-
2
-
-
80053205337
-
MicroRNAs: new players in cardiac injury and protection
-
Kukreja RC, Yin C, Salloum FN. MicroRNAs: new players in cardiac injury and protection. Mol Pharmacol 2011; 80: 558–564.
-
(2011)
Mol Pharmacol
, vol.80
, pp. 558-564
-
-
Kukreja, R.C.1
Yin, C.2
Salloum, F.N.3
-
3
-
-
84885172932
-
Regulation of cardiac and renal ischemia-reperfusion injury by microRNAs
-
Lorenzen JM, Batkai S, Thum T. Regulation of cardiac and renal ischemia-reperfusion injury by microRNAs. Free Radic Biol Med 2013; 64: 78–84.
-
(2013)
Free Radic Biol Med
, vol.64
, pp. 78-84
-
-
Lorenzen, J.M.1
Batkai, S.2
Thum, T.3
-
4
-
-
84893630323
-
MicroRNA-206: a promising theranostic marker
-
Novák J, Kružliak P, Bienertová-Vašků J, Slabý O, Novák M. MicroRNA-206: a promising theranostic marker. Theranostics 2014; 4: 119–33.
-
(2014)
Theranostics
, vol.4
, pp. 119-133
-
-
Novák, J.1
Kružliak, P.2
Bienertová-Vašků, J.3
Slabý, O.4
Novák, M.5
-
5
-
-
84903166837
-
MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease
-
Olson EN. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 2014; 6: 239ps33.
-
(2014)
Sci Transl Med
, vol.6
, pp. 239
-
-
Olson, E.N.1
-
7
-
-
78751660177
-
Pervasive roles of microRNAs in cardiovascular biology
-
Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469: 336–342.
-
(2011)
Nature
, vol.469
, pp. 336-342
-
-
Small, E.M.1
Olson, E.N.2
-
8
-
-
79957631904
-
The role of microRNA in modulating myocardial ischemia-reperfusion injury
-
Ye Y, Perez-Polo JR, Qian J, Birnbaum Y. The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics 2011; 43: 534–542.
-
(2011)
Physiol Genomics
, vol.43
, pp. 534-542
-
-
Ye, Y.1
Perez-Polo, J.R.2
Qian, J.3
Birnbaum, Y.4
-
9
-
-
77955658952
-
MicroRNA expression and function in cardiac ischemic injury
-
Yu S, Li G. MicroRNA expression and function in cardiac ischemic injury. J Cardiovasc Transl Res 2010; 3: 241–245.
-
(2010)
J Cardiovasc Transl Res
, vol.3
, pp. 241-245
-
-
Yu, S.1
Li, G.2
-
10
-
-
84860145591
-
Role of microRNAs in the reperfused myocardium towards post-infarct remodelling
-
Zhu H, Fan GC. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res 2012; 94: 284–292.
-
(2012)
Cardiovasc Res
, vol.94
, pp. 284-292
-
-
Zhu, H.1
Fan, G.C.2
-
12
-
-
34147095310
-
The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2
-
Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 2007; 13: 486–491.
-
(2007)
Nat Med
, vol.13
, pp. 486-491
-
-
Yang, B.1
Lin, H.2
Xiao, J.3
-
13
-
-
70849115884
-
MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection
-
Lu Y, Zhang Y, Shan H, et al. MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection. Cardiovasc Res 2009; 84: 434–441.
-
(2009)
Cardiovasc Res
, vol.84
, pp. 434-441
-
-
Lu, Y.1
Zhang, Y.2
Shan, H.3
-
14
-
-
79952612217
-
Role of miR-1 and miR-133a in myocardial ischemic postconditioning
-
He B, Xiao J, Ren AJ, et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci 2011; 18: 22.
-
(2011)
J Biomed Sci
, vol.18
, pp. 22
-
-
He, B.1
Xiao, J.2
Ren, A.J.3
-
15
-
-
84870614734
-
miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models
-
Pan Z, Sun X, Ren J, et al. miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models. PLoS One 2012; 7: e50515.
-
(2012)
PLoS One
, vol.7
-
-
Pan, Z.1
Sun, X.2
Ren, J.3
-
16
-
-
84863114983
-
Role of miR-21 in the pathogenesis of atrial fibrosis
-
Adam O, Lohfelm B, Thum T, et al. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol 2012; 107: 278.
-
(2012)
Basic Res Cardiol
, vol.107
, pp. 278
-
-
Adam, O.1
Lohfelm, B.2
Thum, T.3
-
17
-
-
84871569496
-
Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure
-
Cardin S, Guasch E, Luo X, et al. Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ Arrhythm Electrophysiol 2012; 5: 1027–1035.
-
(2012)
Circ Arrhythm Electrophysiol
, vol.5
, pp. 1027-1035
-
-
Cardin, S.1
Guasch, E.2
Luo, X.3
-
18
-
-
70350353082
-
MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction
-
Dong S, Cheng Y, Yang J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 2009; 284: 29514–29525.
-
(2009)
J Biol Chem
, vol.284
, pp. 29514-29525
-
-
Dong, S.1
Cheng, Y.2
Yang, J.3
-
19
-
-
77954797933
-
Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4
-
Cheng Y, Zhu P, Yang J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 2010; 87: 431–439.
-
(2010)
Cardiovasc Res
, vol.87
, pp. 431-439
-
-
Cheng, Y.1
Zhu, P.2
Yang, J.3
-
20
-
-
84866751141
-
Modulation of microRNA 20b with resveratrol and longevinex is linked with their potent anti-angiogenic action in the ischaemic myocardium and synergestic effects of resveratrol and gamma-tocotrienol
-
Mukhopadhyay P, Das S, Ahsan MK, Otani H, Das DK. Modulation of microRNA 20b with resveratrol and longevinex is linked with their potent anti-angiogenic action in the ischaemic myocardium and synergestic effects of resveratrol and gamma-tocotrienol. J Cell Mol Med 2012; 16: 2504–2517.
-
(2012)
J Cell Mol Med
, vol.16
, pp. 2504-2517
-
-
Mukhopadhyay, P.1
Das, S.2
Ahsan, M.K.3
Otani, H.4
Das, D.K.5
-
21
-
-
78650840268
-
Restoration of altered microRNA expression in the ischemic heart with resveratrol
-
Mukhopadhyay P, Mukherjee S, Ahsan K, Bagchi A, Pacher P, Das DK. Restoration of altered microRNA expression in the ischemic heart with resveratrol. PLoS One 2010; 5: e15705.
-
(2010)
PLoS One
, vol.5
-
-
Mukhopadhyay, P.1
Mukherjee, S.2
Ahsan, K.3
Bagchi, A.4
Pacher, P.5
Das, D.K.6
-
22
-
-
78049432896
-
Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice
-
Patrick DM, Montgomery RL, Qi X, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest 2010; 120: 3912–3916.
-
(2010)
J Clin Invest
, vol.120
, pp. 3912-3916
-
-
Patrick, D.M.1
Montgomery, R.L.2
Qi, X.3
-
23
-
-
79952731167
-
miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes
-
Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 2011; 208: 549–560.
