메뉴 건너뛰기




Volumn 63, Issue 3, 2015, Pages 135-152

Machine learning in computational docking

Author keywords

Complex binding affinity; Computational docking; Drug discovery; Force field interaction; Ligands ranking accuracy; Machine learning; Pharmacophore fingerprint; Random forest; Scoring function; Support vector machine; Virtual screening

Indexed keywords

ARTIFICIAL INTELLIGENCE; CORRELATION METHODS; DECISION TREES; DESIGN; DRUG DELIVERY; DRUG PRODUCTS; DRUG THERAPY; FREE ENERGY; FUNCTIONS; LEARNING SYSTEMS; LIFE CYCLE; LIGANDS; MOLECULES; PHARMACODYNAMICS; PROTEINS; SUPPORT VECTOR MACHINES;

EID: 84928585769     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2015.02.002     Document Type: Short Survey
Times cited : (110)

References (97)
  • 1
    • 34249828989 scopus 로고    scopus 로고
    • Random screening for dominant-negative mutants of the cytomegalovirus nuclear egress protein M50
    • Rupp B., Ruzsics Z., Buser C., Adler B., Walther P., Koszinowski U.H. Random screening for dominant-negative mutants of the cytomegalovirus nuclear egress protein M50. J Virol 2007, 81(11):5508-5517.
    • (2007) J Virol , vol.81 , Issue.11 , pp. 5508-5517
    • Rupp, B.1    Ruzsics, Z.2    Buser, C.3    Adler, B.4    Walther, P.5    Koszinowski, U.H.6
  • 2
    • 36349013819 scopus 로고    scopus 로고
    • On chance discovery in rational drug design. Aspergillus fumigatus and angiogenesis
    • Klein C. On chance discovery in rational drug design. Aspergillus fumigatus and angiogenesis. Pharm Unserer Zeit 2006, 36(6):450-451.
    • (2006) Pharm Unserer Zeit , vol.36 , Issue.6 , pp. 450-451
    • Klein, C.1
  • 4
  • 5
    • 84928590975 scopus 로고    scopus 로고
    • (accessed on 28.12.14)
    • DockingWikipedia Docking (molecular) - wikipedia 2014, (accessed on 28.12.14). http://en.wikipedia.org/wiki/Docking_(molecular).
    • (2014) Docking (molecular) - wikipedia
  • 6
    • 84864950736 scopus 로고    scopus 로고
    • A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction
    • Ashtawy H.M., Mahapatra N.R. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans Comput Biol Bioinform 2012, 9(5):1301-1313.
    • (2012) IEEE/ACM Trans Comput Biol Bioinform , vol.9 , Issue.5 , pp. 1301-1313
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 8
    • 79959449643 scopus 로고    scopus 로고
    • Studies on adaptability of binding residues flap region of TMC-114 resistance HIV-1 protease mutants
    • Purohit R., Rajendran V., Sethumadhavan R. Studies on adaptability of binding residues flap region of TMC-114 resistance HIV-1 protease mutants. J Biomol Struct Dyn 2011, 29(1):137-152.
    • (2011) J Biomol Struct Dyn , vol.29 , Issue.1 , pp. 137-152
    • Purohit, R.1    Rajendran, V.2    Sethumadhavan, R.3
  • 9
    • 77956634216 scopus 로고    scopus 로고
    • Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease
    • Purohit R., Sethumadhavan R. Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdiscip Sci: Comput Life Sci 2009, 1(4):320-328.
    • (2009) Interdiscip Sci: Comput Life Sci , vol.1 , Issue.4 , pp. 320-328
    • Purohit, R.1    Sethumadhavan, R.2
  • 10
    • 84899920528 scopus 로고    scopus 로고
    • Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight
    • Purohit R. Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight. J Biomol Struct Dyn 2014, 32(7):1033-1046.
    • (2014) J Biomol Struct Dyn , vol.32 , Issue.7 , pp. 1033-1046
    • Purohit, R.1
  • 11
    • 84864771186 scopus 로고    scopus 로고
    • In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein
    • Rajendran V., Purohit R., Sethumadhavan R. In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids 2012, 43(2):603-615.
