-
1
-
-
15044357936
-
Survival model predictive accuracy and ROC curves
-
Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC curves. Biometrics. 2005; 61(1):92-105.
-
(2005)
Biometrics
, vol.61
, Issue.1
, pp. 92-105
-
-
Heagerty, P.J.1
Zheng, Y.2
-
2
-
-
39149116738
-
Evaluating the ROC performance of markers for future events
-
Pepe MS, Zheng Y, Jin Y, Huang Y, Parikh CR, Levy WC. Evaluating the ROC performance of markers for future events. Lifetime Data Anal. 2008; 14(1):86-113.
-
(2008)
Lifetime Data Anal
, vol.14
, Issue.1
, pp. 86-113
-
-
Pepe, M.S.1
Zheng, Y.2
Jin, Y.3
Huang, Y.4
Parikh, C.R.5
Levy, W.C.6
-
3
-
-
84926314737
-
A strategy to build and validate a prognostic biomarker model based on rt-qpcr gene expression and clinical covariates
-
Tournoud M, Larue A, Cazalis MA, Venet F, Pachot A, Monneret G, Lepape A, Veyrieras JB. A strategy to build and validate a prognostic biomarker model based on rt-qpcr gene expression and clinical covariates. BMC Bioinformatics. 2015; 16(1):106.
-
(2015)
BMC Bioinformatics
, vol.16
, Issue.1
, pp. 106
-
-
Tournoud, M.1
Larue, A.2
Cazalis, M.A.3
Venet, F.4
Pachot, A.5
Monneret, G.6
Lepape, A.7
Veyrieras, J.B.8
-
4
-
-
84896904787
-
On the validity of time-dependent AUC estimators
-
Schmid M, Kestler HA, Potapov S. On the validity of time-dependent AUC estimators. Brief Bioinform. 2015; 16:153-68.
-
(2015)
Brief Bioinform
, vol.16
, pp. 153-168
-
-
Schmid, M.1
Kestler, H.A.2
Potapov, S.3
-
5
-
-
84941652276
-
A weighting approach for judging the effect of patient strata on high-dimensional risk prediction signatures
-
Weyer V, Binder H. A weighting approach for judging the effect of patient strata on high-dimensional risk prediction signatures. BMC Bioinformatics. 2015; 16(1):294.
-
(2015)
BMC Bioinformatics
, vol.16
, Issue.1
, pp. 294
-
-
Weyer, V.1
Binder, H.2
-
6
-
-
0031015557
-
The lasso method for variable selection in the Cox model
-
Tibshirani R, et al.The lasso method for variable selection in the Cox model. Stat Med. 1997; 16(4):385-95.
-
(1997)
Stat Med
, vol.16
, Issue.4
, pp. 385-395
-
-
Tibshirani, R.1
-
7
-
-
77952568988
-
1 penalized estimation in the cox proportional hazards model
-
1 penalized estimation in the cox proportional hazards model. Biom J. 2010; 551(1):70-84.
-
(2010)
Biom J
, vol.551
, Issue.1
, pp. 70-84
-
-
Goeman, J.J.1
-
8
-
-
76649133296
-
Survival analysis with high-dimensional covariates
-
Witten DM, Tibshirani R. Survival analysis with high-dimensional covariates. Stat Methods Med Res. 2010; 19(1):29-51.
-
(2010)
Stat Methods Med Res
, vol.19
, Issue.1
, pp. 29-51
-
-
Witten, D.M.1
Tibshirani, R.2
-
9
-
-
80052431188
-
Support vector methods for survival analysis: A comparison between ranking and regression approaches
-
Van Belle V, Pelckmans K, Van Huffel S, Suykens JA. Support vector methods for survival analysis: A comparison between ranking and regression approaches. Artif Intell Med. 2011; 53:107-18.
-
(2011)
Artif Intell Med
, vol.53
, pp. 107-118
-
-
Van Belle, V.1
Pelckmans, K.2
Van Huffel, S.3
Suykens, J.A.4
-
10
-
-
57449111248
-
Random survival forests
-
Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann. Appl. Stat. 2008; 2(3):841-60.
-
(2008)
Ann. Appl. Stat.
, vol.2
, Issue.3
, pp. 841-860
-
-
Ishwaran, H.1
Kogalur, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
11
-
-
84944363874
-
Evaluating the yield of medical tests
-
Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. J Am Med Assoc. 1982; 247(18):2543-6.
