메뉴 건너뛰기




Volumn 22, Issue 1, 2015, Pages 155-165

A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data

Author keywords

Acute care hospital; Automated text classification; Deep vein thrombosis; Natural language processing; Pulmonary embolism; Support vector machines

Indexed keywords

AGED; AREA UNDER THE CURVE; ARTICLE; DEEP VEIN THROMBOSIS; ELECTRONIC MEDICAL RECORD; FEMALE; HUMAN; LUNG EMBOLISM; MAJOR CLINICAL STUDY; MALE; NATURAL LANGUAGE PROCESSING; PREDICTIVE VALUE; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; VENOUS THROMBOEMBOLISM; HOSPITALIZATION; VALIDATION STUDY;

EID: 84929501877     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2014-002768     Document Type: Article
Times cited : (57)

References (50)
  • 1
    • 46049090201 scopus 로고    scopus 로고
    • Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition)
    • Geerts WH, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008;133(6 Suppl):381S-453S.
    • (2008) Chest , vol.133 , Issue.6 , pp. 381S-453S
    • Geerts, W.H.1    Bergqvist, D.2    Pineo, G.F.3
  • 2
    • 70449590073 scopus 로고    scopus 로고
    • Rates of venous thromboembolism occurrence in medical patients among the insured population
    • Spyropoulos AC, Hussein M, Lin J, et al. Rates of venous thromboembolism occurrence in medical patients among the insured population. Thromb Haemost 2009;102:951-7.
    • (2009) Thromb Haemost , vol.102 , pp. 951-957
    • Spyropoulos, A.C.1    Hussein, M.2    Lin, J.3
  • 3
    • 0038380256 scopus 로고    scopus 로고
    • The epidemiology of venous thromboembolism
    • White RH. The epidemiology of venous thromboembolism. Circulation 2003;107(23 Suppl 1):I4-8.
    • (2003) Circulation , vol.107 , pp. I4-I8
    • White, R.H.1
  • 4
    • 0035944369 scopus 로고    scopus 로고
    • Prevention and treatment of postphlebitic syndrome: results of a 3-part study
    • Ginsberg JS, Hirsh J, Julian J, et al. Prevention and treatment of postphlebitic syndrome: results of a 3-part study. Arch Intern Med 2001;161:2105-9.
    • (2001) Arch Intern Med , vol.161 , pp. 2105-2109
    • Ginsberg, J.S.1    Hirsh, J.2    Julian, J.3
  • 5
    • 23044481148 scopus 로고    scopus 로고
    • Predictors of the postthrombotic syndrome during long-term treatment of proximal deep vein thrombosis
    • Kahn SR, Kearon C, Julian JA, et al. Predictors of the postthrombotic syndrome during long-term treatment of proximal deep vein thrombosis. J Thromb Haemost 2005;3: 718-23.
    • (2005) J Thromb Haemost , vol.3 , pp. 718-723
    • Kahn, S.R.1    Kearon, C.2    Julian, J.A.3
  • 6
    • 2442643903 scopus 로고    scopus 로고
    • Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism
    • Pengo V, Lensing AW, Prins MH, et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 2004;350:2257-64.
    • (2004) N Engl J Med , vol.350 , pp. 2257-2264
    • Pengo, V.1    Lensing, A.W.2    Prins, M.H.3
  • 7
    • 84860762117 scopus 로고    scopus 로고
    • Long-term outcomes in acute pulmonary thromboembolism: the incidence of chronic thromboembolic pulmonary hypertension and associated risk factors
    • Korkmaz A, Ozlu T, Ozsu S, et al. Long-term outcomes in acute pulmonary thromboembolism: the incidence of chronic thromboembolic pulmonary hypertension and associated risk factors. Clin Appl Thromb Hemost 2012;18: 281-8.
    • (2012) Clin Appl Thromb Hemost , vol.18 , pp. 281-288
    • Korkmaz, A.1    Ozlu, T.2    Ozsu, S.3
  • 8
    • 0141922804 scopus 로고    scopus 로고
    • Excess length of stay, charges, and mortality attributable to medical injuries during hospitalization
    • Zhan C, Miller MR. Excess length of stay, charges, and mortality attributable to medical injuries during hospitalization. JAMA 2003;290:1868-74.
    • (2003) JAMA , vol.290 , pp. 1868-1874
    • Zhan, C.1    Miller, M.R.2
  • 9
    • 68149182492 scopus 로고    scopus 로고
    • Economic burden of venous thromboembolism in hospitalized patients
    • Dobesh PP. Economic burden of venous thromboembolism in hospitalized patients. Pharmacotherapy 2009;29: 943-53.
    • (2009) Pharmacotherapy , vol.29 , pp. 943-953