    • (2012) Amino Acids , vol.43 , Issue.2 , pp. 603-615
    • Rajendran, V.1    Purohit, R.2    Sethumadhavan, R.3
  • 12
    • 79958089433 scopus 로고    scopus 로고
    • Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and isoniazid susceptibility: an in silico analysis
    • Purohit R., Rajendran V., Sethumadhavan R. Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and isoniazid susceptibility: an in silico analysis. J Mol Model 2011, 17(4):869-877.
    • (2011) J Mol Model , vol.17 , Issue.4 , pp. 869-877
    • Purohit, R.1    Rajendran, V.2    Sethumadhavan, R.3
  • 13
    • 84901321116 scopus 로고    scopus 로고
    • Use of long term molecular dynamics simulation in predicting cancer associated SNPs
    • Kumar A., Purohit R. Use of long term molecular dynamics simulation in predicting cancer associated SNPs. PLoS Comput Biol 2014, 10(4):e1003318.
    • (2014) PLoS Comput Biol , vol.10 , Issue.4 , pp. e1003318
    • Kumar, A.1    Purohit, R.2
  • 14
    • 84889685004 scopus 로고    scopus 로고
    • Drug resistance mechanism of PncA in Mycobacterium tuberculosis
    • Rajendran V., Sethumadhavan R. Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn 2014, 32(2):209-221.
    • (2014) J Biomol Struct Dyn , vol.32 , Issue.2 , pp. 209-221
    • Rajendran, V.1    Sethumadhavan, R.2
  • 15
    • 0033397980 scopus 로고    scopus 로고
    • Python: a programming language for software integration and development
    • Sanner M.F. Python: a programming language for software integration and development. J Mol Graph Model 1999, 17:57-61.
    • (1999) J Mol Graph Model , vol.17 , pp. 57-61
    • Sanner, M.F.1
  • 18
    • 84884815836 scopus 로고    scopus 로고
    • Scalability study of molecular dynamics simulation on Godson-T many-core architecture
    • Peng L., Tan G., Kalia R.K., Nakano A., Vashishta P., Fan D., et al. Scalability study of molecular dynamics simulation on Godson-T many-core architecture. J Parallel Distrib Comput 2013, 73:1469.
    • (2013) J Parallel Distrib Comput , vol.73 , pp. 1469
    • Peng, L.1    Tan, G.2    Kalia, R.K.3    Nakano, A.4    Vashishta, P.5    Fan, D.6
  • 19
    • 0026108258 scopus 로고
    • Visualizing quantum scattering on the CM-2 supercomputer
    • Richardson J.L. Visualizing quantum scattering on the CM-2 supercomputer. Comput Phys Commun 1991, 63:84-94.
    • (1991) Comput Phys Commun , vol.63 , pp. 84-94
    • Richardson, J.L.1
  • 21
    • 79952178127 scopus 로고    scopus 로고
    • A machine learning based method to improve docking scoring functions and its application to drug repurposing
    • Kinnings S.L., Liu N., Tonge P.J., Jackson R.M., Xie L., Bourne P.E. A machine learning based method to improve docking scoring functions and its application to drug repurposing. J Chem Inform Model 2011, 51(2):408-419. 10.1021/ci100369f..
    • (2011) J Chem Inform Model , vol.51 , Issue.2 , pp. 408-419
    • Kinnings, S.L.1    Liu, N.2    Tonge, P.J.3    Jackson, R.M.4    Xie, L.5    Bourne, P.E.6
  • 22
    • 84928589536 scopus 로고    scopus 로고
    • Molecular Mechanics Tutorial Introduction; Department of Chemistry Colby College Waterville, Maine
    • Shattuck T.W. Colby college molecular mechanics tutorial introduction 2008, Molecular Mechanics Tutorial Introduction; Department of Chemistry Colby College Waterville, Maine. http://www.colby.edu/chemistry/CompChem/MMtutor.pdf.
    • (2008) Colby college molecular mechanics tutorial introduction
    • Shattuck, T.W.1
  • 25
    • 70349932423 scopus 로고    scopus 로고
    • AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
    • Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009, 30(16):2785-2791.
    • (2009) J Comput Chem , vol.30 , Issue.16 , pp. 2785-2791
    • Morris, G.M.1    Huey, R.2    Lindstrom, W.3    Sanner, M.F.4    Belew, R.K.5    Goodsell, D.S.6
  • 28
    • 2542530042 scopus 로고    scopus 로고
    • The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures
    • Wang R., Fang X., Lu Y., Wang S. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 2004, 47(12):2977-2980.
