-
1
-
-
79960924567
-
MicroRNAs and developmental timing
-
Ambros V (2011) MicroRNAs and developmental timing. Curr Opin Genet Dev 21(4): 511-517.
-
(2011)
Curr Opin Genet Dev
, vol.21
, Issue.4
, pp. 511-517
-
-
Ambros, V.1
-
2
-
-
77955644289
-
Mammalian microRNAs predominantly act to decrease target mRNA levels
-
Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835-840.
-
(2010)
Nature
, vol.466
, Issue.7308
, pp. 835-840
-
-
Guo, H.1
Ingolia, N.T.2
Weissman, J.S.3
Bartel, D.P.4
-
3
-
-
77953629046
-
Regulation of mRNA translation and stability by microRNAs
-
Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351-379.
-
(2010)
Annu Rev Biochem
, vol.79
, pp. 351-379
-
-
Fabian, M.R.1
Sonenberg, N.2
Filipowicz, W.3
-
5
-
-
85038830321
-
-
eds Guo F, Tamanoi F (Elsevier Academic, Amsterdam)
-
Guo F (2012) The Enzymes: Eukaryotic RNases and their Partners in RNA Degradation and Biogenesis, Part B, eds Guo F, Tamanoi F (Elsevier Academic, Amsterdam), pp 101-121.
-
(2012)
The Enzymes: Eukaryotic RNases and Their Partners in RNA Degradation and Biogenesis, Part B
, pp. 101-121
-
-
Guo, F.1
-
6
-
-
0037009364
-
MicroRNA maturation: Stepwise processing and subcellular localization
-
Lee Y, Jeon K, Lee J-T, Kim S, Kim VN (2002) MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J 21(17):4663-4670.
-
(2002)
EMBO J
, vol.21
, Issue.17
, pp. 4663-4670
-
-
Lee, Y.1
Jeon, K.2
Lee, J.-T.3
Kim, S.4
Kim, V.N.5
-
7
-
-
0141843656
-
The nuclear RNase III Drosha initiates microRNA processing
-
Lee Y, et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415-419.
-
(2003)
Nature
, vol.425
, Issue.6956
, pp. 415-419
-
-
Lee, Y.1
-
8
-
-
9144224451
-
Processing of primary microRNAs by the Microprocessor complex
-
Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432(7014):231-235.
-
(2004)
Nature
, vol.432
, Issue.7014
, pp. 231-235
-
-
Denli, A.M.1
Tops, B.B.J.2
Plasterk, R.H.A.3
Ketting, R.F.4
Hannon, G.J.5
-
9
-
-
9144225636
-
The Microprocessor complex mediates the genesis of microRNAs
-
Gregory RI, et al. (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235-240.
-
(2004)
Nature
, vol.432
, Issue.7014
, pp. 235-240
-
-
Gregory, R.I.1
-
10
-
-
10644234841
-
The Drosha-DGCR8 complex in primary microRNA processing
-
Han J, et al. (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016-3027.
-
(2004)
Genes Dev
, vol.18
, Issue.24
, pp. 3016-3027
-
-
Han, J.1
-
11
-
-
10344248903
-
The human DiGeorge syndrome critical region gene 8 and its D. Melanogaster homolog are required for miRNA biogenesis
-
Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14(23):2162-2167.
-
(2004)
Curr Biol
, vol.14
, Issue.23
, pp. 2162-2167
-
-
Landthaler, M.1
Yalcin, A.2
Tuschl, T.3
-
12
-
-
0035800521
-
A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA
-
Hutvágner G, et al. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834-838.
-
(2001)
Science
, vol.293
, Issue.5531
, pp. 834-838
-
-
Hutvágner, G.1
-
13
-
-
0035905766
-
Role for a bidentate ribonuclease in the initiation step of RNA interference
-
Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363-366.
-
(2001)
Nature
, vol.409
, Issue.6818
, pp. 363-366
-
-
Bernstein, E.1
Caudy, A.A.2
Hammond, S.M.3
Hannon, G.J.4
-
14
-
-
84877928475
-
Regulation of miRNA biogenesis as an integrated component of growth factor signaling
-
Blahna MT, Hata A (2013) Regulation of miRNA biogenesis as an integrated component of growth factor signaling. Curr Opin Cell Biol 25(2):233-240.
-
(2013)
Curr Opin Cell Biol
, vol.25
, Issue.2
, pp. 233-240
-
-
Blahna, M.T.1
Hata, A.2
-
15
-
-
70349320158
-
Causes and consequences of microRNA dysregulation in cancer
-
Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704-714.
-
(2009)
Nat Rev Genet
, vol.10
, Issue.10
, pp. 704-714
-
-
Croce, C.M.1
-
16
-
-
67749143728
-
Modulation of microRNA processing by p53
-
Suzuki HI, et al. (2009) Modulation of microRNA processing by p53. Nature 460(7254): 529-533.
