메뉴 건너뛰기




Volumn , Issue , 2015, Pages 509-518

Stress response factors as hub-regulators of microRNA biogenesis: implication to the diseased heart

Author keywords

cardiac pathophysiology; hub mechanisms; miRNAs biogenesis; stress response

Indexed keywords

MICRORNA;

EID: 84984600083     PISSN: 02636484     EISSN: 10990844     Source Type: Journal    
DOI: 10.1002/cbf.3151     Document Type: Review
Times cited : (4)

References (162)
  • 2
    • 80053205337 scopus 로고    scopus 로고
    • MicroRNAs: new players in cardiac injury and protection
    • Kukreja RC, Yin C, Salloum FN. MicroRNAs: new players in cardiac injury and protection. Mol Pharmacol 2011; 80: 558–564.
    • (2011) Mol Pharmacol , vol.80 , pp. 558-564
    • Kukreja, R.C.1    Yin, C.2    Salloum, F.N.3
  • 3
    • 84885172932 scopus 로고    scopus 로고
    • Regulation of cardiac and renal ischemia-reperfusion injury by microRNAs
    • Lorenzen JM, Batkai S, Thum T. Regulation of cardiac and renal ischemia-reperfusion injury by microRNAs. Free Radic Biol Med 2013; 64: 78–84.
    • (2013) Free Radic Biol Med , vol.64 , pp. 78-84
    • Lorenzen, J.M.1    Batkai, S.2    Thum, T.3
  • 5
    • 84903166837 scopus 로고    scopus 로고
    • MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease
    • Olson EN. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 2014; 6: 239ps33.
    • (2014) Sci Transl Med , vol.6 , pp. 239
    • Olson, E.N.1
  • 7
    • 78751660177 scopus 로고    scopus 로고
    • Pervasive roles of microRNAs in cardiovascular biology
    • Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469: 336–342.
    • (2011) Nature , vol.469 , pp. 336-342
    • Small, E.M.1    Olson, E.N.2
  • 8
    • 79957631904 scopus 로고    scopus 로고
    • The role of microRNA in modulating myocardial ischemia-reperfusion injury
    • Ye Y, Perez-Polo JR, Qian J, Birnbaum Y. The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics 2011; 43: 534–542.
    • (2011) Physiol Genomics , vol.43 , pp. 534-542
    • Ye, Y.1    Perez-Polo, J.R.2    Qian, J.3    Birnbaum, Y.4
  • 9
    • 77955658952 scopus 로고    scopus 로고
    • MicroRNA expression and function in cardiac ischemic injury
    • Yu S, Li G. MicroRNA expression and function in cardiac ischemic injury. J Cardiovasc Transl Res 2010; 3: 241–245.
    • (2010) J Cardiovasc Transl Res , vol.3 , pp. 241-245
    • Yu, S.1    Li, G.2
  • 10
    • 84860145591 scopus 로고    scopus 로고
    • Role of microRNAs in the reperfused myocardium towards post-infarct remodelling
    • Zhu H, Fan GC. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res 2012; 94: 284–292.
    • (2012) Cardiovasc Res , vol.94 , pp. 284-292
    • Zhu, H.1    Fan, G.C.2
  • 12
    • 34147095310 scopus 로고    scopus 로고
    • The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2
    • Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 2007; 13: 486–491.
    • (2007) Nat Med , vol.13 , pp. 486-491
    • Yang, B.1    Lin, H.2    Xiao, J.3
  • 13
    • 70849115884 scopus 로고    scopus 로고
    • MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection
    • Lu Y, Zhang Y, Shan H, et al. MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection. Cardiovasc Res 2009; 84: 434–441.
    • (2009) Cardiovasc Res , vol.84 , pp. 434-441
    • Lu, Y.1    Zhang, Y.2    Shan, H.3
  • 14
    • 79952612217 scopus 로고    scopus 로고
    • Role of miR-1 and miR-133a in myocardial ischemic postconditioning
    • He B, Xiao J, Ren AJ, et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci 2011; 18: 22.
    • (2011) J Biomed Sci , vol.18 , pp. 22
    • He, B.1    Xiao, J.2    Ren, A.J.3
  • 15
    • 84870614734 scopus 로고    scopus 로고
    • miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models
    • Pan Z, Sun X, Ren J, et al. miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models. PLoS One 2012; 7: e50515.
    • (2012) PLoS One , vol.7
    • Pan, Z.1    Sun, X.2    Ren, J.3
  • 16
    • 84863114983 scopus 로고    scopus 로고
    • Role of miR-21 in the pathogenesis of atrial fibrosis
    • Adam O, Lohfelm B, Thum T, et al. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol 2012; 107: 278.
    • (2012) Basic Res Cardiol , vol.107 , pp. 278
    • Adam, O.1    Lohfelm, B.2    Thum, T.3
  • 17
    • 84871569496 scopus 로고    scopus 로고
    • Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure
    • Cardin S, Guasch E, Luo X, et al. Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ Arrhythm Electrophysiol 2012; 5: 1027–1035.
    • (2012) Circ Arrhythm Electrophysiol , vol.5 , pp. 1027-1035
    • Cardin, S.1    Guasch, E.2    Luo, X.3
  • 18
    • 70350353082 scopus 로고    scopus 로고
    • MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction
    • Dong S, Cheng Y, Yang J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 2009; 284: 29514–29525.
    • (2009) J Biol Chem , vol.284 , pp. 29514-29525
    • Dong, S.1    Cheng, Y.2    Yang, J.3
  • 19
    • 77954797933 scopus 로고    scopus 로고
    • Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4
    • Cheng Y, Zhu P, Yang J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 2010; 87: 431–439.
    • (2010) Cardiovasc Res , vol.87 , pp. 431-439
    • Cheng, Y.1    Zhu, P.2    Yang, J.3
  • 20
    • 84866751141 scopus 로고    scopus 로고
    • Modulation of microRNA 20b with resveratrol and longevinex is linked with their potent anti-angiogenic action in the ischaemic myocardium and synergestic effects of resveratrol and gamma-tocotrienol
    • Mukhopadhyay P, Das S, Ahsan MK, Otani H, Das DK. Modulation of microRNA 20b with resveratrol and longevinex is linked with their potent anti-angiogenic action in the ischaemic myocardium and synergestic effects of resveratrol and gamma-tocotrienol. J Cell Mol Med 2012; 16: 2504–2517.
    • (2012) J Cell Mol Med , vol.16 , pp. 2504-2517
    • Mukhopadhyay, P.1    Das, S.2    Ahsan, M.K.3    Otani, H.4    Das, D.K.5
  • 22
    • 78049432896 scopus 로고    scopus 로고
    • Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice
    • Patrick DM, Montgomery RL, Qi X, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest 2010; 120: 3912–3916.