    • (2004) J Med Chem , vol.47 , Issue.12 , pp. 2977-2980
    • Wang, R.1    Fang, X.2    Lu, Y.3    Wang, S.4
  • 29
    • 0034811498 scopus 로고    scopus 로고
    • Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA
    • Wang J., Morin P., Wang W., Kollman P.A. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 2001, 123:5221-5230.
    • (2001) J Am Chem Soc , vol.123 , pp. 5221-5230
    • Wang, J.1    Morin, P.2    Wang, W.3    Kollman, P.A.4
  • 30
    • 84928590157 scopus 로고    scopus 로고
    • (accessed on 28.12.14)
    • ChemicalFileFormatWikipedia Chemical file format 2014, (accessed on 28.12.14). http://en.wikipedia.org/wiki/Chemical_file_format.
    • (2014) Chemical file format
  • 31
    • 84860157502 scopus 로고    scopus 로고
    • Combining molecular docking and molecular dynamics to predict the binding modes of flavonoid derivatives with the neuraminidase of the 2009 H1N1 influenza a virus
    • Lu S.J., Chong F.C. Combining molecular docking and molecular dynamics to predict the binding modes of flavonoid derivatives with the neuraminidase of the 2009 H1N1 influenza a virus. Int J Mol Sci 2012, 13(4):4496-4507.
    • (2012) Int J Mol Sci , vol.13 , Issue.4 , pp. 4496-4507
    • Lu, S.J.1    Chong, F.C.2
  • 32
    • 33846863158 scopus 로고    scopus 로고
    • Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space
    • Naïm M., Bhat S., Rankin K.N., Dennis S., Chowdhury S.F., Siddiqi I., et al. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J Chem Inform Model 2007, 47(1):122-133.
    • (2007) J Chem Inform Model , vol.47 , Issue.1 , pp. 122-133
    • Naïm, M.1    Bhat, S.2    Rankin, K.N.3    Dennis, S.4    Chowdhury, S.F.5    Siddiqi, I.6
  • 34
    • 66149103553 scopus 로고    scopus 로고
    • Comparative assessment of scoring functions on a diverse test set
    • Cheng T., Li X., Li Y., Liu Z., Wang R. Comparative assessment of scoring functions on a diverse test set. J Chem Inform Model 2009, 49(4):1079-1093.
    • (2009) J Chem Inform Model , vol.49 , Issue.4 , pp. 1079-1093
    • Cheng, T.1    Li, X.2    Li, Y.3    Liu, Z.4    Wang, R.5
  • 35
    • 84903287174 scopus 로고    scopus 로고
    • Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results
    • Li Y., Han L., Liu Z., Wang R. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inform Model 2014, 54:1717-1736.
    • (2014) J Chem Inform Model , vol.54 , pp. 1717-1736
    • Li, Y.1    Han, L.2    Liu, Z.3    Wang, R.4
  • 37
    • 0036022960 scopus 로고    scopus 로고
    • Further development and validation of empirical scoring functions for structure-based binding affinity prediction
    • Wang R., Lai L., Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 2002, 16:11-26.
    • (2002) J Comput Aided Mol Des , vol.16 , pp. 11-26
    • Wang, R.1    Lai, L.2    Wang, S.3
  • 38
    • 33749242403 scopus 로고    scopus 로고
    • PMF scoring revisited
    • Muegge I. PMF scoring revisited. J Med Chem 2006, 49:5895-5902.
    • (2006) J Med Chem , vol.49 , pp. 5895-5902
    • Muegge, I.1
  • 39
    • 34250892548 scopus 로고    scopus 로고
    • EHiTS: a new fast, exhaustive flexible ligand docking system
    • PubMed: 16860582
    • Zsoldos Z., Reid D., Simon A., Sadjad S.B., Johnson A.P. eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 2007, 26(1):198-212. PubMed: 16860582.
    • (2007) J Mol Graph Model , vol.26 , Issue.1 , pp. 198-212
    • Zsoldos, Z.1    Reid, D.2    Simon, A.3    Sadjad, S.B.4    Johnson, A.P.5
  • 40
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester P.J., Mitchell J.B.O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 2010, 26(9):1169-1175.
    • (2010) Bioinformatics , vol.26 , Issue.9 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 41
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 42
    • 84906829436 scopus 로고    scopus 로고
    • Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
    • Li H., Leung K.S., Wong M.H., Ballester P.J. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinform 2014, 15:291. http://www.biomedcentral.com/1471-2105/15/291, 10.1186/1471-2105-15-291..
