2016)
Available from:
-
-
releases, L.A.M.1
-
22
-
-
84980022857
-
Deep learning for computational biology
-
PID: 27474269
-
Angermueller C, Parnamaa T, Parts L, Stegle O. Deep learning for computational biology. Mol Syst Biol. 2016;12(7):878.
-
(2016)
Mol Syst Biol
, vol.12
, Issue.7
, pp. 878
-
-
Angermueller, C.1
Parnamaa, T.2
Parts, L.3
Stegle, O.4
-
24
-
-
84937019610
-
An overview of practical applications of protein disorder prediction and drive for faster, more accurate predictions
-
PID: 26198229
-
Deng X, Gumm J, Karki S, Eickholt J, Cheng J. An overview of practical applications of protein disorder prediction and drive for faster, more accurate predictions. Int J Mol Sci. 2015;16(7):15384–404.
-
(2015)
Int J Mol Sci
, vol.16
, Issue.7
, pp. 15384-15404
-
-
Deng, X.1
Gumm, J.2
Karki, S.3
Eickholt, J.4
Cheng, J.5
-
25
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
-
COI: 1:CAS:528:DC%2BC3sXpvVGht7g%3D, PID: 23795551
-
Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013;53(7):1563–75.
-
(2013)
J Chem Inf Model
, vol.53
, Issue.7
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
26
-
-
84945557463
-
Deep learning for drug-induced liver injury
-
COI: 1:CAS:528:DC%2BC2MXhs1ShsLvO, PID: 26437739
-
Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L. Deep learning for drug-induced liver injury. J Chem Inf Model. 2015;55(10):2085–93.
-
(2015)
J Chem Inf Model
, vol.55
, Issue.10
, pp. 2085-2093
-
-
Xu, Y.1
Dai, Z.2
Chen, F.3
Gao, S.4
Pei, J.5
Lai, L.6
-
27
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
COI: 1:CAS:528:DC%2BC2MXhvFGns70%3D, PID: 25635324
-
Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model. 2015;55(2):263–74.
-
(2015)
J Chem Inf Model
, vol.55
, Issue.2
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
28
-
-
84976407069
-
Deep biomarkers of human aging: application of deep neural networks to biomarker development
-
Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, et al. Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging (Albany NY). 2016;8(5):1021–33.
-
(2016)
Aging (Albany NY)
, vol.8
, Issue.5
, pp. 1021-1033
-
-
Putin, E.1
Mamoshina, P.2
Aliper, A.3
Korzinkin, M.4
Moskalev, A.5
Kolosov, A.6
-
29
-
-
84867316765
-
Deep architectures for protein contact map prediction
-
PID: 22847931
-
Di Lena P, Nagata K, Baldi P. Deep architectures for protein contact map prediction. Bioinformatics. 2012;28(19):2449–57.
-
(2012)
Bioinformatics
, vol.28
, Issue.19
, pp. 2449-2457
-
-
Di Lena, P.1
Nagata, K.2
Baldi, P.3
-
30
-
-
84925878230
-
Using deep learning to enhance cancer diagnosis and classification
-
JMLR, W&CP
-
Fakoor R, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification. In: Proceeding of the 30th International conference on machine learning. Atlanta, GA: JMLR: W&CP; 2013.
-
Proceeding of the 30th International conference on machine learning. Atlanta, GA
, pp. 2013
-
-
Fakoor, R.1
Ladhak, F.2
Nazi, A.3
Huber, M.4
-
31
-
-
84930203768
-
Deep convolutional neural networks for annotating gene expression patterns in the mouse brain
-
Zeng T, Li R, Mukkamala R, Ye J, Ji S. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain. BMC Bioinf. 2015;16:147.
-
(2015)
BMC Bioinf
, vol.16
, pp. 147
-
-
Zeng, T.1
Li, R.2
Mukkamala, R.3
Ye, J.4
Ji, S.5
-
32
-
-
84960503750
-
A deep learning framework for modeling structural features of RNA-binding protein targets
-
PID: 26467480
-
Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, et al. A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 2016;44(4):e32.
-
(2016)
Nucleic Acids Res
, vol.44
, Issue.4
-
-
Zhang, S.1
Zhou, J.2
Hu, H.3
Gong, H.4
Chen, L.5
Cheng, C.6
-
33
-
-
84959185539
-
High-content analysis of breast cancer using single-cell deep transfer learning
-
COI: 1:CAS:528:DC%2BC28XpvVegtLc%3D, PID: 26746583
-
Kandaswamy C, Silva LM, Alexandre LA, Santos JM. High-content analysis of breast cancer using single-cell deep transfer learning. J Biomol Screen. 2016;21(3):252–9.