-
(1982)
J Am Med Assoc
, vol.247
, Issue.18
, pp. 2543-2546
-
-
Harrell, F.E.1
Califf, R.M.2
Pryor, D.B.3
Lee, K.L.4
Rosati, R.A.5
-
12
-
-
0021135218
-
Regression modeling strategies for improved prognostic prediction
-
Harrell FE, Lee KL, Califf RM, et al.Regression modeling strategies for improved prognostic prediction. Stat Med. 1984; 3(2):143-52.
-
(1984)
Stat Med
, vol.3
, Issue.2
, pp. 143-152
-
-
Harrell, F.E.1
Lee, K.L.2
Califf, R.M.3
-
13
-
-
84866436885
-
A comparison of estimators to evaluate the discriminatory power of time-to-event models
-
Schmid M, Potapov S. A comparison of estimators to evaluate the discriminatory power of time-to-event models. Stat Med. 2012; 31(23):2588-609.
-
(2012)
Stat Med
, vol.31
, Issue.23
, pp. 2588-2609
-
-
Schmid, M.1
Potapov, S.2
-
14
-
-
84896968781
-
Boosting the concordance index for survival data - a unified framework to derive and evaluate biomarker combinations
-
Mayr A, Schmid M. Boosting the concordance index for survival data - a unified framework to derive and evaluate biomarker combinations. PloS ONE. 2014; 9(1):84483.
-
(2014)
PloS ONE
, vol.9
, Issue.1
, pp. 84483
-
-
Mayr, A.1
Schmid, M.2
-
15
-
-
1042301961
-
Evaluating a new markers predictive contribution
-
Kattan MW. Evaluating a new markers predictive contribution. Clin Cancer Res. 2004; 10(3):822-4.
-
(2004)
Clin Cancer Res
, vol.10
, Issue.3
, pp. 822-824
-
-
Kattan, M.W.1
-
16
-
-
3242770671
-
Overall c as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation
-
Pencina MJ, D'Agostino RB. Overall c as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med. 2004; 23(13):2109-23.
-
(2004)
Stat Med
, vol.23
, Issue.13
, pp. 2109-2123
-
-
Pencina, M.J.1
D'Agostino, R.B.2
-
17
-
-
67649666999
-
Evaluation of the performance of survival analysis models: discrimination and calibration measures
-
D'Agostino R, Nam BH. Evaluation of the performance of survival analysis models: discrimination and calibration measures. Handb Stat. 2004; 23:1-25.
-
(2004)
Handb Stat
, vol.23
, pp. 1-25
-
-
D'Agostino, R.1
Nam, B.H.2
-
18
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting (with discussion)
-
Friedman JH, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting (with discussion). Ann Stat. 2000; 28:337-407.
-
(2000)
Ann Stat
, vol.28
, pp. 337-407
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
19
-
-
28444439947
-
Using logitboost classifier to predict protein structural classes
-
Cai YD, Feng KY, Lu WC, Chou KC. Using logitboost classifier to predict protein structural classes. J Theor Biol. 2006; 238(1):172-6.
-
(2006)
J Theor Biol
, vol.238
, Issue.1
, pp. 172-176
-
-
Cai, Y.D.1
Feng, K.Y.2
Lu, W.C.3
Chou, K.C.4
-
20
-
-
84858743801
-
The importance of knowing when to stop - a sequential stopping rule for component-wise gradient boosting
-
Mayr A, Hofner B, Schmid M. The importance of knowing when to stop - a sequential stopping rule for component-wise gradient boosting. Methods Inf Med. 2012; 51(2):178-86.
-
(2012)
Methods Inf Med
, vol.51
, Issue.2
, pp. 178-186
-
-
Mayr, A.1
Hofner, B.2
Schmid, M.3
-
21
-
-
84979016256
-
Explaining the success of adaboost and random forests as interpolating classifiers
-
arXiv preprint arXiv:1504.07676
-
Wyner AJ, Olson M, Bleich J, Mease D. Explaining the success of adaboost and random forests as interpolating classifiers. 2015. arXiv preprint arXiv:1504.07676. http://arxiv.org/abs/1504.07676.
-
(2015)
-
-
Wyner, A.J.1
Olson, M.2
Bleich, J.3
Mease, D.4
-
22
-
-
84971357232
-
Commentary: Prognostic models: Clinically useful or quickly forgotten?