    • (2014) BMC Bioinform , vol.15 , pp. 291
    • Li, H.1    Leung, K.S.2    Wong, M.H.3    Ballester, P.J.4
  • 43
    • 84902438255 scopus 로고    scopus 로고
    • Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model
    • Cao Y., Li L. Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics 2014, 30(12):1674-1680.
    • (2014) Bioinformatics , vol.30 , Issue.12 , pp. 1674-1680
    • Cao, Y.1    Li, L.2
  • 44
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading
    • Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 2010, 31(2):455-461.
    • (2010) J Comput Chem , vol.31 , Issue.2 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 45
    • 84897010735 scopus 로고    scopus 로고
    • Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity
    • Ballester P.J., Schreyer A., Blundell T.L. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity. J Chem Inform Model 2014, 54:944-955.
    • (2014) J Chem Inform Model , vol.54 , pp. 944-955
    • Ballester, P.J.1    Schreyer, A.2    Blundell, T.L.3
  • 46
    • 84883250593 scopus 로고    scopus 로고
    • SFCscoreRF: a random forest-based scoring function for improved affinity prediction of protein-ligand complexes
    • Zilian D., Sotriffer C. SFCscoreRF: a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J Chem Inform Model 2013, 53(8):1923-1933.
    • (2013) J Chem Inform Model , vol.53 , Issue.8 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.2
  • 47
    • 84928587626 scopus 로고    scopus 로고
    • Comparative assessment of scoring and ranking powers of machine-learning-based scoring functions on an updated benchmark PDBbind 2013;
    • Unpublished.
    • Khamis MA, Gomaa W. Comparative assessment of scoring and ranking powers of machine-learning-based scoring functions on an updated benchmark PDBbind 2013; 2015. Unpublished.
    • (2015)
    • Khamis, M.A.1    Gomaa, W.2
  • 48
    • 84908242076 scopus 로고    scopus 로고
    • Beware of machine learning-based scoring functions - on the danger of developing black boxes
    • Gabel J., Desaphy J., Rognan D. Beware of machine learning-based scoring functions - on the danger of developing black boxes. J Chem Inform Model 2014, 54:2807-2815.
    • (2014) J Chem Inform Model , vol.54 , pp. 2807-2815
    • Gabel, J.1    Desaphy, J.2    Rognan, D.3
  • 49
    • 84864264343 scopus 로고    scopus 로고
    • Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking
    • Mysinger M.M., Carchia M., Irwin J.J., Shoichet B.K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 2012, 55:6582-6594.
    • (2012) J Med Chem , vol.55 , pp. 6582-6594
    • Mysinger, M.M.1    Carchia, M.2    Irwin, J.J.3    Shoichet, B.K.4
  • 50
    • 84928585851 scopus 로고    scopus 로고
    • Deep learning competes random forest in computational docking;
    • Unpublished.
    • Khamis MA, Gomaa W, Galal B. Deep learning competes random forest in computational docking; 2015. Unpublished.
    • (2015)
    • Khamis, M.A.1    Gomaa, W.2    Galal, B.3
  • 51
    • 33846108633 scopus 로고    scopus 로고
    • BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities
    • PubMed: 17145705
    • Liu T., Lin Y., Wen X., Jorissen R., Gilson M. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007, 35(D):198-201. PubMed: 17145705.
    • (2007) Nucleic Acids Res , vol.35 , Issue.D , pp. 198-201
    • Liu, T.1    Lin, Y.2    Wen, X.3    Jorissen, R.4    Gilson, M.5
  • 52
    • 77955599624 scopus 로고    scopus 로고
    • Machine learning approaches for customized docking scores: Modeling of inhibition of Mycobacterium tuberculosis enoyl acyl carrier protein reductase
    • IEEE at Piscataway, NJ, United States, C.C. Bi (Ed.)
    • Fogel G., Tran J., Johnson S., Hecht D. Machine learning approaches for customized docking scores: Modeling of inhibition of Mycobacterium tuberculosis enoyl acyl carrier protein reductase. Proc. IEEE 2010 symposium on computational intelligence in bioinformatics and computational biology (CIBCB 2010) 2010, 1-6. IEEE at Piscataway, NJ, United States. 10.1109/CIBCB.2010.5510700. C.C. Bi (Ed.)..