-
(2016)
J Biomol Screen
, vol.21
, Issue.3
, pp. 252-259
-
-
Kandaswamy, C.1
Silva, L.M.2
Alexandre, L.A.3
Santos, J.M.4
-
34
-
-
84945573112
-
Modeling epoxidation of drug-like molecules with a deep machine learning network
-
COI: 1:CAS:528:DC%2BC2MXhtVars7jL, PID: 27162970
-
Hughes TB, Miller GP, Swamidass SJ. Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Cent Sci. 2015;1(4):168–80.
-
(2015)
ACS Cent Sci
, vol.1
, Issue.4
, pp. 168-180
-
-
Hughes, T.B.1
Miller, G.P.2
Swamidass, S.J.3
-
36
-
-
85063821675
-
Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge
-
Abdelaziz A, Spahn-Langguth H, Schramm K-W, Tetko IV. Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge. Front Environ Sci. 2016;4:2.
-
(2016)
Front Environ Sci
, vol.4
, pp. 2
-
-
Abdelaziz, A.1
Spahn-Langguth, H.2
Schramm, K.-W.3
Tetko, I.V.4
-
37
-
-
84979019529
-
Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
-
COI: 1:CAS:528:DC%2BC28Xot1ers7w%3D, PID: 27200455
-
Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524–30.
-
(2016)
Mol Pharm
, vol.13
, Issue.7
, pp. 2524-2530
-
-
Aliper, A.1
Plis, S.2
Artemov, A.3
Ulloa, A.4
Mamoshina, P.5
Zhavoronkov, A.6
-
38
-
-
84960984309
-
Deep learning in label-free cell classification
-
COI: 1:CAS:528:DC%2BC28XktFKmtLY%3D, PID: 26975219
-
Chen CL, Mahjoubfar A, Tai LC, Blaby IK, Huang A, Niazi KR, et al. Deep learning in label-free cell classification. Sci Rep. 2016;6:21471.
-
(2016)
Sci Rep
, vol.6
, pp. 21471
-
-
Chen, C.L.1
Mahjoubfar, A.2
Tai, L.C.3
Blaby, I.K.4
Huang, A.5
Niazi, K.R.6
-
39
-
-
84976510674
-
Classifying and segmenting microscopy images with deep multiple instance learning
-
PID: 27307644
-
Kraus OZ, Ba JL, Frey BJ. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics. 2016;32(12):i52–9.
-
(2016)
Bioinformatics
, vol.32
, Issue.12
, pp. i52-i59
-
-
Kraus, O.Z.1
Ba, J.L.2
Frey, B.J.3
-
40
-
-
84963801154
-
Intra- and inter-fractional variation prediction of lung tumors using fuzzy deep learning
-
PID: 27170914
-
Park S, Lee SJ, Weiss E, Motai Y. Intra- and inter-fractional variation prediction of lung tumors using fuzzy deep learning. IEEE J Transl Eng Health Med. 2016;4:4300112.
-
(2016)
IEEE J Transl Eng Health Med
, vol.4
, pp. 4300112
-
-
Park, S.1
Lee, S.J.2
Weiss, E.3
Motai, Y.4
-
41
-
-
84922788059
-
Pairwise input neural network for target-ligand interaction prediction
-
Wang C, Liu J, Luo F, Tan Y. Pairwise input neural network for target-ligand interaction prediction. IEEE Int Conf Bioinf and Biomed. 2014:67-70. doi:10.1109/BIBM.2014.6999129.
-
(2014)
IEEE Int Conf Bioinf and Biomed
, pp. 67-70
-
-
Wang, C.1
Liu, J.2
Luo, F.3
Tan, Y.4
-
42
-
-
84957705357
-
Accurate refinement of docked protein complexes using evolutionary information and deep learning
-
COI: 1:CAS:528:DC%2BC28XpslOqt74%3D, PID: 26846813
-
Akbal-Delibas B, Farhoodi R, Pomplun M, Haspel N. Accurate refinement of docked protein complexes using evolutionary information and deep learning. J Bioinform Comput Biol. 2016;14(3):1642002.
-
(2016)
J Bioinform Comput Biol
, vol.14
, Issue.3
, pp. 1642002
-
-
Akbal-Delibas, B.1
Farhoodi, R.2
Pomplun, M.3
Haspel, N.4
-
43
-
-
84976293888
-
Computational intelligence modeling of the macromolecules release from PLGA microspheres-focus on feature selection
-
PID: 27315205
-
Zawbaa HM, Szlek J, Grosan C, Jachowicz R, Mendyk A. Computational intelligence modeling of the macromolecules release from PLGA microspheres-focus on feature selection. PLoS One. 2016;11(6):e0157610.