-
(2011)
J Exp Med
, vol.208
, pp. 549-560
-
-
Qian, L.1
Van Laake, L.W.2
Huang, Y.3
Liu, S.4
Wendland, M.F.5
Srivastava, D.6
-
24
-
-
84865439215
-
MicroRNA-24 regulates cardiac fibrosis after myocardial infarction
-
Wang J, Huang W, Xu R, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med 2012; 16: 2150–2160.
-
(2012)
J Cell Mol Med
, vol.16
, pp. 2150-2160
-
-
Wang, J.1
Huang, W.2
Xu, R.3
-
25
-
-
51349141401
-
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
-
van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 2008; 105: 13027–13032.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 13027-13032
-
-
van Rooij, E.1
Sutherland, L.B.2
Thatcher, J.E.3
-
26
-
-
77954766181
-
Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury
-
Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res 2010; 87: 535–544.
-
(2010)
Cardiovasc Res
, vol.87
, pp. 535-544
-
-
Ye, Y.1
Hu, Z.2
Lin, Y.3
Zhang, C.4
Perez-Polo, J.R.5
-
27
-
-
80053892697
-
Temporal expression of miRNAs and mRNAs in a mouse model of myocardial infarction
-
Port JD, Walker LA, Polk J, Nunley K, Buttrick PM, Sucharov CC. Temporal expression of miRNAs and mRNAs in a mouse model of myocardial infarction. Physiol Genomics 2011; 43: 1087–1095.
-
(2011)
Physiol Genomics
, vol.43
, pp. 1087-1095
-
-
Port, J.D.1
Walker, L.A.2
Polk, J.3
Nunley, K.4
Buttrick, P.M.5
Sucharov, C.C.6
-
28
-
-
79961095592
-
Biogenesis and regulation of cardiovascular microRNAs
-
Bauersachs J, Thum T. Biogenesis and regulation of cardiovascular microRNAs. Circ Res 2011; 109: 334–347.
-
(2011)
Circ Res
, vol.109
, pp. 334-347
-
-
Bauersachs, J.1
Thum, T.2
-
29
-
-
77952675374
-
ER stress in cardiovascular disease
-
Minamino T, Kitakaze M. ER stress in cardiovascular disease. J Mol Cell Cardiol 2010; 48: 1105–1110.
-
(2010)
J Mol Cell Cardiol
, vol.48
, pp. 1105-1110
-
-
Minamino, T.1
Kitakaze, M.2
-
30
-
-
78349265743
-
Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease
-
Minamino T, Komuro I, Kitakaze M. Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res 2010; 107: 1071–1082.
-
(2010)
Circ Res
, vol.107
, pp. 1071-1082
-
-
Minamino, T.1
Komuro, I.2
Kitakaze, M.3
-
31
-
-
78549288890
-
Biology of endoplasmic reticulum stress in the heart
-
Groenendyk J, Sreenivasaiah PK, Kim do H, Agellon LB, Michalak M. Biology of endoplasmic reticulum stress in the heart. Circ Res 2010; 107: 1185–1197.
-
(2010)
Circ Res
, vol.107
, pp. 1185-1197
-
-
Groenendyk, J.1
Sreenivasaiah, P.K.2
Kim do, H.3
Agellon, L.B.4
Michalak, M.5
-
33
-
-
84957943347
-
Role of Nox inhibitors plumbagin, ML090 and gp91ds-tat peptide on homocysteine thiolactone induced blood vessel dysfunction
-
May 22
-
Smith R, Kruzliak P, Adamcikova Z, Zulli A. Role of Nox inhibitors plumbagin, ML090 and gp91ds-tat peptide on homocysteine thiolactone induced blood vessel dysfunction. Clin Exp Pharmacol Physiol 2015 May 22. doi:10.1111/1440-1681.12427.
-
(2015)
Clin Exp Pharmacol Physiol
-
-
Smith, R.1
Kruzliak, P.2
Adamcikova, Z.3
Zulli, A.4
-
35
-
-
0141843656
-
The nuclear RNase III Drosha initiates microRNA processing
-
Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–419.
-
(2003)
Nature
, vol.425
, pp. 415-419
-
-
Lee, Y.1
Ahn, C.2
Han, J.3
-
36
-
-
33749984008
-
Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing
-
Yeom KH, Lee Y, Han J, Suh MR, Kim VN. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 2006; 34: 4622–4629.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 4622-4629
-
-
Yeom, K.H.1
Lee, Y.2
Han, J.3
Suh, M.R.4
Kim, V.N.5
-
37
-
-
10644234841
-
The Drosha-DGCR8 complex in primary microRNA processing
-
Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18: 3016–3027.
-
(2004)
Genes Dev
, vol.18
, pp. 3016-3027
-
-
Han, J.1
Lee, Y.2
Yeom, K.H.3
Kim, Y.K.4
Jin, H.5
Kim, V.N.6
-
38
-
-
9144225636
-
The Microprocessor complex mediates the genesis of microRNAs
-
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432: 235–240.
-
(2004)
Nature
, vol.432
, pp. 235-240
-
-
Gregory, R.I.1
Yan, K.P.2
Amuthan, G.3
Chendrimada, T.4
Doratotaj, B.5
Cooch, N.6
Shiekhattar, R.7
-
39
-
-
0037009364
-
MicroRNA maturation: stepwise processing and subcellular localization
-
Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21: 4663–4670.
-
(2002)
EMBO J
, vol.21
, pp. 4663-4670
-
-
Lee, Y.1
Jeon, K.2
Lee, J.T.3
Kim, S.4
Kim, V.N.5
-
40
-
-
0347988235
-
Nuclear export of microRNA precursors
-
Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303: 95–98.
-
(2004)
Science
, vol.303
, pp. 95-98
-
-
Lund, E.1
Guttinger, S.2
Calado, A.3
Dahlberg, J.E.4
Kutay, U.5
-
41
-
-
0035905766
-
Role for a bidentate ribonuclease in the initiation step of RNA interference
-
Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366.
-
(2001)
Nature
, vol.409
, pp. 363-366
-
-
Bernstein, E.1
Caudy, A.A.2
Hammond, S.M.3
Hannon, G.J.4
-
42
-
-
0347361541
-
Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs
-
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17: 3011–3016.
-
(2003)
Genes Dev
, vol.17
, pp. 3011-3016
-
-
Yi, R.1
Qin, Y.2
Macara, I.G.3
Cullen, B.R.4
-
43
-
-
78751477191
-
Gene silencing by microRNAs: contributions of translational repression and mRNA decay
-
Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99–110.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 99-110
-
-
Huntzinger, E.1
Izaurralde, E.2
-
44
-
-
84858446579
-
MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship
-
Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012; 13: 271–282.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 271-282
-
-
Pasquinelli, A.E.1
-
45
-
-
84858379476
-
MicroRNAs in stress signaling and human disease
-
Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell 2012; 148: 1172–1187.
-
(2012)
Cell
, vol.148
, pp. 1172-1187
-
-
Mendell, J.T.1
Olson, E.N.2
-
46
-
-
77953957633
-
A coding-independent function of gene and pseudogene mRNAs regulates tumour biology
-
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.
-
(2010)
Nature
, vol.465
, pp. 1033-1038
-
-
Poliseno, L.1
Salmena, L.2
Zhang, J.3
Carver, B.4
Haveman, W.J.5
Pandolfi, P.P.6
-
47
-
-
79961170994
-
A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?