    • (2010) Proc. IEEE 2010 symposium on computational intelligence in bioinformatics and computational biology (CIBCB 2010) , pp. 1-6
    • Fogel, G.1    Tran, J.2    Johnson, S.3    Hecht, D.4
  • 53
    • 84928590801 scopus 로고    scopus 로고
    • (accessed on 04.01.15)
    • Accelrys Inc. Accord 2015, urlhttp://accelrys.comhttp://accelrys.com (accessed on 04.01.15).
    • (2015) Accord
  • 54
    • 33744826819 scopus 로고    scopus 로고
    • MolDock: a new technique for high-accuracy molecular docking
    • Thomsen R., Christensen M. MolDock: a new technique for high-accuracy molecular docking. J Med Chem 2006, 49:3315-3321.
    • (2006) J Med Chem , vol.49 , pp. 3315-3321
    • Thomsen, R.1    Christensen, M.2
  • 55
    • 0031552362 scopus 로고    scopus 로고
    • Development and validation of a genetic algorithm for flexible docking
    • Jones G., Willett P., Glen R., Leach A., Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997, 267:727-748.
    • (1997) J Mol Biol , vol.267 , pp. 727-748
    • Jones, G.1    Willett, P.2    Glen, R.3    Leach, A.4    Taylor, R.5
  • 56
    • 0028854034 scopus 로고
    • Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation
    • Jones G., Willett P., Glen R.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 1995, 245:43-53. 10.1016/S0022-2836(95)80037-9..
    • (1995) J Mol Biol , vol.245 , pp. 43-53
    • Jones, G.1    Willett, P.2    Glen, R.C.3
  • 57
    • 0031226772 scopus 로고    scopus 로고
    • Empirical scoring functions. I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes
    • Eldridge M.D., Murray C.W., Auton T.R., Paolini G.V., Mee R.P. Empirical scoring functions. I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 1997, 11:425-445. 10.1023/A:1007996124545..
    • (1997) J Comput Aided Mol Des , vol.11 , pp. 425-445
    • Eldridge, M.D.1    Murray, C.W.2    Auton, T.R.3    Paolini, G.V.4    Mee, R.P.5
  • 58
    • 82355181271 scopus 로고    scopus 로고
    • CScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture
    • Ouyang X., Handoko S.D., Kwoh C.K. CScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture. J Bioinform Comput Biol 2011, 09:1-14.
    • (2011) J Bioinform Comput Biol , vol.9 , pp. 1-14
    • Ouyang, X.1    Handoko, S.D.2    Kwoh, C.K.3
  • 59
    • 0016556021 scopus 로고
    • A new approach to manipulator control: the cerebellar model articulation 32 controller (CMAC)
    • Albus J. A new approach to manipulator control: the cerebellar model articulation 32 controller (CMAC). J Dyn Syst Meas Control 1975, 97:220.
    • (1975) J Dyn Syst Meas Control , vol.97 , pp. 220
    • Albus, J.1
  • 60
    • 84888606432 scopus 로고    scopus 로고
    • Binding affinity prediction for protein-ligand complexes based on β contacts and B factor
    • Liu Q., Kwoh C.K., Li J. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor. J Chem Inform Model 2013, 53(11):3076-3085.
    • (2013) J Chem Inform Model , vol.53 , Issue.11 , pp. 3076-3085
    • Liu, Q.1    Kwoh, C.K.2    Li, J.3
  • 61
    • 84875428269 scopus 로고    scopus 로고
    • ID-Score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions
    • Li G.B., Yang L.L., Wang W.J., Li L.L., Yang S.Y. ID-Score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J Chem Inform Model 2013, 53(3):592-600.
    • (2013) J Chem Inform Model , vol.53 , Issue.3 , pp. 592-600
    • Li, G.B.1    Yang, L.L.2    Wang, W.J.3    Li, L.L.4    Yang, S.Y.5
  • 62
    • 0038174853 scopus 로고    scopus 로고
    • Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening
    • Zavodszky M., Sanschagrin P., Kuhn L., Korde R. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening. J Comput Aided Mol Des 2002, 16:883-902.