    • (2010) J Clin Invest , vol.120 , pp. 3912-3916
    • Patrick, D.M.1    Montgomery, R.L.2    Qi, X.3
  • 24
    • 84865439215 scopus 로고    scopus 로고
    • MicroRNA-24 regulates cardiac fibrosis after myocardial infarction
    • Wang J, Huang W, Xu R, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med 2012; 16: 2150–2160.
    • (2012) J Cell Mol Med , vol.16 , pp. 2150-2160
    • Wang, J.1    Huang, W.2    Xu, R.3
  • 25
    • 51349141401 scopus 로고    scopus 로고
    • Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
    • van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 2008; 105: 13027–13032.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 13027-13032
    • van Rooij, E.1    Sutherland, L.B.2    Thatcher, J.E.3
  • 26
    • 77954766181 scopus 로고    scopus 로고
    • Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury
    • Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res 2010; 87: 535–544.
    • (2010) Cardiovasc Res , vol.87 , pp. 535-544
    • Ye, Y.1    Hu, Z.2    Lin, Y.3    Zhang, C.4    Perez-Polo, J.R.5
  • 28
    • 79961095592 scopus 로고    scopus 로고
    • Biogenesis and regulation of cardiovascular microRNAs
    • Bauersachs J, Thum T. Biogenesis and regulation of cardiovascular microRNAs. Circ Res 2011; 109: 334–347.
    • (2011) Circ Res , vol.109 , pp. 334-347
    • Bauersachs, J.1    Thum, T.2
  • 29
    • 77952675374 scopus 로고    scopus 로고
    • ER stress in cardiovascular disease
    • Minamino T, Kitakaze M. ER stress in cardiovascular disease. J Mol Cell Cardiol 2010; 48: 1105–1110.
    • (2010) J Mol Cell Cardiol , vol.48 , pp. 1105-1110
    • Minamino, T.1    Kitakaze, M.2
  • 30
    • 78349265743 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease
    • Minamino T, Komuro I, Kitakaze M. Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res 2010; 107: 1071–1082.
    • (2010) Circ Res , vol.107 , pp. 1071-1082
    • Minamino, T.1    Komuro, I.2    Kitakaze, M.3
  • 33
    • 84957943347 scopus 로고    scopus 로고
    • Role of Nox inhibitors plumbagin, ML090 and gp91ds-tat peptide on homocysteine thiolactone induced blood vessel dysfunction
    • May 22
    • Smith R, Kruzliak P, Adamcikova Z, Zulli A. Role of Nox inhibitors plumbagin, ML090 and gp91ds-tat peptide on homocysteine thiolactone induced blood vessel dysfunction. Clin Exp Pharmacol Physiol 2015 May 22. doi:10.1111/1440-1681.12427.
    • (2015) Clin Exp Pharmacol Physiol
    • Smith, R.1    Kruzliak, P.2    Adamcikova, Z.3    Zulli, A.4
  • 35
    • 0141843656 scopus 로고    scopus 로고
    • The nuclear RNase III Drosha initiates microRNA processing
    • Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–419.
    • (2003) Nature , vol.425 , pp. 415-419
    • Lee, Y.1    Ahn, C.2    Han, J.3
  • 36
    • 33749984008 scopus 로고    scopus 로고
    • Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing
    • Yeom KH, Lee Y, Han J, Suh MR, Kim VN. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 2006; 34: 4622–4629.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4622-4629
    • Yeom, K.H.1    Lee, Y.2    Han, J.3    Suh, M.R.4    Kim, V.N.5
  • 37
    • 10644234841 scopus 로고    scopus 로고
    • The Drosha-DGCR8 complex in primary microRNA processing
    • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18: 3016–3027.
    • (2004) Genes Dev , vol.18 , pp. 3016-3027
    • Han, J.1    Lee, Y.2    Yeom, K.H.3    Kim, Y.K.4    Jin, H.5    Kim, V.N.6
  • 39
    • 0037009364 scopus 로고    scopus 로고
    • MicroRNA maturation: stepwise processing and subcellular localization
    • Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21: 4663–4670.
    • (2002) EMBO J , vol.21 , pp. 4663-4670
    • Lee, Y.1    Jeon, K.2    Lee, J.T.3    Kim, S.4    Kim, V.N.5
  • 41
    • 0035905766 scopus 로고    scopus 로고
    • Role for a bidentate ribonuclease in the initiation step of RNA interference
    • Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366.
    • (2001) Nature , vol.409 , pp. 363-366
    • Bernstein, E.1    Caudy, A.A.2    Hammond, S.M.3    Hannon, G.J.4
  • 42
    • 0347361541 scopus 로고    scopus 로고
    • Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs
    • Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17: 3011–3016.
    • (2003) Genes Dev , vol.17 , pp. 3011-3016
    • Yi, R.1    Qin, Y.2    Macara, I.G.3    Cullen, B.R.4
  • 43
    • 78751477191 scopus 로고    scopus 로고
    • Gene silencing by microRNAs: contributions of translational repression and mRNA decay
    • Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99–110.
    • (2011) Nat Rev Genet , vol.12 , pp. 99-110
    • Huntzinger, E.1    Izaurralde, E.2
  • 44
    • 84858446579 scopus 로고    scopus 로고
    • MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship
    • Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012; 13: 271–282.
    • (2012) Nat Rev Genet , vol.13 , pp. 271-282
    • Pasquinelli, A.E.1
  • 45
    • 84858379476 scopus 로고    scopus 로고
    • MicroRNAs in stress signaling and human disease
    • Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell 2012; 148: 1172–1187.
    • (2012) Cell , vol.148 , pp. 1172-1187
    • Mendell, J.T.1    Olson, E.N.2
  • 46
    • 77953957633 scopus 로고    scopus 로고
    • A coding-independent function of gene and pseudogene mRNAs regulates tumour biology
    • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.
    • (2010) Nature , vol.465 , pp. 1033-1038
    • Poliseno, L.1    Salmena, L.2    Zhang, J.3    Carver, B.4    Haveman, W.J.5    Pandolfi, P.P.6
  • 47
    • 79961170994 scopus 로고    scopus 로고
    • A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?
    • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011; 146: 353–358.
    • (2011) Cell , vol.146 , pp. 353-358
    • Salmena, L.1    Poliseno, L.2    Tay, Y.3    Kats, L.4    Pandolfi, P.P.5
  • 48
    • 84875369248 scopus 로고    scopus 로고
    • Circular RNAs are a large class of animal RNAs with regulatory potency
    • Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495: 333–338.
    • (2013) Nature , vol.495 , pp. 333-338
    • Memczak, S.1    Jens, M.2    Elefsinioti, A.3
  • 49
    • 84895740923 scopus 로고    scopus 로고
    • MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex
    • Cheng TL, Wang Z, Liao Q, et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell 2014; 28: 547–560.
    • (2014) Dev Cell , vol.28 , pp. 547-560
    • Cheng, T.L.1    Wang, Z.2    Liao, Q.3
  • 50
    • 0026747761 scopus 로고
    • Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA
    • Lewis JD, Meehan RR, Henzel WJ, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 1992; 69: 905–914.