-
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011; 146: 353–358.
-
(2011)
Cell
, vol.146
, pp. 353-358
-
-
Salmena, L.1
Poliseno, L.2
Tay, Y.3
Kats, L.4
Pandolfi, P.P.5
-
48
-
-
84875369248
-
Circular RNAs are a large class of animal RNAs with regulatory potency
-
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495: 333–338.
-
(2013)
Nature
, vol.495
, pp. 333-338
-
-
Memczak, S.1
Jens, M.2
Elefsinioti, A.3
-
49
-
-
84895740923
-
MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex
-
Cheng TL, Wang Z, Liao Q, et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell 2014; 28: 547–560.
-
(2014)
Dev Cell
, vol.28
, pp. 547-560
-
-
Cheng, T.L.1
Wang, Z.2
Liao, Q.3
-
50
-
-
0026747761
-
Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA
-
Lewis JD, Meehan RR, Henzel WJ, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 1992; 69: 905–914.
-
(1992)
Cell
, vol.69
, pp. 905-914
-
-
Lewis, J.D.1
Meehan, R.R.2
Henzel, W.J.3
-
51
-
-
0027495467
-
Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2
-
Nan X, Meehan RR, Bird A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 1993; 21: 4886–4892.
-
(1993)
Nucleic Acids Res
, vol.21
, pp. 4886-4892
-
-
Nan, X.1
Meehan, R.R.2
Bird, A.3
-
52
-
-
0032574977
-
Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex
-
Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393: 386–389.
-
(1998)
Nature
, vol.393
, pp. 386-389
-
-
Nan, X.1
Ng, H.H.2
Johnson, C.A.3
-
53
-
-
79955538772
-
In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system
-
Diaz de Leon-Guerrero S, Pedraza-Alva G, Perez-Martinez L. In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur J Neurosci 2011; 33: 1563–1574.
-
(2011)
Eur J Neurosci
, vol.33
, pp. 1563-1574
-
-
Diaz de Leon-Guerrero, S.1
Pedraza-Alva, G.2
Perez-Martinez, L.3
-
54
-
-
84887214395
-
Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition
-
Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 2013; 23: 1256–1269.
-
(2013)
Cell Res
, vol.23
, pp. 1256-1269
-
-
Maunakea, A.K.1
Chepelev, I.2
Cui, K.3
Zhao, K.4
-
55
-
-
29144447632
-
Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2
-
Young JI, Hong EP, Castle JC, et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 2005; 102: 17551–17558.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 17551-17558
-
-
Young, J.I.1
Hong, E.P.2
Castle, J.C.3
-
56
-
-
73849097618
-
Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis
-
Bracaglia G, Conca B, Bergo A, et al. Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep 2009; 10: 1327–1333.
-
(2009)
EMBO Rep
, vol.10
, pp. 1327-1333
-
-
Bracaglia, G.1
Conca, B.2
Bergo, A.3
-
57
-
-
35648978121
-
The story of Rett syndrome: from clinic to neurobiology
-
Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron 2007; 56: 422–437.
-
(2007)
Neuron
, vol.56
, pp. 422-437
-
-
Chahrour, M.1
Zoghbi, H.Y.2
-
58
-
-
77953533210
-
Elevated expression of MeCP2 in cardiac and skeletal tissues is detrimental for normal development
-
Alvarez-Saavedra M, Carrasco L, Sura-Trueba S, et al. Elevated expression of MeCP2 in cardiac and skeletal tissues is detrimental for normal development. Hum Mol Genet 2010; 19: 2177–2190.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 2177-2190
-
-
Alvarez-Saavedra, M.1
Carrasco, L.2
Sura-Trueba, S.3
-
59
-
-
83655193397
-
Pathogenesis of lethal cardiac arrhythmias in Mecp2 mutant mice: implication for therapy in Rett syndrome
-
McCauley MD, Wang T, Mike E, et al. Pathogenesis of lethal cardiac arrhythmias in Mecp2 mutant mice: implication for therapy in Rett syndrome. Sci Transl Med 2011; 3: 113ra125.
-
(2011)
Sci Transl Med
, vol.3
, pp. 113-125
-
-
McCauley, M.D.1
Wang, T.2
Mike, E.3
-
60
-
-
33646377640
-
Cardiac disease and Rett syndrome
-
Acampa M, Guideri F. Cardiac disease and Rett syndrome. Arch Dis Child 2006; 91: 440–443.
-
(2006)
Arch Dis Child
, vol.91
, pp. 440-443
-
-
Acampa, M.1
Guideri, F.2
-
61
-
-
84856413303
-
Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8
-
Wada T, Kikuchi J, Furukawa Y. Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8. EMBO Rep 2012; 13: 142–149.
-
(2012)
EMBO Rep
, vol.13
, pp. 142-149
-
-
Wada, T.1
Kikuchi, J.2
Furukawa, Y.3
-
62
-
-
57749170458
-
The many roles of histone deacetylases in development and physiology: implications for disease and therapy
-
Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009; 10: 32–42.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 32-42
-
-
Haberland, M.1
Montgomery, R.L.2
Olson, E.N.3
-
63
-
-
84883242339
-
Acetylation of drosha on the N-terminus inhibits its degradation by ubiquitination
-
Tang X, Wen S, Zheng D, et al. Acetylation of drosha on the N-terminus inhibits its degradation by ubiquitination. PLoS One 2013; 8: e72503.
-
(2013)
PLoS One
, vol.8
-
-
Tang, X.1
Wen, S.2
Zheng, D.3
-
64
-
-
84863116288
-
Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing
-
Barr I, Smith AT, Chen Y, Senturia R, Burstyn JN, Guo F. Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing. Proc Natl Acad Sci U S A 2012; 109: 1919–1924.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 1919-1924
-
-
Barr, I.1
Smith, A.T.2
Chen, Y.3
Senturia, R.4
Burstyn, J.N.5
Guo, F.6
-
65
-
-
33846065567
-
Heme is involved in microRNA processing
-
Faller M, Matsunaga M, Yin S, Loo JA, Guo F. Heme is involved in microRNA processing. Nat Struct Mol Biol 2007; 14: 23–29.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 23-29
-
-
Faller, M.1
Matsunaga, M.2
Yin, S.3
Loo, J.A.4
Guo, F.5
-
66
-
-
84863624496
-
Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8
-
Senturia R, Laganowsky A, Barr I, Scheidemantle BD, Guo F. Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8. PLoS One 2012; 7: e39688.
-
(2012)
PLoS One
, vol.7
-
-
Senturia, R.1
Laganowsky, A.2
Barr, I.3
Scheidemantle, B.D.4
Guo, F.5
-
67
-
-
84893507863
-
Processing of microRNA primary transcripts requires heme in mammalian cells
-
Weitz SH, Gong M, Barr I, Weiss S, Guo F. Processing of microRNA primary transcripts requires heme in mammalian cells. Proc Natl Acad Sci U S A 2014; 111: 1861–1866.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 1861-1866
-
-
Weitz, S.H.1
Gong, M.2
Barr, I.3
Weiss, S.4
Guo, F.5
-
68
-
-
84899852226
-
Effects of serum bilirubin on atherosclerotic processes
-
Kang SJ, Lee C, Kruzliak P. Effects of serum bilirubin on atherosclerotic processes. Ann Med 2014; 46: 138–47.