    • (2002) J Comput Aided Mol Des , vol.16 , pp. 883-902
    • Zavodszky, M.1    Sanschagrin, P.2    Kuhn, L.3    Korde, R.4
  • 63
    • 0033674405 scopus 로고    scopus 로고
    • Virtual screening with solvation and ligand-induced complementarity
    • Schnecke V., Kuhn L.A. Virtual screening with solvation and ligand-induced complementarity. Perspect Drug Discov Des 2000, 20(1):171-190.
    • (2000) Perspect Drug Discov Des , vol.20 , Issue.1 , pp. 171-190
    • Schnecke, V.1    Kuhn, L.A.2
  • 64
    • 15244353539 scopus 로고    scopus 로고
    • Side-chain flexibility in protein-ligand binding: the minimal rotation hypothesis
    • Zavodszky M., Kuhn L. Side-chain flexibility in protein-ligand binding: the minimal rotation hypothesis. Protein Sci 2005, 14(4):1104-1114.
    • (2005) Protein Sci , vol.14 , Issue.4 , pp. 1104-1114
    • Zavodszky, M.1    Kuhn, L.2
  • 68
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 70
    • 36749002607 scopus 로고    scopus 로고
    • A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming
    • Amini A., Shrimpton P.J., Muggleton S.H., Sternberg M.J.E. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming. Proteins 2007, 69:823-831. 10.1002/prot.21782..
    • (2007) Proteins , vol.69 , pp. 823-831
    • Amini, A.1    Shrimpton, P.J.2    Muggleton, S.H.3    Sternberg, M.J.E.4
  • 71
    • 80053313926 scopus 로고    scopus 로고
    • Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries
    • Li L., Wang B., Meroueh S.O. Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. Journal of Chemical Information and Modeling 2011, 51(9):2132-2138.
    • (2011) Journal of Chemical Information and Modeling , vol.51 , Issue.9 , pp. 2132-2138
    • Li, L.1    Wang, B.2    Meroueh, S.O.3
  • 73
    • 11644261806 scopus 로고    scopus 로고
    • Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function
    • Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998, 19(14):1639-1662.
    • (1998) J Comput Chem , vol.19 , Issue.14 , pp. 1639-1662
    • Morris, G.M.1    Goodsell, D.S.2    Halliday, R.S.3    Huey, R.4    Hart, W.E.5    Belew, R.K.6
  • 74
    • 84928587626 scopus 로고    scopus 로고
    • Comparative assessment of docking and screening powers of machine-learning-based scoring functions on an updated benchmark PDBbind 2013;
    • Unpublished.
    • Khamis MA, Gomaa W, Galal B. Comparative assessment of docking and screening powers of machine-learning-based scoring functions on an updated benchmark PDBbind 2013; 2015. Unpublished.
    • (2015)
    • Khamis, M.A.1    Gomaa, W.2    Galal, B.3
  • 75
    • 12144289984 scopus 로고    scopus 로고
    • Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
    • Friesner R., Banks J., Murphy R., Halgren T., Klicic J., Mainz D., et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004, 47(7):1739-1749.
    • (2004) J Med Chem , vol.47 , Issue.7 , pp. 1739-1749
    • Friesner, R.1    Banks, J.2    Murphy, R.3    Halgren, T.4    Klicic, J.5    Mainz, D.6
  • 76
    • 84868556569 scopus 로고    scopus 로고
    • Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification
    • Ballester P.J., Mangold M., Howard N.I., Robinson R.L.M., Abell C., Blumberger J., et al. Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification. J R Soc Interface 2012, 9:3196-3207.
    • (2012) J R Soc Interface , vol.9 , pp. 3196-3207
    • Ballester, P.J.1    Mangold, M.2    Howard, N.I.3    Robinson, R.L.M.4    Abell, C.5    Blumberger, J.6
  • 78
    • 26444468103 scopus 로고    scopus 로고
    • General and targeted statistical potentials for protein-ligand interactions
    • Mooij W.T., Verdonk M.L. General and targeted statistical potentials for protein-ligand interactions. Proteins 2005, 61:272-287. 10.1002/prot.20588..
    • (2005) Proteins , vol.61 , pp. 272-287
    • Mooij, W.T.1    Verdonk, M.L.2
  • 79
    • 33750991346 scopus 로고    scopus 로고
    • Benchmarking sets for molecular docking
    • Huang N., Shoichet B.K., Irwin J.J. Benchmarking sets for molecular docking. J Med Chem 2006, 49(23):6789-6801.