    • Dobesh, P.P.1
  • 10
    • 0035236282 scopus 로고    scopus 로고
    • Making health care safer: a critical analysis of patient safety practices
    • Shojania KG, Duncan BW, McDonald KM, et al. Making health care safer: a critical analysis of patient safety practices. Evid Rep Technol Assess (Summer) 2001;(43):i-x, 1-668.
    • (2001) Evid Rep Technol Assess (Summer) , Issue.43 , pp. i-x+1
    • Shojania, K.G.1    Duncan, B.W.2    McDonald, K.M.3
  • 11
    • 84939442835 scopus 로고    scopus 로고
    • Specifications Manual for National Hospital Inpatient Quality Measures
    • accessed 11 Feb 2014
    • The Joint Commission. Specifications Manual for National Hospital Inpatient Quality Measures. 2014. http://www.joint commission.org/specifications_manual_for_national_hos pital_inpatient_quality_measures.aspx (accessed 11 Feb 2014).
    • (2014)
  • 12
    • 84891677076 scopus 로고    scopus 로고
    • Interventions for implementation of thromboprophylaxis in hospitalized medical and surgical patients at risk for venous thromboembolism
    • Kahn SR, Morrison DR, Cohen JM, et al. Interventions for implementation of thromboprophylaxis in hospitalized medical and surgical patients at risk for venous thromboembolism. Cochrane Database Syst Rev 2013;7:CD008201.
    • (2013) Cochrane Database Syst Rev , vol.7 , pp. CD008201
    • Kahn, S.R.1    Morrison, D.R.2    Cohen, J.M.3
  • 13
    • 78249238819 scopus 로고    scopus 로고
    • Automated detection of harm in healthcare with information technology: a systematic review
    • Govindan M, Van Citters AD, Nelson EC, et al. Automated detection of harm in healthcare with information technology: a systematic review. Qual Saf Health Care 2010;19: e11.
    • (2010) Qual Saf Health Care , vol.19 , pp. e11
    • Govindan, M.1    Van Citters, A.D.2    Nelson, E.C.3
  • 14
    • 0141484568 scopus 로고    scopus 로고
    • Detecting adverse events for patient safety research: a review of current methodologies
    • Murff HJ, Patel VL, Hripcsak G, et al. Detecting adverse events for patient safety research: a review of current methodologies. J Biomed Inform 2003;36:131-43.
    • (2003) J Biomed Inform , vol.36 , pp. 131-143
    • Murff, H.J.1    Patel, V.L.2    Hripcsak, G.3
  • 15
    • 65549135752 scopus 로고    scopus 로고
    • Automated surveillance of health care-associated infections
    • Klompas M, Yokoe DS. Automated surveillance of health care-associated infections. Clin Infect Dis 2009;48: 1268-75.
    • (2009) Clin Infect Dis , vol.48 , pp. 1268-1275
    • Klompas, M.1    Yokoe, D.S.2
  • 16
    • 0037353241 scopus 로고    scopus 로고
    • Detecting adverse events using information technology
    • Bates DW, Evans RS, Murff H, et al. Detecting adverse events using information technology. J Am Med Inform Assoc 2003;10:115-28.
    • (2003) J Am Med Inform Assoc , vol.10 , pp. 115-128
    • Bates, D.W.1    Evans, R.S.2    Murff, H.3
  • 17
    • 67651176345 scopus 로고    scopus 로고
    • Clinical validation of the AHRQ postoperative venous thromboembolism patient safety indicator
    • Henderson KE, Recktenwald A, Reichley RM, et al. Clinical validation of the AHRQ postoperative venous thromboembolism patient safety indicator. Jt Comm J Qual Patient Saf 2009;35:370-6.
    • (2009) Jt Comm J Qual Patient Saf , vol.35 , pp. 370-376
    • Henderson, K.E.1    Recktenwald, A.2    Reichley, R.M.3
  • 18
    • 73349105305 scopus 로고    scopus 로고
    • How valid is the ICD-9-CM based AHRQ patient safety indicator for postoperative venous thromboembolism?
    • White RH, Sadeghi B, Tancredi DJ, et al. How valid is the ICD-9-CM based AHRQ patient safety indicator for postoperative venous thromboembolism? Med Care 2009;47: 1237-43.
    • (2009) Med Care , vol.47 , pp. 1237-1243
    • White, R.H.1    Sadeghi, B.2    Tancredi, D.J.3
  • 20
    • 42549089064 scopus 로고    scopus 로고
    • Do the AHRQ patient safety indicators flag conditions that are present at the time of hospital admission?
    • Bahl V, Thompson MA, Kau TY, et al. Do the AHRQ patient safety indicators flag conditions that are present at the time of hospital admission? Med Care 2008;46:516-22.