-
(2014)
Ann Med
, vol.46
, pp. 138-147
-
-
Kang, S.J.1
Lee, C.2
Kruzliak, P.3
-
69
-
-
0035200007
-
Role of heme oxygenase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection
-
Foresti R, Goatly H, Green CJ, Motterlini R. Role of heme oxygenase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection. Am J Physiol Heart Circ Physiol 2001; 281: H1976–1984.
-
(2001)
Am J Physiol Heart Circ Physiol
, vol.281
, pp. 1976-1984
-
-
Foresti, R.1
Goatly, H.2
Green, C.J.3
Motterlini, R.4
-
70
-
-
84880020046
-
Beneficial effect of prolonged heme oxygenase 1 activation in a rat model of chronic heart failure
-
Collino M, Pini A, Mugelli N, et al. Beneficial effect of prolonged heme oxygenase 1 activation in a rat model of chronic heart failure. Dis Model Mech 2013; 6: 1012–1020.
-
(2013)
Dis Model Mech
, vol.6
, pp. 1012-1020
-
-
Collino, M.1
Pini, A.2
Mugelli, N.3
-
71
-
-
65649096232
-
The heme oxygenase inducer hemin protects against cardiac dysfunction and ventricular fibrillation in ischaemic/reperfused rat hearts: role of connexin 43
-
Lakkisto P, Csonka C, Fodor G, et al. The heme oxygenase inducer hemin protects against cardiac dysfunction and ventricular fibrillation in ischaemic/reperfused rat hearts: role of connexin 43. Scand J Clin Lab Invest 2009; 69: 209–218.
-
(2009)
Scand J Clin Lab Invest
, vol.69
, pp. 209-218
-
-
Lakkisto, P.1
Csonka, C.2
Fodor, G.3
-
72
-
-
81755166902
-
Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs
-
Kozakowska M, Ciesla M, Stefanska A, et al. Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs. Antioxid Redox Signal 2012; 16: 113–127.
-
(2012)
Antioxid Redox Signal
, vol.16
, pp. 113-127
-
-
Kozakowska, M.1
Ciesla, M.2
Stefanska, A.3
-
73
-
-
84861434708
-
Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8
-
Gong M, Chen Y, Senturia R, Ulgherait M, Faller M, Guo F. Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8. Protein Sci 2012; 21: 797–808.
-
(2012)
Protein Sci
, vol.21
, pp. 797-808
-
-
Gong, M.1
Chen, Y.2
Senturia, R.3
Ulgherait, M.4
Faller, M.5
Guo, F.6
-
74
-
-
45349107435
-
Stimuli-dependent cleavage of Dicer during apoptosis
-
Matskevich AA, Moelling K. Stimuli-dependent cleavage of Dicer during apoptosis. Biochem J 2008; 412: 527–534.
-
(2008)
Biochem J
, vol.412
, pp. 527-534
-
-
Matskevich, A.A.1
Moelling, K.2
-
75
-
-
67349200238
-
Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1
-
Ghodgaonkar MM, Shah RG, Kandan-Kulangara F, et al. Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1. Cell Death Differ 2009; 16: 858–868.
-
(2009)
Cell Death Differ
, vol.16
, pp. 858-868
-
-
Ghodgaonkar, M.M.1
Shah, R.G.2
Kandan-Kulangara, F.3
-
76
-
-
84904528236
-
Hypoxia represses microRNA biogenesis proteins in breast cancer cells
-
Bandara V, Michael MZ, Gleadle JM. Hypoxia represses microRNA biogenesis proteins in breast cancer cells. BMC Cancer 2014; 14: 533.
-
(2014)
BMC Cancer
, vol.14
, pp. 533
-
-
Bandara, V.1
Michael, M.Z.2
Gleadle, J.M.3
-
77
-
-
84865213578
-
Functional importance of Dicer protein in the adaptive cellular response to hypoxia
-
Ho JJD, Metcalf JL, Yan MS, et al. Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J Biol Chem 2012; 287: 29003–29020.
-
(2012)
J Biol Chem
, vol.287
, pp. 29003-29020
-
-
Ho, J.J.D.1
Metcalf, J.L.2
Yan, M.S.3
-
78
-
-
60949102130
-
Dicer is regulated by cellular stresses and interferons
-
Wiesen JL, Tomasi TB. Dicer is regulated by cellular stresses and interferons. Mol Immunol 2009; 46: 1222–1228.
-
(2009)
Mol Immunol
, vol.46
, pp. 1222-1228
-
-
Wiesen, J.L.1
Tomasi, T.B.2
-
79
-
-
33744973775
-
Relief of microRNA-mediated translational repression in human cells subjected to stress
-
Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125: 1111–1124.
-
(2006)
Cell
, vol.125
, pp. 1111-1124
-
-
Bhattacharyya, S.N.1
Habermacher, R.2
Martine, U.3
Closs, E.I.4
Filipowicz, W.5
-
80
-
-
84885188064
-
Hypoxia: a master regulator of microRNA biogenesis and activity
-
Nallamshetty S, Chan SY, Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 2013; 64: 20–30.
-
(2013)
Free Radic Biol Med
, vol.64
, pp. 20-30
-
-
Nallamshetty, S.1
Chan, S.Y.2
Loscalzo, J.3
-
81
-
-
41149147013
-
Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure
-
Chen JF, Murchison EP, Tang R, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2008; 105: 2111–2116.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 2111-2116
-
-
Chen, J.F.1
Murchison, E.P.2
Tang, R.3
-
82
-
-
55249125659
-
Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling
-
da Costa Martins PA, Bourajjaj M, Gladka M, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 2008; 118: 1567–1576.
-
(2008)
Circulation
, vol.118
, pp. 1567-1576
-
-
da Costa Martins, P.A.1
Bourajjaj, M.2
Gladka, M.3
-
83
-
-
70349254444
-
Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure
-
Rao PK, Toyama Y, Chiang HR, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 2009; 105: 585–594.
-
(2009)
Circ Res
, vol.105
, pp. 585-594
-
-
Rao, P.K.1
Toyama, Y.2
Chiang, H.R.3
-
84
-
-
58149487199
-
Human Dicer C-terminus functions as a 5-lipoxygenase binding domain
-
Dincbas-Renqvist V, Pepin G, Rakonjac M, et al. Human Dicer C-terminus functions as a 5-lipoxygenase binding domain. Biochim Biophys Acta 1789; 2009: 99–108.
-
(1789)
Biochim Biophys Acta
, vol.2009
, pp. 99-108
-
-
Dincbas-Renqvist, V.1
Pepin, G.2
Rakonjac, M.3
-
85
-
-
77449140340
-
Cardioprotective effect of 5-lipoxygenase gene (ALOX5) silencing in ischemia-reperfusion
-
Lisovyy OO, Dosenko VE, Nagibin VS, et al. Cardioprotective effect of 5-lipoxygenase gene (ALOX5) silencing in ischemia-reperfusion. Acta Biochim Pol 2009; 56: 687–694.