    • (1992) Cell , vol.69 , pp. 905-914
    • Lewis, J.D.1    Meehan, R.R.2    Henzel, W.J.3
  • 51
    • 0027495467 scopus 로고
    • Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2
    • Nan X, Meehan RR, Bird A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 1993; 21: 4886–4892.
    • (1993) Nucleic Acids Res , vol.21 , pp. 4886-4892
    • Nan, X.1    Meehan, R.R.2    Bird, A.3
  • 52
    • 0032574977 scopus 로고    scopus 로고
    • Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex
    • Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393: 386–389.
    • (1998) Nature , vol.393 , pp. 386-389
    • Nan, X.1    Ng, H.H.2    Johnson, C.A.3
  • 53
    • 79955538772 scopus 로고    scopus 로고
    • In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system
    • Diaz de Leon-Guerrero S, Pedraza-Alva G, Perez-Martinez L. In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur J Neurosci 2011; 33: 1563–1574.
    • (2011) Eur J Neurosci , vol.33 , pp. 1563-1574
    • Diaz de Leon-Guerrero, S.1    Pedraza-Alva, G.2    Perez-Martinez, L.3
  • 54
    • 84887214395 scopus 로고    scopus 로고
    • Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition
    • Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 2013; 23: 1256–1269.
    • (2013) Cell Res , vol.23 , pp. 1256-1269
    • Maunakea, A.K.1    Chepelev, I.2    Cui, K.3    Zhao, K.4
  • 55
    • 29144447632 scopus 로고    scopus 로고
    • Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2
    • Young JI, Hong EP, Castle JC, et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 2005; 102: 17551–17558.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 17551-17558
    • Young, J.I.1    Hong, E.P.2    Castle, J.C.3
  • 56
    • 73849097618 scopus 로고    scopus 로고
    • Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis
    • Bracaglia G, Conca B, Bergo A, et al. Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep 2009; 10: 1327–1333.
    • (2009) EMBO Rep , vol.10 , pp. 1327-1333
    • Bracaglia, G.1    Conca, B.2    Bergo, A.3
  • 57
    • 35648978121 scopus 로고    scopus 로고
    • The story of Rett syndrome: from clinic to neurobiology
    • Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron 2007; 56: 422–437.
    • (2007) Neuron , vol.56 , pp. 422-437
    • Chahrour, M.1    Zoghbi, H.Y.2
  • 58
    • 77953533210 scopus 로고    scopus 로고
    • Elevated expression of MeCP2 in cardiac and skeletal tissues is detrimental for normal development
    • Alvarez-Saavedra M, Carrasco L, Sura-Trueba S, et al. Elevated expression of MeCP2 in cardiac and skeletal tissues is detrimental for normal development. Hum Mol Genet 2010; 19: 2177–2190.
    • (2010) Hum Mol Genet , vol.19 , pp. 2177-2190
    • Alvarez-Saavedra, M.1    Carrasco, L.2    Sura-Trueba, S.3
  • 59
    • 83655193397 scopus 로고    scopus 로고
    • Pathogenesis of lethal cardiac arrhythmias in Mecp2 mutant mice: implication for therapy in Rett syndrome
    • McCauley MD, Wang T, Mike E, et al. Pathogenesis of lethal cardiac arrhythmias in Mecp2 mutant mice: implication for therapy in Rett syndrome. Sci Transl Med 2011; 3: 113ra125.
    • (2011) Sci Transl Med , vol.3 , pp. 113-125
    • McCauley, M.D.1    Wang, T.2    Mike, E.3
  • 60
    • 33646377640 scopus 로고    scopus 로고
    • Cardiac disease and Rett syndrome
    • Acampa M, Guideri F. Cardiac disease and Rett syndrome. Arch Dis Child 2006; 91: 440–443.
    • (2006) Arch Dis Child , vol.91 , pp. 440-443
    • Acampa, M.1    Guideri, F.2
  • 61
    • 84856413303 scopus 로고    scopus 로고
    • Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8
    • Wada T, Kikuchi J, Furukawa Y. Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8. EMBO Rep 2012; 13: 142–149.
    • (2012) EMBO Rep , vol.13 , pp. 142-149
    • Wada, T.1    Kikuchi, J.2    Furukawa, Y.3
  • 62
    • 57749170458 scopus 로고    scopus 로고
    • The many roles of histone deacetylases in development and physiology: implications for disease and therapy
    • Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009; 10: 32–42.
    • (2009) Nat Rev Genet , vol.10 , pp. 32-42
    • Haberland, M.1    Montgomery, R.L.2    Olson, E.N.3
  • 63
    • 84883242339 scopus 로고    scopus 로고
    • Acetylation of drosha on the N-terminus inhibits its degradation by ubiquitination
    • Tang X, Wen S, Zheng D, et al. Acetylation of drosha on the N-terminus inhibits its degradation by ubiquitination. PLoS One 2013; 8: e72503.
    • (2013) PLoS One , vol.8
    • Tang, X.1    Wen, S.2    Zheng, D.3
  • 64
    • 84863116288 scopus 로고    scopus 로고
    • Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing
    • Barr I, Smith AT, Chen Y, Senturia R, Burstyn JN, Guo F. Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing. Proc Natl Acad Sci U S A 2012; 109: 1919–1924.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 1919-1924
    • Barr, I.1    Smith, A.T.2    Chen, Y.3    Senturia, R.4    Burstyn, J.N.5    Guo, F.6
  • 66
    • 84863624496 scopus 로고    scopus 로고
    • Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8
    • Senturia R, Laganowsky A, Barr I, Scheidemantle BD, Guo F. Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8. PLoS One 2012; 7: e39688.
    • (2012) PLoS One , vol.7
    • Senturia, R.1    Laganowsky, A.2    Barr, I.3    Scheidemantle, B.D.4    Guo, F.5
  • 67
    • 84893507863 scopus 로고    scopus 로고
    • Processing of microRNA primary transcripts requires heme in mammalian cells
    • Weitz SH, Gong M, Barr I, Weiss S, Guo F. Processing of microRNA primary transcripts requires heme in mammalian cells. Proc Natl Acad Sci U S A 2014; 111: 1861–1866.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 1861-1866
    • Weitz, S.H.1    Gong, M.2    Barr, I.3    Weiss, S.4    Guo, F.5
  • 68
    • 84899852226 scopus 로고    scopus 로고
    • Effects of serum bilirubin on atherosclerotic processes
    • Kang SJ, Lee C, Kruzliak P. Effects of serum bilirubin on atherosclerotic processes. Ann Med 2014; 46: 138–47.
    • (2014) Ann Med , vol.46 , pp. 138-147
    • Kang, S.J.1    Lee, C.2    Kruzliak, P.3
  • 69
    • 0035200007 scopus 로고    scopus 로고
    • Role of heme oxygenase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection
    • Foresti R, Goatly H, Green CJ, Motterlini R. Role of heme oxygenase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection. Am J Physiol Heart Circ Physiol 2001; 281: H1976–1984.