-
Wyatt JC, Altman DG. Commentary: Prognostic models: Clinically useful or quickly forgotten?Br Med J. 1995; 311:1539-41.
-
(1995)
Br Med J
, vol.311
, pp. 1539-1541
-
-
Wyatt, J.C.1
Altman, D.G.2
-
24
-
-
84871371181
-
Variable selection with error control: Another look at stability selection
-
Shah RD, Samworth RJ. Variable selection with error control: Another look at stability selection. J R Stat Soc Ser B Stat Methodol. 2013; 75(1):55-80.
-
(2013)
J R Stat Soc Ser B Stat Methodol.
, vol.75
, Issue.1
, pp. 55-80
-
-
Shah, R.D.1
Samworth, R.J.2
-
25
-
-
84873517125
-
A PAUC-based estimation technique for disease classification and biomarker selection
-
Schmid M, Hothorn T, Krause F, Rabe C. A PAUC-based estimation technique for disease classification and biomarker selection. Stat Appl Genet Mol Biol. 2012; 11(5). doi: http://dx.doi.org/10.1515/1544-6115.1792.
-
(2012)
Stat Appl Genet Mol Biol.
, vol.11
, Issue.5
-
-
Schmid, M.1
Hothorn, T.2
Krause, F.3
Rabe, C.4
-
26
-
-
84931262233
-
Controlling false discoveries in high-dimensional situations: Boosting with stability selection
-
Hofner B, Boccuto L, Göker B. Controlling false discoveries in high-dimensional situations: Boosting with stability selection. BMC Bioinformatics. 2015; 16(144). doi: http://dx.doi.org/10.1186/s12859-015-0575-3.
-
(2015)
BMC Bioinformatics.
, vol.16
, Issue.144
-
-
Hofner, B.1
Boccuto, L.2
Göker, B.3
-
27
-
-
34250652449
-
Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independentvalidation series
-
Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, d'Assignies MS, Bergh J, Lidereau R, Ellis P, Harris AL, Klijn JGM, Foekens JA, Cardoso F, Piccart MJ, Buyse M, Sotiriou C. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independentvalidation series. Clin Cancer Res. 2007; 13:3207-214.
-
(2007)
Clin Cancer Res
, vol.13
, pp. 3207-3214
-
-
Desmedt, C.1
Piette, F.2
Loi, S.3
Wang, Y.4
Lallemand, F.5
Haibe-Kains, B.6
Viale, G.7
Delorenzi, M.8
Zhang, Y.9
d'Assignies, M.S.10
Bergh, J.11
Lidereau, R.12
Ellis, P.13
Harris, A.L.14
Klijn, J.G.M.15
Foekens, J.A.16
Cardoso, F.17
Piccart, M.J.18
Buyse, M.19
Sotiriou, C.20
more..
-
28
-
-
79954466848
-
On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
-
Uno H, Cai T, Pencina MJ, D'Agostino RB, Wei LJ. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011; 30(10):1105-17.
-
(2011)
Stat Med
, vol.30
, Issue.10
, pp. 1105-1117
-
-
Uno, H.1
Cai, T.2
Pencina, M.J.3
D'Agostino, R.B.4
Wei, L.J.5
-
29
-
-
84877614360
-
Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring
-
Gerds TA, Kattan MW, Schumacher M, Yu C. Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Stat Med. 2013; 32(13):2173-84.
-
(2013)
Stat Med
, vol.32
, Issue.13
, pp. 2173-2184
-
-
Gerds, T.A.1
Kattan, M.W.2
Schumacher, M.3
Yu, C.4
-
30
-
-
85027931133
-
Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic
-
Wang M, Long Q. Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic. Biometrics. 2016. doi: http://dx.doi.org/10.1111/biom.12470.
-
(2016)
Biometrics.
-
-
Wang, M.1
Long, Q.2
-
31
-
-
30944433977
-
A time-dependent discrimination index for survival data
-
Antolini L, Boracchi P, Biganzoli E. A time-dependent discrimination index for survival data. Stat Med. 2005; 24(24):3927-44.