-
(2009)
Acta Biochim Pol
, vol.56
, pp. 687-694
-
-
Lisovyy, O.O.1
Dosenko, V.E.2
Nagibin, V.S.3
-
86
-
-
23844501276
-
Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner
-
Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 2005; 94: 896–905.
-
(2005)
J Neurochem
, vol.94
, pp. 896-905
-
-
Lugli, G.1
Larson, J.2
Martone, M.E.3
Jones, Y.4
Smalheiser, N.R.5
-
87
-
-
28844468063
-
Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model
-
Khalil PN, Neuhof C, Huss R, et al. Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model. Eur J Pharmacol 2005; 528: 124–131.
-
(2005)
Eur J Pharmacol
, vol.528
, pp. 124-131
-
-
Khalil, P.N.1
Neuhof, C.2
Huss, R.3
-
88
-
-
84892441560
-
Altered expression of calcineurin, calpain, calpastatin and HMWCaMBP in cardiac cells following ischemia and reperfusion
-
Parameswaran S, Sharma RK. Altered expression of calcineurin, calpain, calpastatin and HMWCaMBP in cardiac cells following ischemia and reperfusion. Biochem Biophys Res Commun 2014; 443: 604–609.
-
(2014)
Biochem Biophys Res Commun
, vol.443
, pp. 604-609
-
-
Parameswaran, S.1
Sharma, R.K.2
-
89
-
-
84874433785
-
A new calpain inhibitor protects left ventricular dysfunction induced by mild ischemia-reperfusion in in situ rat hearts
-
Takeshita D, Tanaka M, Mitsuyama S, et al. A new calpain inhibitor protects left ventricular dysfunction induced by mild ischemia-reperfusion in in situ rat hearts. J Physiol Sci 2013; 63: 113–123.
-
(2013)
J Physiol Sci
, vol.63
, pp. 113-123
-
-
Takeshita, D.1
Tanaka, M.2
Mitsuyama, S.3
-
90
-
-
77951712353
-
HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells
-
Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 2010; 21: 1462–1469.
-
(2010)
Mol Biol Cell
, vol.21
, pp. 1462-1469
-
-
Johnston, M.1
Geoffroy, M.C.2
Sobala, A.3
Hay, R.4
Hutvagner, G.5
-
91
-
-
67749145232
-
Hsp90 regulates the function of argonaute 2 and its recruitment to stress granules and P-bodies
-
Pare JM, Tahbaz N, Lopez-Orozco J, LaPointe P, Lasko P, Hobman TC. Hsp90 regulates the function of argonaute 2 and its recruitment to stress granules and P-bodies. Mol Biol Cell 2009; 20: 3273–3284.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 3273-3284
-
-
Pare, J.M.1
Tahbaz, N.2
Lopez-Orozco, J.3
LaPointe, P.4
Lasko, P.5
Hobman, T.C.6
-
92
-
-
0034862016
-
Heat shock proteins and cardiac protection
-
Latchman DS. Heat shock proteins and cardiac protection. Cardiovasc Res 2001; 51: 637–646.
-
(2001)
Cardiovasc Res
, vol.51
, pp. 637-646
-
-
Latchman, D.S.1
-
93
-
-
0141819958
-
The stress response: implications for the clinical development of hsp90 inhibitors
-
Whitesell L, Bagatell R, Falsey R. The stress response: implications for the clinical development of hsp90 inhibitors. Curr Cancer Drug Targets 2003; 3: 349–358.
-
(2003)
Curr Cancer Drug Targets
, vol.3
, pp. 349-358
-
-
Whitesell, L.1
Bagatell, R.2
Falsey, R.3
-
94
-
-
70349634806
-
Autophagy maintains cardiac function in the starved adult
-
Takemura G, Kanamori H, Goto K, et al. Autophagy maintains cardiac function in the starved adult. Autophagy 2009; 5: 1034–1036.
-
(2009)
Autophagy
, vol.5
, pp. 1034-1036
-
-
Takemura, G.1
Kanamori, H.2
Goto, K.3
-
95
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007; 13: 619–624.
-
(2007)
Nat Med
, vol.13
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
-
96
-
-
84870601009
-
Selective autophagy degrades DICER and AGO2 and regulates miRNA activity
-
Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 2012; 14: 1314–1321.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 1314-1321
-
-
Gibbings, D.1
Mostowy, S.2
Jay, F.3
Schwab, Y.4
Cossart, P.5
Voinnet, O.6
-
97
-
-
84877343518
-
Autophagy selectively regulates miRNA homeostasis
-
Gibbings D, Mostowy S, Voinnet O. Autophagy selectively regulates miRNA homeostasis. Autophagy 2013; 9: 781–783.
-
(2013)
Autophagy
, vol.9
, pp. 781-783
-
-
Gibbings, D.1
Mostowy, S.2
Voinnet, O.3
-
98
-
-
84877342029
-
Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity
-
Dutta D, Xu J, Kim JS, Dunn WA, Jr, Leeuwenburgh C. Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy 2013; 9: 328–344.
-
(2013)
Autophagy
, vol.9
, pp. 328-344
-
-
Dutta, D.1
Xu, J.2
Kim, J.S.3
Dunn, W.A.4
Leeuwenburgh, C.5
-
99
-
-
84905504653
-
Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death
-
Skommer J, Rana I, Marques FZ, Zhu W, Du Z, Charchar FJ. Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis 2014; 5 e1325.
-
(2014)
Cell Death Dis
, vol.5
-
-
Skommer, J.1
Rana, I.2
Marques, F.Z.3
Zhu, W.4
Du, Z.5
Charchar, F.J.6
-
100
-
-
77956396096
-
Autophagy plays an important role in sunitinib-mediated cell death in H9c2 cardiac muscle cells
-
Zhao Y, Xue T, Yang X, et al. Autophagy plays an important role in sunitinib-mediated cell death in H9c2 cardiac muscle cells. Toxicol Appl Pharmacol 2010; 248: 20–27.
-
(2010)
Toxicol Appl Pharmacol
, vol.248
, pp. 20-27
-
-
Zhao, Y.1
Xue, T.2
Yang, X.3
-
101
-
-
34447133404
-
Cardiac autophagy is a maladaptive response to hemodynamic stress
-
Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 2007; 117: 1782–1793.
-
(2007)
J Clin Invest
, vol.117
, pp. 1782-1793
-
-
Zhu, H.1
Tannous, P.2
Johnstone, J.L.3
-
102
-
-
79958071314
-
Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion
-
Kanamori H, Takemura G, Goto K, et al. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol 2011; 300: H2261–2271.
-
(2011)
Am J Physiol Heart Circ Physiol
, vol.300
, pp. 2261-2271
-
-
Kanamori, H.1
Takemura, G.2
Goto, K.3
-
103
-
-
79952775153
-
Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy
-
Cao DJ, Wang ZV, Battiprolu PK, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A 2011; 108: 4123–4128.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 4123-4128
-
-
Cao, D.J.1
Wang, Z.V.2
Battiprolu, P.K.3
-
104
-
-
84863192578
-
Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury
-
Ma X, Liu H, Foyil SR, et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 2012; 125: 3170–3181.
-
(2012)
Circulation
, vol.125
, pp. 3170-3181
-
-
Ma, X.1
Liu, H.2
Foyil, S.R.3
-
105
-
-
84876532060
-
Argonaute2 expression is post-transcriptionally coupled to microRNA abundance
-
Martinez NJ, Gregory RI. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 2013; 19: 605–612.