-
(2016)
PLoS One
, vol.11
, Issue.6
-
-
Zawbaa, H.M.1
Szlek, J.2
Grosan, C.3
Jachowicz, R.4
Mendyk, A.5
-
44
-
-
78649621062
-
A predictive ligand-based Bayesian model for human drug induced liver injury
-
COI: 1:CAS:528:DC%2BC3cXhsFGgurfN, PID: 20843939
-
Ekins S, Williams AJ, Xu JJ. A predictive ligand-based Bayesian model for human drug induced liver injury. Drug Metab Dispos. 2010;38:2302–8.
-
(2010)
Drug Metab Dispos
, vol.38
, pp. 2302-2308
-
-
Ekins, S.1
Williams, A.J.2
Xu, J.J.3
-
45
-
-
84935038144
-
Open source bayesian models: 1. Application to ADME/Tox and drug discovery datasets
-
COI: 1:CAS:528:DC%2BC2MXos1Kqu78%3D, PID: 25994950
-
Clark AM, Dole K, Coulon-Spector A, McNutt A, Grass G, Freundlich JS, et al. Open source bayesian models: 1. Application to ADME/Tox and drug discovery datasets. J Chem Inf Model. 2015;55:1231–45.
-
(2015)
J Chem Inf Model
, vol.55
, pp. 1231-1245
-
-
Clark, A.M.1
Dole, K.2
Coulon-Spector, A.3
McNutt, A.4
Grass, G.5
Freundlich, J.S.6
-
46
-
-
79952229990
-
Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection
-
COI: 1:CAS:528:DC%2BC3MXivFegsg%3D%3D, PID: 21214224
-
Cheng T, Li Q, Wang Y, Bryant SH. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. J Chem Inf Model. 2011;51(2):229–36.
-
(2011)
J Chem Inf Model
, vol.51
, Issue.2
, pp. 229-236
-
-
Cheng, T.1
Li, Q.2
Wang, Y.3
Bryant, S.H.4
-
47
-
-
80051727852
-
Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches
-
COI: 1:CAS:528:DC%2BC3MXptVOjt7s%3D, PID: 21699217
-
Low Y, Uehara T, Minowa Y, Yamada H, Ohno Y, Urushidani T, et al. Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem Res Toxicol. 2011;24(8):1251–62.
-
(2011)
Chem Res Toxicol
, vol.24
, Issue.8
, pp. 1251-1262
-
-
Low, Y.1
Uehara, T.2
Minowa, Y.3
Yamada, H.4
Ohno, Y.5
Urushidani, T.6
-
48
-
-
84892856465
-
Progress in computational toxicology
-
COI: 1:CAS:528:DC%2BC2cXksVWks7s%3D, PID: 24361690
-
Ekins S. Progress in computational toxicology. J Pharmacol Toxicol Methods. 2014;69(2):115–40.
-
(2014)
J Pharmacol Toxicol Methods
, vol.69
, Issue.2
, pp. 115-140
-
-
Ekins, S.1
-
49
-
-
84859345561
-
ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage
-
COI: 1:CAS:528:DC%2BC38XjtFWhsLs%3D, PID: 22380484
-
Wang S, Li Y, Wang J, Chen L, Zhang L, Yu H, et al. ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage. Mol Pharm. 2012;9(4):996–1010.
-
(2012)
Mol Pharm
, vol.9
, Issue.4
, pp. 996-1010
-
-
Wang, S.1
Li, Y.2
Wang, J.3
Chen, L.4
Zhang, L.5
Yu, H.6
-
50
-
-
46749128531
-
New predictive models for blood brain barrier permeability of drug-like molecules
-
COI: 1:CAS:528:DC%2BD1cXot1Whsrc%3D, PID: 18415049
-
Kortagere S, Chekmarev DS, Welsh WJ, Ekins S. New predictive models for blood brain barrier permeability of drug-like molecules. Pharm Res. 2008;25:1836–45.
-
(2008)
Pharm Res
, vol.25
, pp. 1836-1845
-
-
Kortagere, S.1
Chekmarev, D.S.2
Welsh, W.J.3
Ekins, S.4
-
51
-
-
33947183028
-
A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability
-
COI: 1:CAS:528:DC%2BD2sXhtVensb8%3D, PID: 17261034
-
Leong MK. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability. Chem Res Toxicol. 2007;20(2):217–26.
-
(2007)
Chem Res Toxicol
, vol.20
, Issue.2
, pp. 217-226
-
-
Leong, M.K.1
-
52
-
-
84954285101
-
Predicting mouse liver microsomal stability with “pruned” machine learning models and public data
-
PID: 26415647
-
Perryman AL, Stratton TP, Ekins S, Freundlich JS. Predicting mouse liver microsomal stability with “pruned” machine learning models and public data. Pharm Res. 2015;33:433–49.