    • (2001) Am J Physiol Heart Circ Physiol , vol.281 , pp. 1976-1984
    • Foresti, R.1    Goatly, H.2    Green, C.J.3    Motterlini, R.4
  • 70
    • 84880020046 scopus 로고    scopus 로고
    • Beneficial effect of prolonged heme oxygenase 1 activation in a rat model of chronic heart failure
    • Collino M, Pini A, Mugelli N, et al. Beneficial effect of prolonged heme oxygenase 1 activation in a rat model of chronic heart failure. Dis Model Mech 2013; 6: 1012–1020.
    • (2013) Dis Model Mech , vol.6 , pp. 1012-1020
    • Collino, M.1    Pini, A.2    Mugelli, N.3
  • 71
    • 65649096232 scopus 로고    scopus 로고
    • The heme oxygenase inducer hemin protects against cardiac dysfunction and ventricular fibrillation in ischaemic/reperfused rat hearts: role of connexin 43
    • Lakkisto P, Csonka C, Fodor G, et al. The heme oxygenase inducer hemin protects against cardiac dysfunction and ventricular fibrillation in ischaemic/reperfused rat hearts: role of connexin 43. Scand J Clin Lab Invest 2009; 69: 209–218.
    • (2009) Scand J Clin Lab Invest , vol.69 , pp. 209-218
    • Lakkisto, P.1    Csonka, C.2    Fodor, G.3
  • 72
    • 81755166902 scopus 로고    scopus 로고
    • Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs
    • Kozakowska M, Ciesla M, Stefanska A, et al. Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs. Antioxid Redox Signal 2012; 16: 113–127.
    • (2012) Antioxid Redox Signal , vol.16 , pp. 113-127
    • Kozakowska, M.1    Ciesla, M.2    Stefanska, A.3
  • 73
    • 84861434708 scopus 로고    scopus 로고
    • Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8
    • Gong M, Chen Y, Senturia R, Ulgherait M, Faller M, Guo F. Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8. Protein Sci 2012; 21: 797–808.
    • (2012) Protein Sci , vol.21 , pp. 797-808
    • Gong, M.1    Chen, Y.2    Senturia, R.3    Ulgherait, M.4    Faller, M.5    Guo, F.6
  • 74
    • 45349107435 scopus 로고    scopus 로고
    • Stimuli-dependent cleavage of Dicer during apoptosis
    • Matskevich AA, Moelling K. Stimuli-dependent cleavage of Dicer during apoptosis. Biochem J 2008; 412: 527–534.
    • (2008) Biochem J , vol.412 , pp. 527-534
    • Matskevich, A.A.1    Moelling, K.2
  • 75
    • 67349200238 scopus 로고    scopus 로고
    • Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1
    • Ghodgaonkar MM, Shah RG, Kandan-Kulangara F, et al. Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1. Cell Death Differ 2009; 16: 858–868.
    • (2009) Cell Death Differ , vol.16 , pp. 858-868
    • Ghodgaonkar, M.M.1    Shah, R.G.2    Kandan-Kulangara, F.3
  • 76
    • 84904528236 scopus 로고    scopus 로고
    • Hypoxia represses microRNA biogenesis proteins in breast cancer cells
    • Bandara V, Michael MZ, Gleadle JM. Hypoxia represses microRNA biogenesis proteins in breast cancer cells. BMC Cancer 2014; 14: 533.
    • (2014) BMC Cancer , vol.14 , pp. 533
    • Bandara, V.1    Michael, M.Z.2    Gleadle, J.M.3
  • 77
    • 84865213578 scopus 로고    scopus 로고
    • Functional importance of Dicer protein in the adaptive cellular response to hypoxia
    • Ho JJD, Metcalf JL, Yan MS, et al. Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J Biol Chem 2012; 287: 29003–29020.
    • (2012) J Biol Chem , vol.287 , pp. 29003-29020
    • Ho, J.J.D.1    Metcalf, J.L.2    Yan, M.S.3
  • 78
    • 60949102130 scopus 로고    scopus 로고
    • Dicer is regulated by cellular stresses and interferons
    • Wiesen JL, Tomasi TB. Dicer is regulated by cellular stresses and interferons. Mol Immunol 2009; 46: 1222–1228.
    • (2009) Mol Immunol , vol.46 , pp. 1222-1228
    • Wiesen, J.L.1    Tomasi, T.B.2
  • 79
    • 33744973775 scopus 로고    scopus 로고
    • Relief of microRNA-mediated translational repression in human cells subjected to stress
    • Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125: 1111–1124.
    • (2006) Cell , vol.125 , pp. 1111-1124
    • Bhattacharyya, S.N.1    Habermacher, R.2    Martine, U.3    Closs, E.I.4    Filipowicz, W.5
  • 80
    • 84885188064 scopus 로고    scopus 로고
    • Hypoxia: a master regulator of microRNA biogenesis and activity
    • Nallamshetty S, Chan SY, Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 2013; 64: 20–30.
    • (2013) Free Radic Biol Med , vol.64 , pp. 20-30
    • Nallamshetty, S.1    Chan, S.Y.2    Loscalzo, J.3
  • 81
    • 41149147013 scopus 로고    scopus 로고
    • Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure
    • Chen JF, Murchison EP, Tang R, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2008; 105: 2111–2116.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 2111-2116
    • Chen, J.F.1    Murchison, E.P.2    Tang, R.3
  • 82
    • 55249125659 scopus 로고    scopus 로고
    • Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling
    • da Costa Martins PA, Bourajjaj M, Gladka M, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 2008; 118: 1567–1576.
    • (2008) Circulation , vol.118 , pp. 1567-1576
    • da Costa Martins, P.A.1    Bourajjaj, M.2    Gladka, M.3
  • 83
    • 70349254444 scopus 로고    scopus 로고
    • Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure
    • Rao PK, Toyama Y, Chiang HR, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 2009; 105: 585–594.
    • (2009) Circ Res , vol.105 , pp. 585-594
    • Rao, P.K.1    Toyama, Y.2    Chiang, H.R.3
  • 84
    • 58149487199 scopus 로고
    • Human Dicer C-terminus functions as a 5-lipoxygenase binding domain
    • Dincbas-Renqvist V, Pepin G, Rakonjac M, et al. Human Dicer C-terminus functions as a 5-lipoxygenase binding domain. Biochim Biophys Acta 1789; 2009: 99–108.
    • (1789) Biochim Biophys Acta , vol.2009 , pp. 99-108
    • Dincbas-Renqvist, V.1    Pepin, G.2    Rakonjac, M.3
  • 85
    • 77449140340 scopus 로고    scopus 로고
    • Cardioprotective effect of 5-lipoxygenase gene (ALOX5) silencing in ischemia-reperfusion
    • Lisovyy OO, Dosenko VE, Nagibin VS, et al. Cardioprotective effect of 5-lipoxygenase gene (ALOX5) silencing in ischemia-reperfusion. Acta Biochim Pol 2009; 56: 687–694.