    • (2006) J Med Chem , vol.49 , Issue.23 , pp. 6789-6801
    • Huang, N.1    Shoichet, B.K.2    Irwin, J.J.3
  • 80
    • 84928582732 scopus 로고    scopus 로고
    • (accessed on 28.12.14)
    • F_ScoreWikipedia F-score 2014, (accessed on 28.12.14). http://en.wikipedia.org/wiki/F1_score.
    • (2014) F-score
  • 81
    • 84910678373 scopus 로고    scopus 로고
    • (accessed on 28.12.14)
    • PrecisionRecallWikipedia Precision and recall 2014, (accessed on 28.12.14). http://en.wikipedia.org/wiki/Precision_(information_retrieval).
    • (2014) Precision and recall
  • 82
    • 84928581521 scopus 로고    scopus 로고
    • (accessed on 28.12.14)
    • ReceiverOperatingCharacteristicWikipedia Receiver operating characteristic 2014, (accessed on 28.12.14). http://en.wikipedia.org/wiki/Receiver_operating_characteristic.
    • (2014) Receiver operating characteristic
  • 83
    • 75749126524 scopus 로고    scopus 로고
    • Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening
    • Sato T., Honma T., Yokoyama S. Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening. J Chem Inform Model 2010, 50:170-185.
    • (2010) J Chem Inform Model , vol.50 , pp. 170-185
    • Sato, T.1    Honma, T.2    Yokoyama, S.3
  • 84
    • 67849104638 scopus 로고    scopus 로고
    • PubChem: a public information system for analyzing bioactivities of small molecules
    • (Epub ahead of print)
    • Wang Y., Xiao J., Suzek T.O., Zhang J., Wang J., Bryant S.H. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 2009, 4. (Epub ahead of print).
    • (2009) Nucleic Acids Res , pp. 4
    • Wang, Y.1    Xiao, J.2    Suzek, T.O.3    Zhang, J.4    Wang, J.5    Bryant, S.H.6
  • 85
    • 84862192766 scopus 로고    scopus 로고
    • ChEMBL: a large-scale bioactivity database for drug discovery
    • Gaulton A., Bellis L.J., Bento A.P., Chambers J., Davies M., Hersey A., et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012, 40(Database issue):D1100-D1107.
    • (2012) Nucleic Acids Res , vol.40 , Issue.DATABASE ISSUE , pp. D1100-D1107
    • Gaulton, A.1    Bellis, L.J.2    Bento, A.P.3    Chambers, J.4    Davies, M.5    Hersey, A.6
  • 86
    • 84928590936 scopus 로고    scopus 로고
    • Inpharmatica Ltd. Starlite 2007.
    • (2007) Starlite
  • 87
  • 89
    • 82355186299 scopus 로고    scopus 로고
    • NNScore 2.0: a neural-network receptor-ligand scoring function
    • Durrant J.D., McCammon J.A. NNScore 2.0: a neural-network receptor-ligand scoring function. J Chem Inform Model 2011, 51(11):2897-2903.
    • (2011) J Chem Inform Model , vol.51 , Issue.11 , pp. 2897-2903
    • Durrant, J.D.1    McCammon, J.A.2
  • 93
    • 0032738842 scopus 로고    scopus 로고
    • Evaluation of the flexx incremental construction algorithm for protein-ligand docking
    • Kramer B., Rarey M., Lengauer T. Evaluation of the flexx incremental construction algorithm for protein-ligand docking. Proteins: Struct Funct Genet 1999, 37:228-241.
    • (1999) Proteins: Struct Funct Genet , vol.37 , pp. 228-241
    • Kramer, B.1    Rarey, M.2    Lengauer, T.3
  • 96
    • 84956835859 scopus 로고    scopus 로고
    • Feature extraction for machine learning: logic-probabilistic approach
    • Gorodetsky V., Samoilov V. Feature extraction for machine learning: logic-probabilistic approach. J Mach Learn Res-Proc Track 2010, 10:55-65.
    • (2010) J Mach Learn Res-Proc Track , vol.10 , pp. 55-65
    • Gorodetsky, V.1    Samoilov, V.2
  • 97
    • 78349253077 scopus 로고    scopus 로고
    • Comparative study of predictive computational models for nanoparticle-induced cytotoxicity
    • Sayes C., Ivanov I. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal 2010, 30(11):1723-1734.
    • (2010) Risk Anal , vol.30 , Issue.11 , pp. 1723-1734
    • Sayes, C.1    Ivanov, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.