-
(2005)
Stat Med
, vol.24
, Issue.24
, pp. 3927-3944
-
-
Antolini, L.1
Boracchi, P.2
Biganzoli, E.3
-
32
-
-
27944450863
-
Concordance probability and discriminatory power in proportional hazards regression
-
Gönen M, Heller G. Concordance probability and discriminatory power in proportional hazards regression. Biometrika. 2005; 92(4):965-70.
-
(2005)
Biometrika
, vol.92
, Issue.4
, pp. 965-970
-
-
Gönen, M.1
Heller, G.2
-
33
-
-
55349134907
-
A semiparametric approach for the covariate specific ROC curve with survival outcome
-
947-965.
-
Song X, Zhou XH. A semiparametric approach for the covariate specific ROC curve with survival outcome. Stat Sinica. 2008; 18(947-965):84.
-
(2008)
Stat Sinica
, vol.18
, pp. 84
-
-
Song, X.1
Zhou, X.H.2
-
34
-
-
1042274712
-
Unified methods for censored longitudinal data and causality
-
New York: Springer
-
van der Laan MJ, Robins JM. Unified methods for censored longitudinal data and causality. New York: Springer; 2003.
-
(2003)
-
-
van der Laan, M.J.1
Robins, J.M.2
-
35
-
-
41549141939
-
Boosting algorithms: Regularization, prediction and model fitting (with discussion)
-
Bühlmann P, Hothorn T. Boosting algorithms: Regularization, prediction and model fitting (with discussion). Stat Sci. 2007; 22:477-522.
-
(2007)
Stat Sci
, vol.22
, pp. 477-522
-
-
Bühlmann, P.1
Hothorn, T.2
-
36
-
-
84914169260
-
The evolution of boosting algorithms - from machine learning to statistical modelling
-
Mayr A, Binder H, Gefeller O, Schmid M. The evolution of boosting algorithms - from machine learning to statistical modelling. Methods Inf Med. 2014; 53(6):419-27.
-
(2014)
Methods Inf Med
, vol.53
, Issue.6
, pp. 419-427
-
-
Mayr, A.1
Binder, H.2
Gefeller, O.3
Schmid, M.4
-
37
-
-
84914104651
-
Extending statistical boosting - an overview of recent methodological developments
-
Mayr A, Binder H, Gefeller O, Schmid M. Extending statistical boosting - an overview of recent methodological developments. Methods Inf Med. 2014; 53(6):428-35.
-
(2014)
Methods Inf Med
, vol.53
, Issue.6
, pp. 428-435
-
-
Mayr, A.1
Binder, H.2
Gefeller, O.3
Schmid, M.4
-
38
-
-
0043245810
-
2 loss: Regression and classification
-
2 loss: Regression and classification. J Am Stat Assoc. 2003; 98:324-38.
-
(2003)
J Am Stat Assoc
, vol.98
, pp. 324-338
-
-
Bühlmann, P.1
Yu, B.2
-
39
-
-
79960127235
-
Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
-
Fenske N, Kneib T, Hothorn T. Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J Am Stat Assoc. 2011; 106(494):494-510.
-
(2011)
J Am Stat Assoc
, vol.106
, Issue.494
, pp. 494-510
-
-
Fenske, N.1
Kneib, T.2
Hothorn, T.3
-
40
-
-
84893967115
-
Model-based boosting in R: A hands-on tutorial using the R package mboost
-
Hofner B, Mayr A, Robinzonov N, Schmid M. Model-based boosting in R: A hands-on tutorial using the R package mboost. Comput Stat. 2014; 29:3-35. doi: http://dx.doi.org/10.1007/s00180-012-0382-5.
-
(2014)
Comput Stat
, vol.29
, pp. 3-35
-
-
Hofner, B.1
Mayr, A.2
Robinzonov, N.3
Schmid, M.4
-
41
-
-
28944437658
-
Regularized ROC method for disease classification and biomarker selection with microarray data
-
Ma S, Huang J. Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics. 2005; 21(24):4356-62.
-
(2005)
Bioinformatics
, vol.21
, Issue.24
, pp. 4356-4362
-
-
Ma, S.1
Huang, J.2
-
42
-
-
84923930979
-
A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses
-
Shankar J, Szpakowski S, Solis NV, Mounaud S, Liu H, Losada L, Nierman WC, Filler SG. A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses. BMC Bioinformatics. 2015; 16(1):31.