-
(2013)
RNA
, vol.19
, pp. 605-612
-
-
Martinez, N.J.1
Gregory, R.I.2
-
106
-
-
84880158954
-
Homeostatic control of Argonaute stability by microRNA availability
-
Smibert P, Yang J-S, Azzam G, Liu J-L, Lai EC. Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol 2013; 20: 789–795.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 789-795
-
-
Smibert, P.1
Yang, J.-S.2
Azzam, G.3
Liu, J.-L.4
Lai, E.C.5
-
107
-
-
84912573574
-
Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies
-
Drews O, Taegtmeyer H. Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid Redox Signal 2014; 21: 2322–2343.
-
(2014)
Antioxid Redox Signal
, vol.21
, pp. 2322-2343
-
-
Drews, O.1
Taegtmeyer, H.2
-
108
-
-
84862741327
-
The ubiquitin-proteasome system and cardiovascular disease
-
Powell SR, Herrmann J, Lerman A, Patterson C, Wang X. The ubiquitin-proteasome system and cardiovascular disease. Prog Mol Biol Transl Sci 2012; 109: 295–346.
-
(2012)
Prog Mol Biol Transl Sci
, vol.109
, pp. 295-346
-
-
Powell, S.R.1
Herrmann, J.2
Lerman, A.3
Patterson, C.4
Wang, X.5
-
109
-
-
84899918569
-
Proteasomal and lysosomal protein degradation and heart disease
-
Wang X, Robbins J. Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol 2014; 71: 16–24.
-
(2014)
J Mol Cell Cardiol
, vol.71
, pp. 16-24
-
-
Wang, X.1
Robbins, J.2
-
110
-
-
84873319952
-
The ubiquitin proteasome system and myocardial ischemia
-
Calise J, Powell SR. The ubiquitin proteasome system and myocardial ischemia. Am J Physiol Heart Circ Physiol 2013; 304: H337–349.
-
(2013)
Am J Physiol Heart Circ Physiol
, vol.304
, pp. 337-349
-
-
Calise, J.1
Powell, S.R.2
-
111
-
-
79960066418
-
Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy
-
Rau F, Freyermuth F, Fugier C, et al. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol 2011; 18: 840–845.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 840-845
-
-
Rau, F.1
Freyermuth, F.2
Fugier, C.3
-
112
-
-
47949100595
-
Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing
-
Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 2008; 14: 1539–1549.
-
(2008)
RNA
, vol.14
, pp. 1539-1549
-
-
Newman, M.A.1
Thomson, J.M.2
Hammond, S.M.3
-
113
-
-
70349820140
-
Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells
-
Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 2009; 16: 1021–1025.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 1021-1025
-
-
Hagan, J.P.1
Piskounova, E.2
Gregory, R.I.3
-
114
-
-
68749102148
-
TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation
-
Heo I, Joo C, Kim YK, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 2009; 138: 696–708.
-
(2009)
Cell
, vol.138
, pp. 696-708
-
-
Heo, I.1
Joo, C.2
Kim, Y.K.3
-
115
-
-
84887158295
-
Mechanisms of Lin28-mediated miRNA and mRNA regulation--a structural and functional perspective
-
Mayr F, Heinemann U. Mechanisms of Lin28-mediated miRNA and mRNA regulation--a structural and functional perspective. Int J Mol Sci 2013; 14: 16532–16553.
-
(2013)
Int J Mol Sci
, vol.14
, pp. 16532-16553
-
-
Mayr, F.1
Heinemann, U.2
-
116
-
-
33344460035
-
Regulation of splicing by MBNL and CELF family of RNA-binding protein
-
Ishiura S, Kino Y, Nezu Y, Onishi H, Ohno E, Sasagawa N. Regulation of splicing by MBNL and CELF family of RNA-binding protein. Acta Myol 2005; 24: 74–77.
-
(2005)
Acta Myol
, vol.24
, pp. 74-77
-
-
Ishiura, S.1
Kino, Y.2
Nezu, Y.3
Onishi, H.4
Ohno, E.5
Sasagawa, N.6
-
117
-
-
33644858553
-
The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing
-
Pascual M, Vicente M, Monferrer L, Artero R. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 2006; 74: 65–80.
-
(2006)
Differentiation
, vol.74
, pp. 65-80
-
-
Pascual, M.1
Vicente, M.2
Monferrer, L.3
Artero, R.4
-
118
-
-
4143120231
-
Muscleblind proteins regulate alternative splicing
-
Ho TH, Charlet BN, Poulos MG, Singh G, Swanson MS, Cooper TA. Muscleblind proteins regulate alternative splicing. EMBO J 2004; 23: 3103–3112.
-
(2004)
EMBO J
, vol.23
, pp. 3103-3112
-
-
Ho, T.H.1
Charlet, B.N.2
Poulos, M.G.3
Singh, G.4
Swanson, M.S.5
Cooper, T.A.6
-
119
-
-
58149492467
-
A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart
-
Kalsotra A, Xiao X, Ward AJ, et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc Natl Acad Sci U S A 2008; 105: 20333–20338.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20333-20338
-
-
Kalsotra, A.1
Xiao, X.2
Ward, A.J.3
-
120
-
-
84899084487
-
Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development
-
Giudice J, Xia Z, Wang ET, et al. Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nat Commun 2014; 5: 3603.
-
(2014)
Nat Commun
, vol.5
, pp. 3603
-
-
Giudice, J.1
Xia, Z.2
Wang, E.T.3
-
121
-
-
77950658740
-
Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1
-
Koshelev M, Sarma S, Price RE, Wehrens XHT, Cooper TA. Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum Mol Genet 2010; 19: 1066–1075.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 1066-1075
-
-
Koshelev, M.1
Sarma, S.2
Price, R.E.3
Wehrens, X.H.T.4
Cooper, T.A.5
-
122
-
-
33745248133
-
Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy
-
Lin X, Miller JW, Mankodi A, et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 2006; 15: 2087–2097.
-
(2006)
Hum Mol Genet
, vol.15
, pp. 2087-2097
-
-
Lin, X.1
Miller, J.W.2
Mankodi, A.3
-
123
-
-
1842529234
-
Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis
-
Timchenko NA, Patel R, Iakova P, Cai Z-J, Quan L, Timchenko LT. Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis. J Biol Chem 2004; 279: 13129–13139.
-
(2004)
J Biol Chem
, vol.279
, pp. 13129-13139
-
-
Timchenko, N.A.1
Patel, R.2
Iakova, P.3
Cai, Z.-J.4
Quan, L.5
Timchenko, L.T.6
-
124
-
-
34948826920
-
Endoplasmic reticulum stress in myotonic dystrophy type 1 muscle
-
Ikezoe K, Nakamori M, Furuya H, et al. Endoplasmic reticulum stress in myotonic dystrophy type 1 muscle. Acta Neuropathol 2007; 114: 527–535.
-
(2007)
Acta Neuropathol
, vol.114
, pp. 527-535
-
-
Ikezoe, K.1
Nakamori, M.2
Furuya, H.3
-
125
-
-
36248932588
-
MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T
-
Warf MB, Berglund JA. MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. RNA 2007; 13: 2238–2251.