    • (2009) Acta Biochim Pol , vol.56 , pp. 687-694
    • Lisovyy, O.O.1    Dosenko, V.E.2    Nagibin, V.S.3
  • 86
    • 23844501276 scopus 로고    scopus 로고
    • Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner
    • Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 2005; 94: 896–905.
    • (2005) J Neurochem , vol.94 , pp. 896-905
    • Lugli, G.1    Larson, J.2    Martone, M.E.3    Jones, Y.4    Smalheiser, N.R.5
  • 87
    • 28844468063 scopus 로고    scopus 로고
    • Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model
    • Khalil PN, Neuhof C, Huss R, et al. Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model. Eur J Pharmacol 2005; 528: 124–131.
    • (2005) Eur J Pharmacol , vol.528 , pp. 124-131
    • Khalil, P.N.1    Neuhof, C.2    Huss, R.3
  • 88
    • 84892441560 scopus 로고    scopus 로고
    • Altered expression of calcineurin, calpain, calpastatin and HMWCaMBP in cardiac cells following ischemia and reperfusion
    • Parameswaran S, Sharma RK. Altered expression of calcineurin, calpain, calpastatin and HMWCaMBP in cardiac cells following ischemia and reperfusion. Biochem Biophys Res Commun 2014; 443: 604–609.
    • (2014) Biochem Biophys Res Commun , vol.443 , pp. 604-609
    • Parameswaran, S.1    Sharma, R.K.2
  • 89
    • 84874433785 scopus 로고    scopus 로고
    • A new calpain inhibitor protects left ventricular dysfunction induced by mild ischemia-reperfusion in in situ rat hearts
    • Takeshita D, Tanaka M, Mitsuyama S, et al. A new calpain inhibitor protects left ventricular dysfunction induced by mild ischemia-reperfusion in in situ rat hearts. J Physiol Sci 2013; 63: 113–123.
    • (2013) J Physiol Sci , vol.63 , pp. 113-123
    • Takeshita, D.1    Tanaka, M.2    Mitsuyama, S.3
  • 90
    • 77951712353 scopus 로고    scopus 로고
    • HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells
    • Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 2010; 21: 1462–1469.
    • (2010) Mol Biol Cell , vol.21 , pp. 1462-1469
    • Johnston, M.1    Geoffroy, M.C.2    Sobala, A.3    Hay, R.4    Hutvagner, G.5
  • 91
    • 67749145232 scopus 로고    scopus 로고
    • Hsp90 regulates the function of argonaute 2 and its recruitment to stress granules and P-bodies
    • Pare JM, Tahbaz N, Lopez-Orozco J, LaPointe P, Lasko P, Hobman TC. Hsp90 regulates the function of argonaute 2 and its recruitment to stress granules and P-bodies. Mol Biol Cell 2009; 20: 3273–3284.
    • (2009) Mol Biol Cell , vol.20 , pp. 3273-3284
    • Pare, J.M.1    Tahbaz, N.2    Lopez-Orozco, J.3    LaPointe, P.4    Lasko, P.5    Hobman, T.C.6
  • 92
    • 0034862016 scopus 로고    scopus 로고
    • Heat shock proteins and cardiac protection
    • Latchman DS. Heat shock proteins and cardiac protection. Cardiovasc Res 2001; 51: 637–646.
    • (2001) Cardiovasc Res , vol.51 , pp. 637-646
    • Latchman, D.S.1
  • 93
    • 0141819958 scopus 로고    scopus 로고
    • The stress response: implications for the clinical development of hsp90 inhibitors
    • Whitesell L, Bagatell R, Falsey R. The stress response: implications for the clinical development of hsp90 inhibitors. Curr Cancer Drug Targets 2003; 3: 349–358.
    • (2003) Curr Cancer Drug Targets , vol.3 , pp. 349-358
    • Whitesell, L.1    Bagatell, R.2    Falsey, R.3
  • 94
    • 70349634806 scopus 로고    scopus 로고
    • Autophagy maintains cardiac function in the starved adult
    • Takemura G, Kanamori H, Goto K, et al. Autophagy maintains cardiac function in the starved adult. Autophagy 2009; 5: 1034–1036.
    • (2009) Autophagy , vol.5 , pp. 1034-1036
    • Takemura, G.1    Kanamori, H.2    Goto, K.3
  • 95
    • 34249714158 scopus 로고    scopus 로고
    • The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
    • Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007; 13: 619–624.
    • (2007) Nat Med , vol.13 , pp. 619-624
    • Nakai, A.1    Yamaguchi, O.2    Takeda, T.3
  • 97
    • 84877343518 scopus 로고    scopus 로고
    • Autophagy selectively regulates miRNA homeostasis
    • Gibbings D, Mostowy S, Voinnet O. Autophagy selectively regulates miRNA homeostasis. Autophagy 2013; 9: 781–783.
    • (2013) Autophagy , vol.9 , pp. 781-783
    • Gibbings, D.1    Mostowy, S.2    Voinnet, O.3
  • 98
    • 84877342029 scopus 로고    scopus 로고
    • Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity
    • Dutta D, Xu J, Kim JS, Dunn WA, Jr, Leeuwenburgh C. Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy 2013; 9: 328–344.
    • (2013) Autophagy , vol.9 , pp. 328-344
    • Dutta, D.1    Xu, J.2    Kim, J.S.3    Dunn, W.A.4    Leeuwenburgh, C.5
  • 99
    • 84905504653 scopus 로고    scopus 로고
    • Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death
    • Skommer J, Rana I, Marques FZ, Zhu W, Du Z, Charchar FJ. Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis 2014; 5 e1325.
    • (2014) Cell Death Dis , vol.5
    • Skommer, J.1    Rana, I.2    Marques, F.Z.3    Zhu, W.4    Du, Z.5    Charchar, F.J.6
  • 100
    • 77956396096 scopus 로고    scopus 로고
    • Autophagy plays an important role in sunitinib-mediated cell death in H9c2 cardiac muscle cells
    • Zhao Y, Xue T, Yang X, et al. Autophagy plays an important role in sunitinib-mediated cell death in H9c2 cardiac muscle cells. Toxicol Appl Pharmacol 2010; 248: 20–27.
    • (2010) Toxicol Appl Pharmacol , vol.248 , pp. 20-27
    • Zhao, Y.1    Xue, T.2    Yang, X.3
  • 101
    • 34447133404 scopus 로고    scopus 로고
    • Cardiac autophagy is a maladaptive response to hemodynamic stress
    • Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 2007; 117: 1782–1793.
    • (2007) J Clin Invest , vol.117 , pp. 1782-1793
    • Zhu, H.1    Tannous, P.2    Johnstone, J.L.3
  • 102
    • 79958071314 scopus 로고    scopus 로고
    • Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion
    • Kanamori H, Takemura G, Goto K, et al. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol 2011; 300: H2261–2271.