-
(2015)
Pharm Res
, vol.33
, pp. 433-449
-
-
Perryman, A.L.1
Stratton, T.P.2
Ekins, S.3
Freundlich, J.S.4
-
53
-
-
37249042636
-
ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine
-
COI: 1:CAS:528:DC%2BD2sXhtFGisrvI, PID: 17929911
-
Hou T, Wang J, Li Y. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model. 2007;47(6):2408–15.
-
(2007)
J Chem Inf Model
, vol.47
, Issue.6
, pp. 2408-2415
-
-
Hou, T.1
Wang, J.2
Li, Y.3
-
54
-
-
84961145724
-
Open source Bayesian models: 3. Composite models for prediction of binned responses
-
COI: 1:CAS:528:DC%2BC28XltlGqsw%3D%3D, PID: 26750305
-
Clark AM, Dole K, Ekins S. Open source Bayesian models: 3. Composite models for prediction of binned responses. J Chem Inf Model. 2016;56:275–85.
-
(2016)
J Chem Inf Model
, vol.56
, pp. 275-285
-
-
Clark, A.M.1
Dole, K.2
Ekins, S.3
-
55
-
-
84894270548
-
Predicting drug-target interactions using drug-drug interactions
-
PID: 24278248
-
Kim S, Jin D, Lee H. Predicting drug-target interactions using drug-drug interactions. PLoS One. 2013;8(11):e80129.
-
(2013)
PLoS One
, vol.8
, Issue.11
-
-
Kim, S.1
Jin, D.2
Lee, H.3
-
56
-
-
84989332345
-
-
Unterthiner T, Mayr A, Klambauer G, Hochreiter S. Toxicity prediction using deep learning
-
Unterthiner T, Mayr A, Klambauer G, Hochreiter S. Toxicity prediction using deep learning. Available from: https://arxiv.org/pdf/1503.01445.pdf.
-
-
-
-
57
-
-
84930181308
-
In silico predictions of human skin permeability using nonlinear quantitative structure-property relationship models
-
COI: 1:CAS:528:DC%2BC2MXhsFSjsrc%3D, PID: 25616540
-
Baba H, Takahara J, Mamitsuka H. In silico predictions of human skin permeability using nonlinear quantitative structure-property relationship models. Pharm Res. 2015;32(7):2360–71.
-
(2015)
Pharm Res
, vol.32
, Issue.7
, pp. 2360-2371
-
-
Baba, H.1
Takahara, J.2
Mamitsuka, H.3
-
58
-
-
84943582559
-
Modeling and prediction of solvent effect on human skin permeability using support vector regression and random forest
-
COI: 1:CAS:528:DC%2BC2MXpsVyktbg%3D, PID: 26033768
-
Baba H, Takahara J, Yamashita F, Hashida M. Modeling and prediction of solvent effect on human skin permeability using support vector regression and random forest. Pharm Res. 2015;32(11):3604–17.
-
(2015)
Pharm Res
, vol.32
, Issue.11
, pp. 3604-3617
-
-
Baba, H.1
Takahara, J.2
Yamashita, F.3
Hashida, M.4
-
59
-
-
70350140380
-
Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter
-
COI: 1:CAS:528:DC%2BD1MXhtVGjtb3L, PID: 19673539
-
Zheng X, Ekins S, Raufman JP, Polli JE. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol Pharm. 2009;6(5):1591–603.
-
(2009)
Mol Pharm
, vol.6
, Issue.5
, pp. 1591-1603
-
-
Zheng, X.1
Ekins, S.2
Raufman, J.P.3
Polli, J.E.4
-
60
-
-
78649929750
-
Quantitative structure activity relationship for inhibition of human organic cation/carnitine transporter
-
COI: 1:CAS:528:DC%2BC3cXht1WmtrzL, PID: 20831193
-
Diao L, Ekins S, Polli JE. Quantitative structure activity relationship for inhibition of human organic cation/carnitine transporter. Mol Pharm. 2010;7:2120–30.
-
(2010)
Mol Pharm
, vol.7
, pp. 2120-2130
-
-
Diao, L.1
Ekins, S.2
Polli, J.E.3
-
61
-
-
84874588814
-
Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP)
-
COI: 1:CAS:528:DC%2BC3sXhtFCnsL8%3D, PID: 23339484
-
Dong Z, Ekins S, Polli JE. Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP). Mol Pharm. 2013;10(3):1008–19.
-
(2013)
Mol Pharm
, vol.10
, Issue.3
, pp. 1008-1019
-
-
Dong, Z.1
Ekins, S.2
Polli, J.E.3
-
62
-
-
84943582629
-
Computational classification models for predicting the interaction of compounds with hepatic organic ion importers
-
COI: 1:CAS:528:DC%2BC28Xislalurc%3D, PID: 26293543
-
You H, Lee K, Lee S, Hwang SB, Kim KY, Cho KH, et al. Computational classification models for predicting the interaction of compounds with hepatic organic ion importers. Drug Metab Pharmacokinet. 2015;30(5):347–51.