-
(2009)
Nature
, vol.460
, Issue.7254
, pp. 529-533
-
-
Suzuki, H.I.1
-
17
-
-
81855183636
-
Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms
-
Piskounova E, et al. (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147(5):1066-1079.
-
(2011)
Cell
, vol.147
, Issue.5
, pp. 1066-1079
-
-
Piskounova, E.1
-
18
-
-
46449128469
-
SMAD proteins control DROSHA-mediated microRNA maturation
-
Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56-61.
-
(2008)
Nature
, vol.454
, Issue.7200
, pp. 56-61
-
-
Davis, B.N.1
Hilyard, A.C.2
Lagna, G.3
Hata, A.4
-
19
-
-
0037466486
-
Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region
-
Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N (2003) Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem Biophys Res Commun 304(1):184-190.
-
(2003)
Biochem Biophys Res Commun
, vol.304
, Issue.1
, pp. 184-190
-
-
Shiohama, A.1
Sasaki, T.2
Noda, S.3
Minoshima, S.4
Shimizu, N.5
-
20
-
-
43949124669
-
Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model
-
Stark KL, et al. (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40(6):751-760.
-
(2008)
Nat Genet
, vol.40
, Issue.6
, pp. 751-760
-
-
Stark, K.L.1
-
21
-
-
79952733634
-
Deficiency of Dgcr8, a gene disrupted by the 22q11. 2 microdeletion, results in altered short-term plasticity in the prefrontal cortex
-
Fénelon K, et al. (2011) Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci USA 108(11):4447-4452.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, Issue.11
, pp. 4447-4452
-
-
Fénelon, K.1
-
22
-
-
84866626156
-
MicroRNA turnover: When, how, and why
-
Rüegger S, Großhans H (2012) MicroRNA turnover: When, how, and why. Trends Biochem Sci 37(10):436-446.
-
(2012)
Trends Biochem Sci
, vol.37
, Issue.10
, pp. 436-446
-
-
Rüegger, S.1
Großhans, H.2
-
23
-
-
84859922460
-
Identification of microprocessor-dependent cancer cells allows screening for growth-sustaining micro-RNAs
-
Peric D, Chvalova K, Rousselet G (2012) Identification of microprocessor-dependent cancer cells allows screening for growth-sustaining micro-RNAs. Oncogene 31(16):2039-2048.
-
(2012)
Oncogene
, vol.31
, Issue.16
, pp. 2039-2048
-
-
Peric, D.1
Chvalova, K.2
Rousselet, G.3
-
24
-
-
45449087038
-
Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP
-
Tsutsui M, et al. (2008) Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP. Biochem Biophys Res Commun 372(4):856-861.
-
(2008)
Biochem Biophys Res Commun
, vol.372
, Issue.4
, pp. 856-861
-
-
Tsutsui, M.1
-
25
-
-
79953025460
-
In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system
-
Allegra D, Mertens D (2011) In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system. Biochem Biophys Res Commun 406(4):501-505.
-
(2011)
Biochem Biophys Res Commun
, vol.406
, Issue.4
, pp. 501-505
-
-
Allegra, D.1
Mertens, D.2
-
26
-
-
33846065567
-
Heme is involved in microRNA processing
-
Faller M, Matsunaga M, Yin S, Loo JA, Guo F (2007) Heme is involved in microRNA processing. Nat Struct Mol Biol 14(1):23-29.
-
(2007)
Nat Struct Mol Biol
, vol.14
, Issue.1
, pp. 23-29
-
-
Faller, M.1
Matsunaga, M.2
Yin, S.3
Loo, J.A.4
Guo, F.5
-
27
-
-
77953965778
-
Structure of the dimerization domain of DiGeorge critical region 8
-
Senturia R, et al. (2010) Structure of the dimerization domain of DiGeorge critical region 8. Protein Sci 19(7):1354-1365.
-
(2010)
Protein Sci
, vol.19
, Issue.7
, pp. 1354-1365
-
-
Senturia, R.1
-
28
-
-
79955769519
-
DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein
-
Barr I, et al. (2011) DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein. J Biol Chem 286(19):16716-16725.
-
(2011)
J Biol Chem
, vol.286
, Issue.19
, pp. 16716-16725
-
-
Barr, I.1
-
29
-
-
80052266532
-
MicroRNAs can generate thresholds in target gene expression
-
Mukherji S, et al. (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43(9):854-859.
-
(2011)
Nat Genet
, vol.43
, Issue.9
, pp. 854-859
-
-
Mukherji, S.1
-
30
-
-
84861434708
-
Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8
-
Gong M, et al. (2012) Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8. Protein Sci 21(6):797-808.
-
(2012)
Protein Sci
, vol.21
, Issue.6
, pp. 797-808
-
-
Gong, M.1
-
31
-
-
77955119567
-
DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures
-
Faller M, et al. (2010) DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures. RNA 16(8):1570-1583.