    • (2011) Am J Physiol Heart Circ Physiol , vol.300 , pp. 2261-2271
    • Kanamori, H.1    Takemura, G.2    Goto, K.3
  • 103
    • 79952775153 scopus 로고    scopus 로고
    • Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy
    • Cao DJ, Wang ZV, Battiprolu PK, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A 2011; 108: 4123–4128.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 4123-4128
    • Cao, D.J.1    Wang, Z.V.2    Battiprolu, P.K.3
  • 104
    • 84863192578 scopus 로고    scopus 로고
    • Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury
    • Ma X, Liu H, Foyil SR, et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 2012; 125: 3170–3181.
    • (2012) Circulation , vol.125 , pp. 3170-3181
    • Ma, X.1    Liu, H.2    Foyil, S.R.3
  • 105
    • 84876532060 scopus 로고    scopus 로고
    • Argonaute2 expression is post-transcriptionally coupled to microRNA abundance
    • Martinez NJ, Gregory RI. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 2013; 19: 605–612.
    • (2013) RNA , vol.19 , pp. 605-612
    • Martinez, N.J.1    Gregory, R.I.2
  • 107
    • 84912573574 scopus 로고    scopus 로고
    • Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies
    • Drews O, Taegtmeyer H. Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid Redox Signal 2014; 21: 2322–2343.
    • (2014) Antioxid Redox Signal , vol.21 , pp. 2322-2343
    • Drews, O.1    Taegtmeyer, H.2
  • 109
    • 84899918569 scopus 로고    scopus 로고
    • Proteasomal and lysosomal protein degradation and heart disease
    • Wang X, Robbins J. Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol 2014; 71: 16–24.
    • (2014) J Mol Cell Cardiol , vol.71 , pp. 16-24
    • Wang, X.1    Robbins, J.2
  • 110
    • 84873319952 scopus 로고    scopus 로고
    • The ubiquitin proteasome system and myocardial ischemia
    • Calise J, Powell SR. The ubiquitin proteasome system and myocardial ischemia. Am J Physiol Heart Circ Physiol 2013; 304: H337–349.
    • (2013) Am J Physiol Heart Circ Physiol , vol.304 , pp. 337-349
    • Calise, J.1    Powell, S.R.2
  • 111
    • 79960066418 scopus 로고    scopus 로고
    • Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy
    • Rau F, Freyermuth F, Fugier C, et al. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol 2011; 18: 840–845.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 840-845
    • Rau, F.1    Freyermuth, F.2    Fugier, C.3
  • 112
    • 47949100595 scopus 로고    scopus 로고
    • Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing
    • Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 2008; 14: 1539–1549.
    • (2008) RNA , vol.14 , pp. 1539-1549
    • Newman, M.A.1    Thomson, J.M.2    Hammond, S.M.3
  • 113
    • 70349820140 scopus 로고    scopus 로고
    • Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells
    • Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 2009; 16: 1021–1025.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 1021-1025
    • Hagan, J.P.1    Piskounova, E.2    Gregory, R.I.3
  • 114
    • 68749102148 scopus 로고    scopus 로고
    • TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation
    • Heo I, Joo C, Kim YK, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 2009; 138: 696–708.
    • (2009) Cell , vol.138 , pp. 696-708
    • Heo, I.1    Joo, C.2    Kim, Y.K.3
  • 115
    • 84887158295 scopus 로고    scopus 로고
    • Mechanisms of Lin28-mediated miRNA and mRNA regulation--a structural and functional perspective
    • Mayr F, Heinemann U. Mechanisms of Lin28-mediated miRNA and mRNA regulation--a structural and functional perspective. Int J Mol Sci 2013; 14: 16532–16553.
    • (2013) Int J Mol Sci , vol.14 , pp. 16532-16553
    • Mayr, F.1    Heinemann, U.2
  • 116
    • 33344460035 scopus 로고    scopus 로고
    • Regulation of splicing by MBNL and CELF family of RNA-binding protein
    • Ishiura S, Kino Y, Nezu Y, Onishi H, Ohno E, Sasagawa N. Regulation of splicing by MBNL and CELF family of RNA-binding protein. Acta Myol 2005; 24: 74–77.
    • (2005) Acta Myol , vol.24 , pp. 74-77
    • Ishiura, S.1    Kino, Y.2    Nezu, Y.3    Onishi, H.4    Ohno, E.5    Sasagawa, N.6
  • 117
    • 33644858553 scopus 로고    scopus 로고
    • The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing
    • Pascual M, Vicente M, Monferrer L, Artero R. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 2006; 74: 65–80.
    • (2006) Differentiation , vol.74 , pp. 65-80
    • Pascual, M.1    Vicente, M.2    Monferrer, L.3    Artero, R.4
  • 119
    • 58149492467 scopus 로고    scopus 로고
    • A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart
    • Kalsotra A, Xiao X, Ward AJ, et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc Natl Acad Sci U S A 2008; 105: 20333–20338.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 20333-20338
    • Kalsotra, A.1    Xiao, X.2    Ward, A.J.3
  • 120
    • 84899084487 scopus 로고    scopus 로고
    • Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development
    • Giudice J, Xia Z, Wang ET, et al. Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nat Commun 2014; 5: 3603.
    • (2014) Nat Commun , vol.5 , pp. 3603
    • Giudice, J.1    Xia, Z.2    Wang, E.T.3
  • 121
    • 77950658740 scopus 로고    scopus 로고
    • Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1
    • Koshelev M, Sarma S, Price RE, Wehrens XHT, Cooper TA. Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum Mol Genet 2010; 19: 1066–1075.
    • (2010) Hum Mol Genet , vol.19 , pp. 1066-1075
    • Koshelev, M.1    Sarma, S.2    Price, R.E.3    Wehrens, X.H.T.4    Cooper, T.A.5
  • 122
    • 33745248133 scopus 로고    scopus 로고
    • Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy
    • Lin X, Miller JW, Mankodi A, et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 2006; 15: 2087–2097.
    • (2006) Hum Mol Genet , vol.15 , pp. 2087-2097
    • Lin, X.1    Miller, J.W.2    Mankodi, A.3
  • 123
    • 1842529234 scopus 로고    scopus 로고
    • Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis
    • Timchenko NA, Patel R, Iakova P, Cai Z-J, Quan L, Timchenko LT. Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis. J Biol Chem 2004; 279: 13129–13139.
    • (2004) J Biol Chem , vol.279 , pp. 13129-13139
    • Timchenko, N.A.1    Patel, R.2    Iakova, P.3    Cai, Z.-J.4    Quan, L.5    Timchenko, L.T.6
  • 124
    • 34948826920 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress in myotonic dystrophy type 1 muscle
    • Ikezoe K, Nakamori M, Furuya H, et al. Endoplasmic reticulum stress in myotonic dystrophy type 1 muscle. Acta Neuropathol 2007; 114: 527–535.