-
(2015)
Drug Metab Pharmacokinet
, vol.30
, Issue.5
, pp. 347-351
-
-
You, H.1
Lee, K.2
Lee, S.3
Hwang, S.B.4
Kim, K.Y.5
Cho, K.H.6
-
63
-
-
33745341752
-
Combinatorial QSAR modeling of P-glycoprotein substrates
-
PID: 16711744
-
de Cerqueira Lima P, Golbraikh A, Oloff S, Xiao Y, Tropsha A. Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model. 2006;46(3):1245–54.
-
(2006)
J Chem Inf Model
, vol.46
, Issue.3
, pp. 1245-1254
-
-
de Cerqueira Lima, P.1
Golbraikh, A.2
Oloff, S.3
Xiao, Y.4
Tropsha, A.5
-
64
-
-
4043091303
-
Prediction of P-glycoprotein substrates by a support vector machine approach
-
COI: 1:CAS:528:DC%2BD2cXjslegtb0%3D, PID: 15272858
-
Xue Y, Yap CW, Sun LZ, Cao ZW, Wang JF, Chen YZ. Prediction of P-glycoprotein substrates by a support vector machine approach. J Chem Inf Comput Sci. 2004;44(4):1497–505.
-
(2004)
J Chem Inf Comput Sci
, vol.44
, Issue.4
, pp. 1497-1505
-
-
Xue, Y.1
Yap, C.W.2
Sun, L.Z.3
Cao, Z.W.4
Wang, J.F.5
Chen, Y.Z.6
-
65
-
-
84869996743
-
In silico prediction of chemical Ames mutagenicity
-
COI: 1:CAS:528:DC%2BC38XhsVCgtrnE, PID: 23030379
-
Xu C, Cheng F, Chen L, Du Z, Li W, Liu G, et al. In silico prediction of chemical Ames mutagenicity. J Chem Inf Model. 2012;52(11):2840–7.
-
(2012)
J Chem Inf Model
, vol.52
, Issue.11
, pp. 2840-2847
-
-
Xu, C.1
Cheng, F.2
Chen, L.3
Du, Z.4
Li, W.5
Liu, G.6
-
66
-
-
70349910465
-
Benchmark data set for in silico prediction of Ames mutagenicity
-
COI: 1:CAS:528:DC%2BD1MXhtVartbbN, PID: 19702240
-
Hansen K, Mika S, Schroeter T, Sutter A, ter Laak A, Steger-Hartmann T, et al. Benchmark data set for in silico prediction of Ames mutagenicity. J Chem Inf Model. 2009;49(9):2077–81.
-
(2009)
J Chem Inf Model
, vol.49
, Issue.9
, pp. 2077-2081
-
-
Hansen, K.1
Mika, S.2
Schroeter, T.3
Sutter, A.4
ter Laak, A.5
Steger-Hartmann, T.6
-
67
-
-
83655201097
-
The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers
-
COI: 1:CAS:528:DC%2BC3MXhs1Cqt7fN, PID: 22101136
-
Moss GP, Shah AJ, Adams RG, Davey N, Wilkinson SC, Pugh WJ, et al. The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers. Eur J Pharm Sci. 2012;45(1-2):116–27.
-
(2012)
Eur J Pharm Sci
, vol.45
, Issue.1-2
, pp. 116-127
-
-
Moss, G.P.1
Shah, A.J.2
Adams, R.G.3
Davey, N.4
Wilkinson, S.C.5
Pugh, W.J.6
-
68
-
-
84962440559
-
Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting
-
PID: 26992568
-
Vock DM, Wolfson J, Bandyopadhyay S, Adomavicius G, Johnson PE, Vazquez-Benitez G, et al. Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting. J Biomed Inform. 2016;61:119–31.
-
(2016)
J Biomed Inform
, vol.61
, pp. 119-131
-
-
Vock, D.M.1
Wolfson, J.2
Bandyopadhyay, S.3
Adomavicius, G.4
Johnson, P.E.5
Vazquez-Benitez, G.6
-
69
-
-
84860366215
-
Looking beyond historical patient outcomes to improve clinical models
-
Chia CC, Rubinfeld I, Scirica BM, McMillan S, Gurm HS, Syed Z. Looking beyond historical patient outcomes to improve clinical models. Sci Transl Med. 2012;4(131):131ra149.
-
(2012)
Sci Transl Med
, vol.4
, Issue.131
, pp. 131ra149
-
-
Chia, C.C.1
Rubinfeld, I.2
Scirica, B.M.3
McMillan, S.4
Gurm, H.S.5
Syed, Z.6
-
70
-
-
84929501877
-
A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data
-
PID: 25332356
-
Rochefort CM, Verma AD, Eguale T, Lee TC, Buckeridge DL. A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data. J Am Med Inform Assoc. 2015;22(1):155–65.