-
(2015)
BMC Bioinformatics
, vol.16
, Issue.1
, pp. 31
-
-
Shankar, J.1
Szpakowski, S.2
Solis, N.V.3
Mounaud, S.4
Liu, H.5
Losada, L.6
Nierman, W.C.7
Filler, S.G.8
-
43
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B. 1996; 58(1):267-88.
-
(1996)
J R Stat Soc Series B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
44
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn. 2001; 45:5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
45
-
-
84964927929
-
R: A Language and Environment for Statistical Computing
-
Vienna, Austria: R Foundation for Statistical Computing
-
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. http://www.R-project.org.
-
(2015)
-
-
-
46
-
-
84979087694
-
Stabs: Stability Selection with Error Control. 2015. R package version 0.5-1. http://CRAN.R-project.org/package=stabs.
-
Hofner B, Hothorn T. Stabs: Stability Selection with Error Control. 2015. R package version 0.5-1. http://CRAN.R-project.org/package=stabs.
-
-
-
Hofner, B.1
Hothorn, T.2
-
47
-
-
84928174777
-
survAUC: Estimators of Prediction Accuracy for Time-to-event Data
-
R package version 1.0-5
-
Potapov S, Adler W, Schmid M. survAUC: Estimators of Prediction Accuracy for Time-to-event Data. 2012. R package version 1.0-5. http://CRAN.R-project.org/package=survAUC.
-
(2012)
-
-
Potapov, S.1
Adler, W.2
Schmid, M.3
-
48
-
-
79952934063
-
Regularization paths for cox's proportional hazards model via coordinate descent
-
Simon N, Friedman J, Hastie T, Tibshirani R, et al.Regularization paths for cox's proportional hazards model via coordinate descent. J Stat Softw. 2011; 39(5):1-13.
-
(2011)
J Stat Softw
, vol.39
, Issue.5
, pp. 1-13
-
-
Simon, N.1
Friedman, J.2
Hastie, T.3
Tibshirani, R.4
-
49
-
-
33750407091
-
gbm: Generalized Boosted Regression Models
-
R package version 1.6-3.1
-
Ridgeway G. gbm: Generalized Boosted Regression Models. 2010. R package version 1.6-3.1. http://CRAN.R-project.org/package=gbm.
-
(2010)
-
-
Ridgeway, G.1
-
50
-
-
84896737588
-
CoxBoost: Cox Models by Likelihood-based Boosting for a Single Survival Endpoint or Competing Risks
-
R package version 1.4
-
Binder H. CoxBoost: Cox Models by Likelihood-based Boosting for a Single Survival Endpoint or Competing Risks. 2013. R package version 1.4. http://CRAN.R-project.org/package=CoxBoost.
-
(2013)
-
-
Binder, H.1
-
51
-
-
0033619170
-
Assessment and comparison of prognostic classification schemes for survival data
-
Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Stat Med. 1999; 18(17-18):2529-45.
-
(1999)
Stat Med
, vol.18
, Issue.17-18
, pp. 2529-2545
-
-
Graf, E.1
Schmoor, C.2
Sauerbrei, W.3
Schumacher, M.4
-
52
-
-
84942886975
-
Peperr: Parallelised Estimation of Prediction Error
-
R package version 1.1-7
-
Porzelius C, Binder H. Peperr: Parallelised Estimation of Prediction Error. 2013. R package version 1.1-7. http://CRAN.R-project.org/package=peperr.
-
(2013)
-
-
Porzelius, C.1
Binder, H.2
-
53
-
-
84877614877
-
Evaluating random forests for survival analysis using prediction error curves
-
Mogensen UB, Ishwaran H, Gerds TA. Evaluating random forests for survival analysis using prediction error curves. J Stat Softw. 2012; 50(11):1-23.
-
(2012)
J Stat Softw
, vol.50
, Issue.11
, pp. 1-23
-
-
Mogensen, U.B.1
Ishwaran, H.2
Gerds, T.A.3
-
54
-
-
0003440032
-
Survival analysis: techniques for censored and truncated data
-
2nd edn. New York: Springer
-
Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data, 2nd edn. New York: Springer; 2003.
-
(2003)
-
-
Klein, J.P.1
Moeschberger, M.L.2
-
55
-
-
13844310310
-
Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
-
Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005; 365(9460):671-9.