    • (2008) Med Care , vol.46 , pp. 516-522
    • Bahl, V.1    Thompson, M.A.2    Kau, T.Y.3
  • 21
    • 0003402855 scopus 로고
    • Natural language understanding
    • Redwood City, CA: Benjamin/Cummings Publishing Company
    • Allen J. Natural language understanding. Redwood City, CA: Benjamin/Cummings Publishing Company, 1995.
    • (1995)
    • Allen, J.1
  • 22
    • 40049085053 scopus 로고    scopus 로고
    • Natural language processing for biosurveillance
    • Wagner MM, Moore AW, Aryel RM, eds, Burlington, MA: Elsevier Academic Press
    • Chapman WW. Natural language processing for biosurveillance. In: Wagner MM, Moore AW, Aryel RM, eds. Handbook of biosurveillance. Burlington, MA: Elsevier Academic Press, 2006:255-71.
    • (2006) Handbook of biosurveillance , pp. 255-271
    • Chapman, W.W.1
  • 23
    • 21544453050 scopus 로고    scopus 로고
    • Automated detection of adverse events using natural language processing of discharge summaries
    • Melton GB, Hripcsak G. Automated detection of adverse events using natural language processing of discharge summaries. J Am Med Inform Assoc 2005;12:448-57.
    • (2005) J Am Med Inform Assoc , vol.12 , pp. 448-457
    • Melton, G.B.1    Hripcsak, G.2
  • 24
    • 80052063328 scopus 로고    scopus 로고
    • Automated identification of postoperative complications within an electronic medical record using natural language processing
    • Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 2011;306:848-55.
    • (2011) JAMA , vol.306 , pp. 848-855
    • Murff, H.J.1    FitzHenry, F.2    Matheny, M.E.3
  • 25
    • 84879121120 scopus 로고    scopus 로고
    • Exploring the frontier of electronic health record surveillance: the case of postoperative complications
    • FitzHenry F, Murff HJ, Matheny ME, et al. Exploring the frontier of electronic health record surveillance: the case of postoperative complications. Med Care 2013;51:509-16.
    • (2013) Med Care , vol.51 , pp. 509-516
    • FitzHenry, F.1    Murff, H.J.2    Matheny, M.E.3
  • 26
    • 84873057508 scopus 로고    scopus 로고
    • Detecting temporal expressions in medical narratives
    • Reeves RM, Ong FR, Matheny ME, et al. Detecting temporal expressions in medical narratives. Int J Med Inform 2013;82:118-27.
    • (2013) Int J Med Inform , vol.82 , pp. 118-127
    • Reeves, R.M.1    Ong, F.R.2    Matheny, M.E.3
  • 27
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: a review of recent research
    • Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform 2008;47(Suppl 1):128-42.
    • (2008) Yearb Med Inform , vol.47 , pp. 128-142
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3
  • 29
    • 34249753618 scopus 로고
    • Support vector network
    • Cortes C, Vapnik V. Support vector network. Mach Learn 1995;20:273-97.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 31
    • 77950819072 scopus 로고    scopus 로고
    • Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes
    • Yu W, Liu T, Valdez R, et al. Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak 2010;10:16.
    • (2010) BMC Med Inform Decis Mak , vol.10 , pp. 16
    • Yu, W.1    Liu, T.2    Valdez, R.3
  • 32
    • 64749091342 scopus 로고    scopus 로고
    • Support Vectors Machine-based identification of heart valve diseases using heart sounds
    • Maglogiannis I, Loukis E, Zafiropoulos E, et al. Support Vectors Machine-based identification of heart valve diseases using heart sounds. Comput Methods Programs Biomed 2009;95:47-61.
    • (2009) Comput Methods Programs Biomed , vol.95 , pp. 47-61
    • Maglogiannis, I.1    Loukis, E.2    Zafiropoulos, E.3
  • 33
    • 2542498498 scopus 로고    scopus 로고
    • Learning to classify text using support vector machines
    • Norwell, MA: Kluwer
    • Thorsten J. Learning to classify text using support vector machines. Methods, theory and algorithms. Norwell, MA: Kluwer, 2002.
    • (2002) Methods, theory and algorithms
    • Thorsten, J.1
  • 37
    • 71549152231 scopus 로고    scopus 로고
    • Classifying disease outbreak reports using n-grams and semantic features