-
(2007)
RNA
, vol.13
, pp. 2238-2251
-
-
Warf, M.B.1
Berglund, J.A.2
-
126
-
-
84880781160
-
Altered Ca2+ homeostasis and endoplasmic reticulum stress in myotonic dystrophy type 1 muscle cells
-
Botta A, Malena A, Loro E, et al. Altered Ca2+ homeostasis and endoplasmic reticulum stress in myotonic dystrophy type 1 muscle cells. Genes (Basel) 2013; 4: 275–292.
-
(2013)
Genes (Basel)
, vol.4
, pp. 275-292
-
-
Botta, A.1
Malena, A.2
Loro, E.3
-
127
-
-
0036791530
-
Re-expression of fetal troponin isoforms in the postinfarction failing heart of the rat
-
Kim SH, Kim H-S, Lee M-M. Re-expression of fetal troponin isoforms in the postinfarction failing heart of the rat. Circ J 2002; 66: 959–964.
-
(2002)
Circ J
, vol.66
, pp. 959-964
-
-
Kim, S.H.1
Kim, H.-S.2
Lee, M.-M.3
-
128
-
-
48249125043
-
MBNL1 associates with YB-1 in cytoplasmic stress granules
-
Onishi H, Kino Y, Morita T, Futai E, Sasagawa N, Ishiura S. MBNL1 associates with YB-1 in cytoplasmic stress granules. J Neurosci Res 2008; 86: 1994–2002.
-
(2008)
J Neurosci Res
, vol.86
, pp. 1994-2002
-
-
Onishi, H.1
Kino, Y.2
Morita, T.3
Futai, E.4
Sasagawa, N.5
Ishiura, S.6
-
129
-
-
84860367402
-
A-to-I editing of microRNAs: regulating the regulators?
-
Gommans WM. A-to-I editing of microRNAs: regulating the regulators? Semin Cell Dev Biol 2012; 23: 251–257.
-
(2012)
Semin Cell Dev Biol
, vol.23
, pp. 251-257
-
-
Gommans, W.M.1
-
131
-
-
30044443191
-
Modulation of microRNA processing and expression through RNA editing by ADAR deaminases
-
Yang W, Chendrimada TP, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 2006; 13: 13–21.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 13-21
-
-
Yang, W.1
Chendrimada, T.P.2
Wang, Q.3
-
132
-
-
84857394407
-
Tudor-SN and ADAR1 are components of cytoplasmic stress granules
-
Weissbach R, Scadden ADJ. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA 2012; 18: 462–471.
-
(2012)
RNA
, vol.18
, pp. 462-471
-
-
Weissbach, R.1
Scadden, A.D.J.2
-
133
-
-
1042289736
-
Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene
-
Wang Q, Miyakoda M, Yang W, et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 2004; 279: 4952–4961.
-
(2004)
J Biol Chem
, vol.279
, pp. 4952-4961
-
-
Wang, Q.1
Miyakoda, M.2
Yang, W.3
-
134
-
-
84869049922
-
IRE1, a double-edged sword in pre-miRNA slicing and cell death
-
Hassler J, Cao SS, Kaufman RJ. IRE1, a double-edged sword in pre-miRNA slicing and cell death. Dev Cell 2012; 23: 921–923.
-
(2012)
Dev Cell
, vol.23
, pp. 921-923
-
-
Hassler, J.1
Cao, S.S.2
Kaufman, R.J.3
-
135
-
-
84868525253
-
IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2
-
Upton JP, Wang L, Han D, et al. IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 2012; 338: 818–822.
-
(2012)
Science
, vol.338
, pp. 818-822
-
-
Upton, J.P.1
Wang, L.2
Han, D.3
-
136
-
-
80555127350
-
MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation
-
Suzuki HI, Arase M, Matsuyama H, et al. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 2011; 44: 424–436.
-
(2011)
Mol Cell
, vol.44
, pp. 424-436
-
-
Suzuki, H.I.1
Arase, M.2
Matsuyama, H.3
-
138
-
-
33748423869
-
Activation of endoplasmic reticulum stress response during the development of ischemic heart disease
-
Azfer A, Niu J, Rogers LM, Adamski FM, Kolattukudy PE. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 2006; 291: H1411–H1420.
-
(2006)
Am J Physiol Heart Circ Physiol
, vol.291
, pp. H1411-H1420
-
-
Azfer, A.1
Niu, J.2
Rogers, L.M.3
Adamski, F.M.4
Kolattukudy, P.E.5
-
139
-
-
78650371990
-
MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling
-
Liang J, Saad Y, Lei T, et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med 2010; 207: 2959–2973.
-
(2010)
J Exp Med
, vol.207
, pp. 2959-2973
-
-
Liang, J.1
Saad, Y.2
Lei, T.3
-
140
-
-
84865331455
-
Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy
-
Roy A, Kolattukudy PE. Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell Signal 2012; 24: 2123–2131.
-
(2012)
Cell Signal
, vol.24
, pp. 2123-2131
-
-
Roy, A.1
Kolattukudy, P.E.2
-
141
-
-
84862726271
-
MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy
-
Younce C, Kolattukudy P. MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol Biochem 2012; 30: 307–320.
-
(2012)
Cell Physiol Biochem
, vol.30
, pp. 307-320
-
-
Younce, C.1
Kolattukudy, P.2
-
142
-
-
77955891625
-
Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP
-
Younce CW, Wang K, Kolattukudy PE. Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP. Cardiovasc Res 2010; 87: 665–674.
-
(2010)
Cardiovasc Res
, vol.87
, pp. 665-674
-
-
Younce, C.W.1
Wang, K.2
Kolattukudy, P.E.3
-
143
-
-
82355184529
-
Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress
-
Qi D, Huang S, Miao R, et al. Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J Biol Chem 2011; 286: 41692–41700.
-
(2011)
J Biol Chem
, vol.286
, pp. 41692-41700
-
-
Qi, D.1
Huang, S.2
Miao, R.3
-
144
-
-
1842843860
-
Coupling endoplasmic reticulum stress to the cell death program
-
Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 2004; 11: 372–380.
-
(2004)
Cell Death Differ
, vol.11
, pp. 372-380
-
-
Rao, R.V.1
Ellerby, H.M.2
Bredesen, D.E.3
-
145
-
-
84866404328
-
Mature and immature microRNA ratios in cultured rat cardiomyocytes during anoxia-reoxygenation
-
Dosenko VE, Gurianova VL, Surova OV, Stroy DA, Moibenko AA. Mature and immature microRNA ratios in cultured rat cardiomyocytes during anoxia-reoxygenation. Exp Clin Cardiol 2012; 17: 84–87.
-
(2012)
Exp Clin Cardiol
, vol.17
, pp. 84-87
-
-
Dosenko, V.E.1
Gurianova, V.L.2
Surova, O.V.3
Stroy, D.A.4
Moibenko, A.A.5
-
146
-
-
84906329141
-
DNA damage modulates interactions between microRNAs and the 26S proteasome
-
Tsimokha AS, Kulichkova VA, Karpova EV, et al. DNA damage modulates interactions between microRNAs and the 26S proteasome. Oncotarget 2014; 5: 3555–3567.