-
(2005)
Lancet
, vol.365
, Issue.9460
, pp. 671-679
-
-
Wang, Y.1
Klijn, J.G.2
Zhang, Y.3
Sieuwerts, A.M.4
Look, M.P.5
Yang, F.6
Talantov, D.7
Timmermans, M.8
Meijer-van Gelder, M.E.9
Yu, J.10
Jatkoe, T.11
Berns, E.M.12
Atkins, D.13
Foekens, J.A.14
-
56
-
-
84914173494
-
Discussion: Stability selection
-
Hothorn T. Discussion: Stability selection. J R Stat Soc Ser B. 2010; 72:463-4.
-
(2010)
J R Stat Soc Ser B
, vol.72
, pp. 463-464
-
-
Hothorn, T.1
-
57
-
-
84890101314
-
A gradient boosting algorithm for survival analysis via direct optimization of concordance index
-
Chen Y, Jia Z, Mercola D, Xie X. A gradient boosting algorithm for survival analysis via direct optimization of concordance index. Comput Math Methods Med. 2013; 2013. doi: http://dx.doi.org/10.1155/2013/873595.
-
(2013)
Comput Math Methods Med.
, pp. 2013
-
-
Chen, Y.1
Jia, Z.2
Mercola, D.3
Xie, X.4
-
58
-
-
0001669738
-
Measures of dependence for censored survival data
-
Kent JT, O'Quigley J. Measures of dependence for censored survival data. Biometrika. 1988; 75(3):525-34.
-
(1988)
Biometrika
, vol.75
, Issue.3
, pp. 525-534
-
-
Kent, J.T.1
O'Quigley, J.2
-
59
-
-
13644250447
-
Explained randomness in proportional hazards models
-
O'Quigley J, Xu R, Stare J. Explained randomness in proportional hazards models. Stat Med. 2005; 24(3):479-89.
-
(2005)
Stat Med
, vol.24
, Issue.3
, pp. 479-489
-
-
O'Quigley, J.1
Xu, R.2
Stare, J.3
-
60
-
-
79952266675
-
A robust alternative to the Schemper-Henderson estimator of prediction error
-
Schmid M, Hielscher T, Augustin T, Gefeller O. A robust alternative to the Schemper-Henderson estimator of prediction error. Biometrics. 2011; 67(2):524-35.
-
(2011)
Biometrics
, vol.67
, Issue.2
, pp. 524-535
-
-
Schmid, M.1
Hielscher, T.2
Augustin, T.3
Gefeller, O.4
-
61
-
-
85028262710
-
The residual-based predictiveness curve: A visual tool to assess the performance of prediction models
-
Casalicchio G, Bischl B, Boulesteix AL, Schmid M. The residual-based predictiveness curve: A visual tool to assess the performance of prediction models. Biometrics. 2015. doi: 10.1111/biom.12455.
-
(2015)
Biometrics.
-
-
Casalicchio, G.1
Bischl, B.2
Boulesteix, A.L.3
Schmid, M.4
-
62
-
-
77949911450
-
Testing the additional predictive value of high-dimensional molecular data
-
Boulesteix AL, Hothorn T. Testing the additional predictive value of high-dimensional molecular data. BMC Bioinformatics. 2010; 11(78). doi: http://dx.doi.org/10.1186/1471-2105-11-78.
-
(2010)
BMC Bioinformatics.
, vol.11
, Issue.78
-
-
Boulesteix, A.L.1
Hothorn, T.2
-
63
-
-
84978955512
-
A permutation test to analyse systematic bias and random measurement errors of medical devices via boosting location and scale models
-
[Epub ahead of print].
-
Mayr A, Schmid M, Pfahlberg A, Uter W, Gefeller O. A permutation test to analyse systematic bias and random measurement errors of medical devices via boosting location and scale models. Stat Methods Med Res. 2015. [Epub ahead of print].
-
(2015)
Stat Methods Med Res.
-
-
Mayr, A.1
Schmid, M.2
Pfahlberg, A.3
Uter, W.4
Gefeller, O.5
-
64
-
-
0043203327
-
Multiple hypothesis testing in microarray experiments
-
Dudoit S, Shaffer JP, Boldrick JC. Multiple hypothesis testing in microarray experiments. Stat Sci. 2003; 18(1):71-103.
-
(2003)
Stat Sci.
, vol.18
, Issue.1
, pp. 71-103
-
-
Dudoit, S.1
Shaffer, J.P.2
Boldrick, J.C.3
|