    • Conway M, Doan S, Kawazoe A, et al. Classifying disease outbreak reports using n-grams and semantic features. Int J Med Inform 2009;78:e47-58.
    • (2009) Int J Med Inform , vol.78 , pp. e47-58
    • Conway, M.1    Doan, S.2    Kawazoe, A.3
  • 38
    • 84883246204 scopus 로고    scopus 로고
    • Tm: Text mining package
    • R package version 0.5-6. 2012 February 15, accessed 14 Apr
    • Feinerer I. Tm: Text mining package. R package version 0.5-6. 2012 February 15. http://cran.r-project.org/web/packages/tm/tm.pdf (accessed 14 Apr 2013).
    • (2013)
    • Feinerer, I.1
  • 39
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007;23: 2507-17.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 42
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau C, Bengio Y. Inference for the generalization error. Mach Learn 2003;52:239-81.
    • (2003) Mach Learn , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 43
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett 2006;27:861-74.
    • (2006) Pattern Recogn Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 44
    • 84940399627 scopus 로고    scopus 로고
    • Package 'e1071'. Vienna, Austria: Technische Universität, Department of Statistics, 14 February 2012
    • accessed 14 Apr
    • Dimitriadou E, Hornik K, Leisch F, et al. Package 'e1071'. Vienna, Austria: Technische Universität, Department of Statistics, 14 February 2012. http://cran.r-project.org/web/packages/e1071/e1071.pdf (accessed 14 Apr 2013).
    • (2013)
    • Dimitriadou, E.1    Hornik, K.2    Leisch, F.3
  • 45
    • 84883822654 scopus 로고    scopus 로고
    • Semi-supervised clinical text classification with Laplacian SVMs: an application to cancer case management
    • Garla V, Taylor C, Brandt C. Semi-supervised clinical text classification with Laplacian SVMs: an application to cancer case management. J Biomed Inform 2013;46:869-75.
    • (2013) J Biomed Inform , vol.46 , pp. 869-875
    • Garla, V.1    Taylor, C.2    Brandt, C.3
  • 46
    • 84872222809 scopus 로고    scopus 로고
    • Pneumonia identification using statistical feature selection
    • Bejan CA, Xia F, Vanderwende L, et al. Pneumonia identification using statistical feature selection. J Am Med Inform Assoc 2012;19:817-23.
    • (2012) J Am Med Inform Assoc , vol.19 , pp. 817-823
    • Bejan, C.A.1    Xia, F.2    Vanderwende, L.3
  • 47
    • 84882783040 scopus 로고    scopus 로고
    • Finding falls in ambulatory care clinical documents using statistical text mining
    • McCart JA, Berndt DJ, Jarman J, et al. Finding falls in ambulatory care clinical documents using statistical text mining. J Am Med Inform Assoc 2013;20:906-14.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 906-914
    • McCart, J.A.1    Berndt, D.J.2    Jarman, J.3
  • 48
    • 84882772479 scopus 로고    scopus 로고
    • Use of a support vector machine for categorizing free-text notes: assessment of accuracy across two institutions
    • Wright A, McCoy AB, Henkin S, et al. Use of a support vector machine for categorizing free-text notes: assessment of accuracy across two institutions. J Am Med Inform Assoc 2013;20:887-90.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 887-890
    • Wright, A.1    McCoy, A.B.2    Henkin, S.3
  • 49
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Taipei, Taiwan: Department of Computer Science, National Taiwan University, accessed 14 Apr 2013
    • Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification. Taipei, Taiwan: Department of Computer Science, National Taiwan University, 2010. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (accessed 14 Apr 2013).
    • (2010)
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3
  • 50
    • 84865991155 scopus 로고    scopus 로고
    • Ontology-guided feature engineering for clinical text classification
    • Garla VN, Brandt C. Ontology-guided feature engineering for clinical text classification. J Biomed Inform 2012;45:992-8.
    • (2012) J Biomed Inform , vol.45 , pp. 992-998
    • Garla, V.N.1    Brandt, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.