    • (2007) Acta Neuropathol , vol.114 , pp. 527-535
    • Ikezoe, K.1    Nakamori, M.2    Furuya, H.3
  • 125
    • 36248932588 scopus 로고    scopus 로고
    • MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T
    • Warf MB, Berglund JA. MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. RNA 2007; 13: 2238–2251.
    • (2007) RNA , vol.13 , pp. 2238-2251
    • Warf, M.B.1    Berglund, J.A.2
  • 126
    • 84880781160 scopus 로고    scopus 로고
    • Altered Ca2+ homeostasis and endoplasmic reticulum stress in myotonic dystrophy type 1 muscle cells
    • Botta A, Malena A, Loro E, et al. Altered Ca2+ homeostasis and endoplasmic reticulum stress in myotonic dystrophy type 1 muscle cells. Genes (Basel) 2013; 4: 275–292.
    • (2013) Genes (Basel) , vol.4 , pp. 275-292
    • Botta, A.1    Malena, A.2    Loro, E.3
  • 127
    • 0036791530 scopus 로고    scopus 로고
    • Re-expression of fetal troponin isoforms in the postinfarction failing heart of the rat
    • Kim SH, Kim H-S, Lee M-M. Re-expression of fetal troponin isoforms in the postinfarction failing heart of the rat. Circ J 2002; 66: 959–964.
    • (2002) Circ J , vol.66 , pp. 959-964
    • Kim, S.H.1    Kim, H.-S.2    Lee, M.-M.3
  • 129
    • 84860367402 scopus 로고    scopus 로고
    • A-to-I editing of microRNAs: regulating the regulators?
    • Gommans WM. A-to-I editing of microRNAs: regulating the regulators? Semin Cell Dev Biol 2012; 23: 251–257.
    • (2012) Semin Cell Dev Biol , vol.23 , pp. 251-257
    • Gommans, W.M.1
  • 131
    • 30044443191 scopus 로고    scopus 로고
    • Modulation of microRNA processing and expression through RNA editing by ADAR deaminases
    • Yang W, Chendrimada TP, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 2006; 13: 13–21.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 13-21
    • Yang, W.1    Chendrimada, T.P.2    Wang, Q.3
  • 132
    • 84857394407 scopus 로고    scopus 로고
    • Tudor-SN and ADAR1 are components of cytoplasmic stress granules
    • Weissbach R, Scadden ADJ. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA 2012; 18: 462–471.
    • (2012) RNA , vol.18 , pp. 462-471
    • Weissbach, R.1    Scadden, A.D.J.2
  • 133
    • 1042289736 scopus 로고    scopus 로고
    • Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene
    • Wang Q, Miyakoda M, Yang W, et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 2004; 279: 4952–4961.
    • (2004) J Biol Chem , vol.279 , pp. 4952-4961
    • Wang, Q.1    Miyakoda, M.2    Yang, W.3
  • 134
    • 84869049922 scopus 로고    scopus 로고
    • IRE1, a double-edged sword in pre-miRNA slicing and cell death
    • Hassler J, Cao SS, Kaufman RJ. IRE1, a double-edged sword in pre-miRNA slicing and cell death. Dev Cell 2012; 23: 921–923.
    • (2012) Dev Cell , vol.23 , pp. 921-923
    • Hassler, J.1    Cao, S.S.2    Kaufman, R.J.3
  • 135
    • 84868525253 scopus 로고    scopus 로고
    • IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2
    • Upton JP, Wang L, Han D, et al. IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 2012; 338: 818–822.
    • (2012) Science , vol.338 , pp. 818-822
    • Upton, J.P.1    Wang, L.2    Han, D.3
  • 136
    • 80555127350 scopus 로고    scopus 로고
    • MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation
    • Suzuki HI, Arase M, Matsuyama H, et al. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 2011; 44: 424–436.
    • (2011) Mol Cell , vol.44 , pp. 424-436
    • Suzuki, H.I.1    Arase, M.2    Matsuyama, H.3
  • 138
    • 33748423869 scopus 로고    scopus 로고
    • Activation of endoplasmic reticulum stress response during the development of ischemic heart disease
    • Azfer A, Niu J, Rogers LM, Adamski FM, Kolattukudy PE. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 2006; 291: H1411–H1420.
    • (2006) Am J Physiol Heart Circ Physiol , vol.291 , pp. H1411-H1420
    • Azfer, A.1    Niu, J.2    Rogers, L.M.3    Adamski, F.M.4    Kolattukudy, P.E.5
  • 139
    • 78650371990 scopus 로고    scopus 로고
    • MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling
    • Liang J, Saad Y, Lei T, et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med 2010; 207: 2959–2973.
    • (2010) J Exp Med , vol.207 , pp. 2959-2973
    • Liang, J.1    Saad, Y.2    Lei, T.3
  • 140
    • 84865331455 scopus 로고    scopus 로고
    • Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy
    • Roy A, Kolattukudy PE. Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell Signal 2012; 24: 2123–2131.
    • (2012) Cell Signal , vol.24 , pp. 2123-2131
    • Roy, A.1    Kolattukudy, P.E.2
  • 141
    • 84862726271 scopus 로고    scopus 로고
    • MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy
    • Younce C, Kolattukudy P. MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol Biochem 2012; 30: 307–320.
    • (2012) Cell Physiol Biochem , vol.30 , pp. 307-320
    • Younce, C.1    Kolattukudy, P.2
  • 142
    • 77955891625 scopus 로고    scopus 로고
    • Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP
    • Younce CW, Wang K, Kolattukudy PE. Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP. Cardiovasc Res 2010; 87: 665–674.
    • (2010) Cardiovasc Res , vol.87 , pp. 665-674
    • Younce, C.W.1    Wang, K.2    Kolattukudy, P.E.3
  • 143
    • 82355184529 scopus 로고    scopus 로고
    • Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress
    • Qi D, Huang S, Miao R, et al. Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J Biol Chem 2011; 286: 41692–41700.
    • (2011) J Biol Chem , vol.286 , pp. 41692-41700
    • Qi, D.1    Huang, S.2    Miao, R.3
  • 144
    • 1842843860 scopus 로고    scopus 로고
    • Coupling endoplasmic reticulum stress to the cell death program
    • Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 2004; 11: 372–380.
    • (2004) Cell Death Differ , vol.11 , pp. 372-380
    • Rao, R.V.1    Ellerby, H.M.2    Bredesen, D.E.3
  • 145
    • 84866404328 scopus 로고    scopus 로고
    • Mature and immature microRNA ratios in cultured rat cardiomyocytes during anoxia-reoxygenation
    • Dosenko VE, Gurianova VL, Surova OV, Stroy DA, Moibenko AA. Mature and immature microRNA ratios in cultured rat cardiomyocytes during anoxia-reoxygenation. Exp Clin Cardiol 2012; 17: 84–87.