-
(2014)
Oncotarget
, vol.5
, pp. 3555-3567
-
-
Tsimokha, A.S.1
Kulichkova, V.A.2
Karpova, E.V.3
-
147
-
-
84941748671
-
Does proteasome regulate the level of microRNA-1 in cardiomyocytes? Application to anoxia-reoxygenation
-
Gurianova V, Stroy D, Kruzliak P, Kyrichenko V, Moibenko A, Dosenko V. Does proteasome regulate the level of microRNA-1 in cardiomyocytes? Application to anoxia-reoxygenation. Mol Cell Biochem 2015; 404: 45–51.
-
(2015)
Mol Cell Biochem
, vol.404
, pp. 45-51
-
-
Gurianova, V.1
Stroy, D.2
Kruzliak, P.3
Kyrichenko, V.4
Moibenko, A.5
Dosenko, V.6
-
148
-
-
0031105922
-
Proteasome (prosome) associated endonuclease activity
-
Petit F, Jarrousse AS, Boissonnet G, et al. Proteasome (prosome) associated endonuclease activity. Mol Biol Rep 1997; 24: 113–117.
-
(1997)
Mol Biol Rep
, vol.24
, pp. 113-117
-
-
Petit, F.1
Jarrousse, A.S.2
Boissonnet, G.3
-
149
-
-
0030884937
-
Involvement of proteasomal subunits zeta and iota in RNA degradation
-
Petit F, Jarrousse AS, Dahlmann B et al. Involvement of proteasomal subunits zeta and iota in RNA degradation. Biochem J 1997; 326(Pt 1): 93–98.
-
(1997)
Biochem J
, vol.326
, pp. 93-98
-
-
Petit, F.1
Jarrousse, A.S.2
Dahlmann, B.3
-
150
-
-
0029199168
-
Relationships between proteasomes and RNA
-
Schmid HP, Pouch MN, Petit F, et al. Relationships between proteasomes and RNA. Mol Biol Rep 1995; 21: 43–47.
-
(1995)
Mol Biol Rep
, vol.21
, pp. 43-47
-
-
Schmid, H.P.1
Pouch, M.N.2
Petit, F.3
-
151
-
-
1242295344
-
Biochemical identification of proteasome-associated endonuclease activity in sunflower
-
Ballut L, Petit F, Mouzeyar S, et al. Biochemical identification of proteasome-associated endonuclease activity in sunflower. Biochim Biophys Acta 2003; 1645: 30–39.
-
(2003)
Biochim Biophys Acta
, vol.1645
, pp. 30-39
-
-
Ballut, L.1
Petit, F.2
Mouzeyar, S.3
-
152
-
-
0033605110
-
Possible involvement of proteasomes (prosomes) in AUUUA-mediated mRNA decay
-
Jarrousse AS, Petit F, Kreutzer-Schmid C, Gaedigk R, Schmid HP. Possible involvement of proteasomes (prosomes) in AUUUA-mediated mRNA decay. J Biol Chem 1999; 274: 5925–5930.
-
(1999)
J Biol Chem
, vol.274
, pp. 5925-5930
-
-
Jarrousse, A.S.1
Petit, F.2
Kreutzer-Schmid, C.3
Gaedigk, R.4
Schmid, H.P.5
-
153
-
-
77953162604
-
26S proteasome exhibits endoribonuclease activity controlled by extra-cellular stimuli
-
Kulichkova VA, Tsimokha AS, Fedorova OA, et al. 26S proteasome exhibits endoribonuclease activity controlled by extra-cellular stimuli. Cell Cycle 2010; 9: 840–849.
-
(2010)
Cell Cycle
, vol.9
, pp. 840-849
-
-
Kulichkova, V.A.1
Tsimokha, A.S.2
Fedorova, O.A.3
-
154
-
-
40849108663
-
Selective blockade of microRNA processing by Lin28
-
Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science 2008; 320: 97–100.
-
(2008)
Science
, vol.320
, pp. 97-100
-
-
Viswanathan, S.R.1
Daley, G.Q.2
Gregory, R.I.3
-
155
-
-
75749098853
-
MicroRNA function is globally suppressed in mouse oocytes and early embryos
-
Suh N, Baehner L, Moltzahn F, et al. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 2010; 20: 271–277.
-
(2010)
Curr Biol
, vol.20
, pp. 271-277
-
-
Suh, N.1
Baehner, L.2
Moltzahn, F.3
-
156
-
-
33747334621
-
Extensive post-transcriptional regulation of microRNAs and its implications for cancer
-
Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006; 20: 2202–2207.
-
(2006)
Genes Dev
, vol.20
, pp. 2202-2207
-
-
Thomson, J.M.1
Newman, M.2
Parker, J.S.3
Morin-Kensicki, E.M.4
Wright, T.5
Hammond, S.M.6
-
157
-
-
54049090410
-
Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice
-
Granger A, Abdullah I, Huebner F, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 2008; 22: 3549–3560.
-
(2008)
FASEB J
, vol.22
, pp. 3549-3560
-
-
Granger, A.1
Abdullah, I.2
Huebner, F.3
-
158
-
-
84901375234
-
Selective inhibition of class I but not class IIb histone deacetylases exerts cardiac protection from ischemia reperfusion
-
Aune SE, Herr DJ, Mani SK, Menick DR. Selective inhibition of class I but not class IIb histone deacetylases exerts cardiac protection from ischemia reperfusion. J Mol Cell Cardiol 2014; 72: 138–145.
-
(2014)
J Mol Cell Cardiol
, vol.72
, pp. 138-145
-
-
Aune, S.E.1
Herr, D.J.2
Mani, S.K.3
Menick, D.R.4
-
159
-
-
84895923936
-
Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy
-
Xie M, Kong Y, Tan W, et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 2014; 129: 1139–1151.
-
(2014)
Circulation
, vol.129
, pp. 1139-1151
-
-
Xie, M.1
Kong, Y.2
Tan, W.3
-
160
-
-
84895920790
-
Targeting autophagy for the therapeutic application of histone deacetylase inhibitors in ischemia/reperfusion heart injury
-
Zhang Y, Ren J. Targeting autophagy for the therapeutic application of histone deacetylase inhibitors in ischemia/reperfusion heart injury. Circulation 2014; 129: 1088–1091.
-
(2014)
Circulation
, vol.129
, pp. 1088-1091
-
-
Zhang, Y.1
Ren, J.2
-
161
-
-
84867905127
-
Histone deacetylase 1 deficiency impairs differentiation and electrophysiological properties of cardiomyocytes derived from induced pluripotent cells
-
Hoxha E, Lambers E, Xie H, et al. Histone deacetylase 1 deficiency impairs differentiation and electrophysiological properties of cardiomyocytes derived from induced pluripotent cells. Stem Cells 2012; 30: 2412–2422.
-
(2012)
Stem Cells
, vol.30
, pp. 2412-2422
-
-
Hoxha, E.1
Lambers, E.2
Xie, H.3
-
162
-
-
34447511648
-
Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility
-
Montgomery RL, Davis CA, Potthoff MJ, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 2007; 21: 1790–1802.
-
(2007)
Genes Dev
, vol.21
, pp. 1790-1802
-
-
Montgomery, R.L.1
Davis, C.A.2
Potthoff, M.J.3
|