-
(2015)
J Am Med Inform Assoc
, vol.22
, Issue.1
, pp. 155-165
-
-
Rochefort, C.M.1
Verma, A.D.2
Eguale, T.3
Lee, T.C.4
Buckeridge, D.L.5
-
71
-
-
84969835320
-
Near infrared spectroscopy for counterfeit detection using a large database of pharmaceutical tablets
-
COI: 1:CAS:528:DC%2BC28Xos1anurY%3D, PID: 27236101
-
Degardin K, Guillemain A, Guerreiro NV, Roggo Y. Near infrared spectroscopy for counterfeit detection using a large database of pharmaceutical tablets. J Pharm Biomed Anal. 2016;128:89–97.
-
(2016)
J Pharm Biomed Anal
, vol.128
, pp. 89-97
-
-
Degardin, K.1
Guillemain, A.2
Guerreiro, N.V.3
Roggo, Y.4
-
72
-
-
84928585769
-
Machine learning in computational docking
-
PID: 25724101
-
Khamis MA, Gomaa W, Ahmed WF. Machine learning in computational docking. Artif Intell Med. 2015;63(3):135–52.
-
(2015)
Artif Intell Med
, vol.63
, Issue.3
, pp. 135-152
-
-
Khamis, M.A.1
Gomaa, W.2
Ahmed, W.F.3
-
73
-
-
80051551297
-
Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information
-
COI: 1:CAS:528:DC%2BC3MXosFCgsrg%3D, PID: 21660515
-
Sushko I, Novotarskyi S, Korner R, Pandey AK, Rupp M, Teetz W, et al. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J Comput Aided Mol Des. 2011;25(6):533–54.
-
(2011)
J Comput Aided Mol Des
, vol.25
, Issue.6
, pp. 533-554
-
-
Sushko, I.1
Novotarskyi, S.2
Korner, R.3
Pandey, A.K.4
Rupp, M.5
Teetz, W.6
-
74
-
-
78449275390
-
Chembench: a cheminformatics workbench
-
COI: 1:CAS:528:DC%2BC3cXhsVKjtL3J, PID: 20889496
-
Walker T, Grulke CM, Pozefsky D, Tropsha A. Chembench: a cheminformatics workbench. Bioinformatics. 2010;26(23):3000–1.
-
(2010)
Bioinformatics
, vol.26
, Issue.23
, pp. 3000-3001
-
-
Walker, T.1
Grulke, C.M.2
Pozefsky, D.3
Tropsha, A.4
-
75
-
-
79953707970
-
Pioneering use of the cloud for development of the collaborative drug discovery (cdd) database
-
Ekins S, Hupcey MAZ, Williams AJ, (eds), Wiley, Hoboken
-
Ekins S, Hohman M, Bunin BA. Pioneering use of the cloud for development of the collaborative drug discovery (cdd) database. In: Ekins S, Hupcey MAZ, Williams AJ, editors. Collaborative computational technologies for biomedical research. Hoboken: Wiley; 2011.
-
(2011)
Collaborative computational technologies for biomedical research
-
-
Ekins, S.1
Hohman, M.2
Bunin, B.A.3
-
76
-
-
84952871924
-
Thermodynamic proxies to compensate for biases in drug discovery methods
-
COI: 1:CAS:528:DC%2BC2MXhsVWqurbJ, PID: 26311555
-
Ekins S, Litterman NK, Lipinski CA, Bunin BA. Thermodynamic proxies to compensate for biases in drug discovery methods. Pharm Res. 2016;33(1):194–205.
-
(2016)
Pharm Res
, vol.33
, Issue.1
, pp. 194-205
-
-
Ekins, S.1
Litterman, N.K.2
Lipinski, C.A.3
Bunin, B.A.4
-
77
-
-
84920578407
-
Predicting drug substances autoxidation
-
COI: 1:CAS:528:DC%2BC2cXhtlCitrnO, PID: 25115828
-
Lienard P, Gavartin J, Boccardi G, Meunier M. Predicting drug substances autoxidation. Pharm Res. 2015;32(1):300–10.
-
(2015)
Pharm Res
, vol.32
, Issue.1
, pp. 300-310
-
-
Lienard, P.1
Gavartin, J.2
Boccardi, G.3
Meunier, M.4
-
78
-
-
84921441274
-
Computational prediction of drug solubility in fasted simulated and aspirated human intestinal fluid
-
COI: 1:CAS:528:DC%2BC2cXhsV2ks7%2FI, PID: 25186438
-
Fagerberg JH, Karlsson E, Ulander J, Hanisch G, Bergstrom CA. Computational prediction of drug solubility in fasted simulated and aspirated human intestinal fluid. Pharm Res. 2015;32(2):578–89.