    • (2012) Exp Clin Cardiol , vol.17 , pp. 84-87
    • Dosenko, V.E.1    Gurianova, V.L.2    Surova, O.V.3    Stroy, D.A.4    Moibenko, A.A.5
  • 146
    • 84906329141 scopus 로고    scopus 로고
    • DNA damage modulates interactions between microRNAs and the 26S proteasome
    • Tsimokha AS, Kulichkova VA, Karpova EV, et al. DNA damage modulates interactions between microRNAs and the 26S proteasome. Oncotarget 2014; 5: 3555–3567.
    • (2014) Oncotarget , vol.5 , pp. 3555-3567
    • Tsimokha, A.S.1    Kulichkova, V.A.2    Karpova, E.V.3
  • 147
    • 84941748671 scopus 로고    scopus 로고
    • Does proteasome regulate the level of microRNA-1 in cardiomyocytes? Application to anoxia-reoxygenation
    • Gurianova V, Stroy D, Kruzliak P, Kyrichenko V, Moibenko A, Dosenko V. Does proteasome regulate the level of microRNA-1 in cardiomyocytes? Application to anoxia-reoxygenation. Mol Cell Biochem 2015; 404: 45–51.
    • (2015) Mol Cell Biochem , vol.404 , pp. 45-51
    • Gurianova, V.1    Stroy, D.2    Kruzliak, P.3    Kyrichenko, V.4    Moibenko, A.5    Dosenko, V.6
  • 148
    • 0031105922 scopus 로고    scopus 로고
    • Proteasome (prosome) associated endonuclease activity
    • Petit F, Jarrousse AS, Boissonnet G, et al. Proteasome (prosome) associated endonuclease activity. Mol Biol Rep 1997; 24: 113–117.
    • (1997) Mol Biol Rep , vol.24 , pp. 113-117
    • Petit, F.1    Jarrousse, A.S.2    Boissonnet, G.3
  • 149
    • 0030884937 scopus 로고    scopus 로고
    • Involvement of proteasomal subunits zeta and iota in RNA degradation
    • Petit F, Jarrousse AS, Dahlmann B et al. Involvement of proteasomal subunits zeta and iota in RNA degradation. Biochem J 1997; 326(Pt 1): 93–98.
    • (1997) Biochem J , vol.326 , pp. 93-98
    • Petit, F.1    Jarrousse, A.S.2    Dahlmann, B.3
  • 150
    • 0029199168 scopus 로고
    • Relationships between proteasomes and RNA
    • Schmid HP, Pouch MN, Petit F, et al. Relationships between proteasomes and RNA. Mol Biol Rep 1995; 21: 43–47.
    • (1995) Mol Biol Rep , vol.21 , pp. 43-47
    • Schmid, H.P.1    Pouch, M.N.2    Petit, F.3
  • 151
    • 1242295344 scopus 로고    scopus 로고
    • Biochemical identification of proteasome-associated endonuclease activity in sunflower
    • Ballut L, Petit F, Mouzeyar S, et al. Biochemical identification of proteasome-associated endonuclease activity in sunflower. Biochim Biophys Acta 2003; 1645: 30–39.
    • (2003) Biochim Biophys Acta , vol.1645 , pp. 30-39
    • Ballut, L.1    Petit, F.2    Mouzeyar, S.3
  • 153
    • 77953162604 scopus 로고    scopus 로고
    • 26S proteasome exhibits endoribonuclease activity controlled by extra-cellular stimuli
    • Kulichkova VA, Tsimokha AS, Fedorova OA, et al. 26S proteasome exhibits endoribonuclease activity controlled by extra-cellular stimuli. Cell Cycle 2010; 9: 840–849.
    • (2010) Cell Cycle , vol.9 , pp. 840-849
    • Kulichkova, V.A.1    Tsimokha, A.S.2    Fedorova, O.A.3
  • 154
    • 40849108663 scopus 로고    scopus 로고
    • Selective blockade of microRNA processing by Lin28
    • Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science 2008; 320: 97–100.
    • (2008) Science , vol.320 , pp. 97-100
    • Viswanathan, S.R.1    Daley, G.Q.2    Gregory, R.I.3
  • 155
    • 75749098853 scopus 로고    scopus 로고
    • MicroRNA function is globally suppressed in mouse oocytes and early embryos
    • Suh N, Baehner L, Moltzahn F, et al. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 2010; 20: 271–277.
    • (2010) Curr Biol , vol.20 , pp. 271-277
    • Suh, N.1    Baehner, L.2    Moltzahn, F.3
  • 157
    • 54049090410 scopus 로고    scopus 로고
    • Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice
    • Granger A, Abdullah I, Huebner F, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 2008; 22: 3549–3560.
    • (2008) FASEB J , vol.22 , pp. 3549-3560
    • Granger, A.1    Abdullah, I.2    Huebner, F.3
  • 158
    • 84901375234 scopus 로고    scopus 로고
    • Selective inhibition of class I but not class IIb histone deacetylases exerts cardiac protection from ischemia reperfusion
    • Aune SE, Herr DJ, Mani SK, Menick DR. Selective inhibition of class I but not class IIb histone deacetylases exerts cardiac protection from ischemia reperfusion. J Mol Cell Cardiol 2014; 72: 138–145.
    • (2014) J Mol Cell Cardiol , vol.72 , pp. 138-145
    • Aune, S.E.1    Herr, D.J.2    Mani, S.K.3    Menick, D.R.4
  • 159
    • 84895923936 scopus 로고    scopus 로고
    • Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy
    • Xie M, Kong Y, Tan W, et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 2014; 129: 1139–1151.
    • (2014) Circulation , vol.129 , pp. 1139-1151
    • Xie, M.1    Kong, Y.2    Tan, W.3
  • 160
    • 84895920790 scopus 로고    scopus 로고
    • Targeting autophagy for the therapeutic application of histone deacetylase inhibitors in ischemia/reperfusion heart injury
    • Zhang Y, Ren J. Targeting autophagy for the therapeutic application of histone deacetylase inhibitors in ischemia/reperfusion heart injury. Circulation 2014; 129: 1088–1091.
    • (2014) Circulation , vol.129 , pp. 1088-1091
    • Zhang, Y.1    Ren, J.2
  • 161
    • 84867905127 scopus 로고    scopus 로고
    • Histone deacetylase 1 deficiency impairs differentiation and electrophysiological properties of cardiomyocytes derived from induced pluripotent cells
    • Hoxha E, Lambers E, Xie H, et al. Histone deacetylase 1 deficiency impairs differentiation and electrophysiological properties of cardiomyocytes derived from induced pluripotent cells. Stem Cells 2012; 30: 2412–2422.
    • (2012) Stem Cells , vol.30 , pp. 2412-2422
    • Hoxha, E.1    Lambers, E.2    Xie, H.3
  • 162
    • 34447511648 scopus 로고    scopus 로고
    • Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility
    • Montgomery RL, Davis CA, Potthoff MJ, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 2007; 21: 1790–1802.
    • (2007) Genes Dev , vol.21 , pp. 1790-1802
    • Montgomery, R.L.1    Davis, C.A.2    Potthoff, M.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.