-
(2010)
RNA
, vol.16
, Issue.8
, pp. 1570-1583
-
-
Faller, M.1
-
32
-
-
33749984008
-
Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing
-
Yeom K-H, Lee Y, Han J, Suh MR, Kim VN (2006) Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 34(16): 4622-4629.
-
(2006)
Nucleic Acids Res
, vol.34
, Issue.16
, pp. 4622-4629
-
-
Yeom, K.-H.1
Lee, Y.2
Han, J.3
Suh, M.R.4
Kim, V.N.5
-
33
-
-
84856413303
-
Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8
-
Wada T, Kikuchi J, Furukawa Y (2012) Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8. EMBO Rep 13(2):142-149.
-
(2012)
EMBO Rep
, vol.13
, Issue.2
, pp. 142-149
-
-
Wada, T.1
Kikuchi, J.2
Furukawa, Y.3
-
34
-
-
84863116288
-
Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing
-
Barr I, et al. (2012) Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing. Proc Natl Acad Sci USA 109(6):1919-1924.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.6
, pp. 1919-1924
-
-
Barr, I.1
-
35
-
-
58149097010
-
Posttranscriptional crossregulation between Drosha and DGCR8
-
Han J, et al. (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136(1):75-84.
-
(2009)
Cell
, vol.136
, Issue.1
, pp. 75-84
-
-
Han, J.1
-
36
-
-
66449118741
-
Post-transcriptional control of DGCR8 expression by the Microprocessor
-
Triboulet R, Chang H-M, Lapierre RJ, Gregory RI (2009) Post-transcriptional control of DGCR8 expression by the Microprocessor. RNA 15(6):1005-1011.
-
(2009)
RNA
, vol.15
, Issue.6
, pp. 1005-1011
-
-
Triboulet, R.1
Chang, H.-M.2
Lapierre, R.J.3
Gregory, R.I.4
-
37
-
-
84863624496
-
Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8
-
Senturia R, Laganowsky A, Barr I, Scheidemantle BD, Guo F (2012) Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8. PLoS ONE 7(7):e39688.
-
(2012)
PLoS ONE
, vol.7
, Issue.7
-
-
Senturia, R.1
Laganowsky, A.2
Barr, I.3
Scheidemantle, B.D.4
Guo, F.5
-
38
-
-
0018646107
-
Succinylacetone, a potent inhibitor of heme biosynthesis: Effect on cell growth, heme content and δ-aminolevulinic acid dehydratase activity of malignant murine erythroleukemia cells
-
Ebert PS, Hess RA, Frykholm BC, Tschudy DP (1979) Succinylacetone, a potent inhibitor of heme biosynthesis: Effect on cell growth, heme content and δ-aminolevulinic acid dehydratase activity of malignant murine erythroleukemia cells. Biochem Biophys Res Commun 88(4):1382-1390.
-
(1979)
Biochem Biophys Res Commun
, vol.88
, Issue.4
, pp. 1382-1390
-
-
Ebert, P.S.1
Hess, R.A.2
Frykholm, B.C.3
Tschudy, D.P.4
-
39
-
-
2942635307
-
Heme deficiency causes apoptosis but does not increase ROS generation in HeLa cells
-
Ye W, Zhang L (2004) Heme deficiency causes apoptosis but does not increase ROS generation in HeLa cells. Biochem Biophys Res Commun 319(4):1065-1071.
-
(2004)
Biochem Biophys Res Commun
, vol.319
, Issue.4
, pp. 1065-1071
-
-
Ye, W.1
Zhang, L.2
-
40
-
-
33744520104
-
Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex
-
Han J, et al. (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125(5):887-901.
-
(2006)
Cell
, vol.125
, Issue.5
, pp. 887-901
-
-
Han, J.1
-
41
-
-
23044502585
-
Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences
-
Zeng Y, Cullen BR (2005) Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 280(30):27595-27603.
-
(2005)
J Biol Chem
, vol.280
, Issue.30
, pp. 27595-27603
-
-
Zeng, Y.1
Cullen, B.R.2
-
42
-
-
0028821439
-
Heme binds to a short sequence that serves a regulatory function in diverse proteins
-
Zhang L, Guarente L (1995) Heme binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J 14(2):313-320.
-
(1995)
EMBO J
, vol.14
, Issue.2
, pp. 313-320
-
-
Zhang, L.1
Guarente, L.2
-
43
-
-
33747453769
-
Heme: A versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases
-
Mense SM, Zhang L (2006) Heme: A versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res 16(8):681-692.
-
(2006)
Cell Res
, vol.16
, Issue.8
, pp. 681-692
-
-
Mense, S.M.1
Zhang, L.2
-
44
-
-
81755166902
-
Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs
-
Kozakowska M, et al. (2012) Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs. Antioxid Redox Signal 16(2):113-127.
-
(2012)
Antioxid Redox Signal
, vol.16
, Issue.2
, pp. 113-127
-
-
Kozakowska, M.1
|