-
(2015)
Pharm Res
, vol.32
, Issue.2
, pp. 578-589
-
-
Fagerberg, J.H.1
Karlsson, E.2
Ulander, J.3
Hanisch, G.4
Bergstrom, C.A.5
-
79
-
-
84923036771
-
Combining structure- and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates
-
COI: 1:CAS:528:DC%2BC2cXhsFagtb%2FM, PID: 25208877
-
Kingsley LJ, Wilson GL, Essex ME, Lill MA. Combining structure- and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates. Pharm Res. 2015;32(3):986–1001.
-
(2015)
Pharm Res
, vol.32
, Issue.3
, pp. 986-1001
-
-
Kingsley, L.J.1
Wilson, G.L.2
Essex, M.E.3
Lill, M.A.4
-
80
-
-
84938739311
-
Developing enhanced blood-brain barrier permeability models: integrating external bio-assay data in QSAR modeling
-
COI: 1:CAS:528:DC%2BC2MXmsVWrt7k%3D, PID: 25862462
-
Wang W, Kim MT, Sedykh A, Zhu H. Developing enhanced blood-brain barrier permeability models: integrating external bio-assay data in QSAR modeling. Pharm Res. 2015;32(9):3055–65.
-
(2015)
Pharm Res
, vol.32
, Issue.9
, pp. 3055-3065
-
-
Wang, W.1
Kim, M.T.2
Sedykh, A.3
Zhu, H.4
-
81
-
-
84946486502
-
In silico estimation of skin concentration following the dermal exposure to chemicals
-
COI: 1:CAS:528:DC%2BC2MXht1SgtbvN, PID: 26195007
-
Hatanaka T, Yoshida S, Kadhum WR, Todo H, Sugibayashi K. In silico estimation of skin concentration following the dermal exposure to chemicals. Pharm Res. 2015;32(12):3965–74.
-
(2015)
Pharm Res
, vol.32
, Issue.12
, pp. 3965-3974
-
-
Hatanaka, T.1
Yoshida, S.2
Kadhum, W.R.3
Todo, H.4
Sugibayashi, K.5
-
82
-
-
84989342082
-
-
Anon. Special report: the return of the machinery question. In: The Economist; 2016 June 25th
-
Anon. Special report: the return of the machinery question. In: The Economist; 2016 June 25th. Available from: http://www.economist.com/news/special-report/21700761-after-many-false-starts-artificialintelligence-has-taken-will-it-cause-mass.
-
-
-
-
83
-
-
84875428496
-
Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery
-
COI: 1:CAS:528:DC%2BC3sXksFOgt7g%3D, PID: 23521795
-
Ekins S, Reynolds R, Kim H, Koo M-S, Ekonomidis M, Talaue M, et al. Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery. Chem Biol. 2013;20:370–8.
-
(2013)
Chem Biol
, vol.20
, pp. 370-378
-
-
Ekins, S.1
Reynolds, R.2
Kim, H.3
Koo, M.-S.4
Ekonomidis, M.5
Talaue, M.6
-
84
-
-
84874425485
-
Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening
-
COI: 1:CAS:528:DC%2BC38XhvVKmsbzJ, PID: 23252936
-
Zhang L, Fourches D, Sedykh A, Zhu H, Golbraikh A, Ekins S, et al. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J Chem Inf Model. 2013;53(2):475–92.
-
(2013)
J Chem Inf Model
, vol.53
, Issue.2
, pp. 475-492
-
-
Zhang, L.1
Fourches, D.2
Sedykh, A.3
Zhu, H.4
Golbraikh, A.5
Ekins, S.6
-
85
-
-
4344629341
-
Intelligent software for laboratory automation
-
COI: 1:CAS:528:DC%2BD2cXntFCjt7o%3D, PID: 15331223
-
Whelan KE, King RD. Intelligent software for laboratory automation. Trends Biotechnol. 2004;22(9):440–5.
-
(2004)
Trends Biotechnol
, vol.22
, Issue.9
, pp. 440-445
-
-
Whelan, K.E.1
King, R.D.2
-
86
-
-
33745821727
-
Can we estimate the accuracy of ADME-Tox predictions?
-
COI: 1:CAS:528:DC%2BD28XntFSgtrw%3D, PID: 16846797
-
Tetko IV, Bruneau P, Mewes HW, Rohrer DC, Poda GI. Can we estimate the accuracy of ADME-Tox predictions? Drug Discov Today. 2006;11(15-16):700–7.
-
(2006)
Drug Discov Today
, vol.11
, Issue.15-16
, pp. 700-707
-
-
Tetko, I.V.1
Bruneau, P.2
Mewes, H.W.3
Rohrer, D.C.4
Poda, G.I.5
-
87
-
-
78049349961
-
Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research
-
COI: 1:CAS:528:DC%2BC3cXnvVeitLk%3D, PID: 20572635
-
Fourches D, Muratov E, Tropsha A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model. 2010;50(7):1189–204.
-
(2010)
J Chem Inf Model
, vol.50
, Issue.7
, pp. 1189-1204
-
-
Fourches, D.1
Muratov, E.2
Tropsha, A.3
-
88
-
-
84863531180
-
Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation
-
COI: 1:CAS:528:DC%2BC38XksFensL4%3D, PID: 22426180
-
Williams AJ, Ekins S, Tkachenko V. Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation. Drug Discov Today. 2012;17:685–701.
-
(2012)
Drug Discov Today
, vol.17
, pp. 685-701
-
-
Williams, A.J.1
Ekins, S.2
Tkachenko, V.3
-
89
-
-
33745808006
-
Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study
-
COI: 1:CAS:528:DC%2BD28Xot1Kltrg%3D, PID: 16815767
-
Vracko M, Bandelj V, Barbieri P, Benfenati E, Chaudhry Q, Cronin M, et al. Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study. SAR QSAR Environ Res. 2006;17(3):265–84.
-
(2006)
SAR QSAR Environ Res
, vol.17
, Issue.3
, pp. 265-284
-
-
Vracko, M.1
Bandelj, V.2
Barbieri, P.3
Benfenati, E.4
Chaudhry, Q.5
Cronin, M.6
-
90
-
-
84960416231
-
Incentives for Starting Small Companies Focused on Rare and Neglected Diseases
-
COI: 1:CAS:528:DC%2BC2MXitVSrsLjF, PID: 26666772
-
Ekins S, Wood J. Incentives for Starting Small Companies Focused on Rare and Neglected Diseases. Pharm Res. 2016;33:809–15.
-
(2016)
Pharm Res
, vol.33
, pp. 809-815
-
-
Ekins, S.1
Wood, J.2
-
91
-
-
84896729192
-
Computational models for neglected diseases: gaps and opportunities
-
COI: 1:CAS:528:DC%2BC3sXhtlGltbvN, PID: 23990313
-
Ponder EL, Freundlich JS, Sarker M, Ekins S. Computational models for neglected diseases: gaps and opportunities. Pharm Res. 2014;31(2):271–7.
-
(2014)
Pharm Res
, vol.31
, Issue.2
, pp. 271-277
-
-
Ponder, E.L.1
Freundlich, J.S.2
Sarker, M.3
Ekins, S.4
-
92
-
-
84989313446
-
-
Murnane K. What is deep learning and how is it useful? Forbes
-
Murnane K. What is deep learning and how is it useful? Forbes. Available from: http://www.forbes.com/sites/kevinmurnane/2016/04/01/what-is-deep-learning-and-how-is-it-useful/#715d1eaf10f0.
-
-
-
-
93
-
-
84989342088
-
-
Murnane K. Thirteen companies that use deep learning to produce actionable results. Forbes
-
Murnane K. Thirteen companies that use deep learning to produce actionable results. Forbes. Available from: http://www.forbes.com/sites/kevinmurnane/2016/04/01/thirteen-companies-that-use-deep-learning-to-produce-actionable-results/#4e710eb07967.
-
-
-
-
94
-
-
84960397109
-
The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS
-
PID: 26807157
-
Tetko IV, M Lowe D, Williams AJ. The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS. J Cheminform. 2016;8:2.
-
(2016)
J Cheminform
, vol.8
, pp. 2
-
-
Tetko, I.V.1
M Lowe, D.2
Williams, A.J.3
-
95
-
-
84883238632
-
Development of dimethyl sulfoxide solubility models using 163,000 molecules: using a domain applicability metric to select more reliable predictions
-
COI: 1:CAS:528:DC%2BC3sXhtFSisL3P, PID: 23855787
-
Tetko IV, Novotarskyi S, Sushko I, Ivanov V, Petrenko AE, Dieden R, et al. Development of dimethyl sulfoxide solubility models using 163,000 molecules: using a domain applicability metric to select more reliable predictions. J Chem Inf Model. 2013;53(8):1990–2000.
-
(2013)
J Chem Inf Model
, vol.53
, Issue.8
, pp. 1990-2000
-
-
Tetko, I.V.1
Novotarskyi, S.2
Sushko, I.3
Ivanov, V.4
Petrenko, A.E.5
Dieden, R.6
-
96
-
-
84979586933
-
PubChem substance and compound databases
-
PID: 26400175
-
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13.
-
(2016)
Nucleic Acids Res
, vol.44
, Issue.D1
, pp. D1202-D1213
-
-
Kim, S.1
Thiessen, P.A.2
Bolton, E.E.3
Chen, J.4
Fu, G.5
Gindulyte, A.6
|