메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection

Author keywords

Boosting; Concordance index; High dimensional data; Stability selection; Time to event data; Variable selection

Indexed keywords

BIOMARKERS; CLUSTERING ALGORITHMS; DIAGNOSIS; DISCRIMINATORS; FORECASTING; GENE EXPRESSION; GENES; OPTIMIZATION; REGRESSION ANALYSIS;

EID: 84979031616     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-1149-8     Document Type: Article
Times cited : (35)

References (64)
  • 1
    • 15044357936 scopus 로고    scopus 로고
    • Survival model predictive accuracy and ROC curves
    • Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC curves. Biometrics. 2005; 61(1):92-105.
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 92-105
    • Heagerty, P.J.1    Zheng, Y.2
  • 4
    • 84896904787 scopus 로고    scopus 로고
    • On the validity of time-dependent AUC estimators
    • Schmid M, Kestler HA, Potapov S. On the validity of time-dependent AUC estimators. Brief Bioinform. 2015; 16:153-68.
    • (2015) Brief Bioinform , vol.16 , pp. 153-168
    • Schmid, M.1    Kestler, H.A.2    Potapov, S.3
  • 5
    • 84941652276 scopus 로고    scopus 로고
    • A weighting approach for judging the effect of patient strata on high-dimensional risk prediction signatures
    • Weyer V, Binder H. A weighting approach for judging the effect of patient strata on high-dimensional risk prediction signatures. BMC Bioinformatics. 2015; 16(1):294.
    • (2015) BMC Bioinformatics , vol.16 , Issue.1 , pp. 294
    • Weyer, V.1    Binder, H.2
  • 6
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani R, et al.The lasso method for variable selection in the Cox model. Stat Med. 1997; 16(4):385-95.
    • (1997) Stat Med , vol.16 , Issue.4 , pp. 385-395
    • Tibshirani, R.1
  • 7
    • 77952568988 scopus 로고    scopus 로고
    • 1 penalized estimation in the cox proportional hazards model
    • 1 penalized estimation in the cox proportional hazards model. Biom J. 2010; 551(1):70-84.
    • (2010) Biom J , vol.551 , Issue.1 , pp. 70-84
    • Goeman, J.J.1
  • 8
    • 76649133296 scopus 로고    scopus 로고
    • Survival analysis with high-dimensional covariates
    • Witten DM, Tibshirani R. Survival analysis with high-dimensional covariates. Stat Methods Med Res. 2010; 19(1):29-51.
    • (2010) Stat Methods Med Res , vol.19 , Issue.1 , pp. 29-51
    • Witten, D.M.1    Tibshirani, R.2
  • 9
    • 80052431188 scopus 로고    scopus 로고
    • Support vector methods for survival analysis: A comparison between ranking and regression approaches
    • Van Belle V, Pelckmans K, Van Huffel S, Suykens JA. Support vector methods for survival analysis: A comparison between ranking and regression approaches. Artif Intell Med. 2011; 53:107-18.
    • (2011) Artif Intell Med , vol.53 , pp. 107-118
    • Van Belle, V.1    Pelckmans, K.2    Van Huffel, S.3    Suykens, J.A.4
  • 12
    • 0021135218 scopus 로고
    • Regression modeling strategies for improved prognostic prediction
    • Harrell FE, Lee KL, Califf RM, et al.Regression modeling strategies for improved prognostic prediction. Stat Med. 1984; 3(2):143-52.
    • (1984) Stat Med , vol.3 , Issue.2 , pp. 143-152
    • Harrell, F.E.1    Lee, K.L.2    Califf, R.M.3
  • 13
    • 84866436885 scopus 로고    scopus 로고
    • A comparison of estimators to evaluate the discriminatory power of time-to-event models
    • Schmid M, Potapov S. A comparison of estimators to evaluate the discriminatory power of time-to-event models. Stat Med. 2012; 31(23):2588-609.
    • (2012) Stat Med , vol.31 , Issue.23 , pp. 2588-2609
    • Schmid, M.1    Potapov, S.2
  • 14
    • 84896968781 scopus 로고    scopus 로고
    • Boosting the concordance index for survival data - a unified framework to derive and evaluate biomarker combinations
    • Mayr A, Schmid M. Boosting the concordance index for survival data - a unified framework to derive and evaluate biomarker combinations. PloS ONE. 2014; 9(1):84483.
    • (2014) PloS ONE , vol.9 , Issue.1 , pp. 84483
    • Mayr, A.1    Schmid, M.2
  • 15
    • 1042301961 scopus 로고    scopus 로고
    • Evaluating a new markers predictive contribution
    • Kattan MW. Evaluating a new markers predictive contribution. Clin Cancer Res. 2004; 10(3):822-4.
    • (2004) Clin Cancer Res , vol.10 , Issue.3 , pp. 822-824
    • Kattan, M.W.1
  • 16
    • 3242770671 scopus 로고    scopus 로고
    • Overall c as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation
    • Pencina MJ, D'Agostino RB. Overall c as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med. 2004; 23(13):2109-23.
    • (2004) Stat Med , vol.23 , Issue.13 , pp. 2109-2123
    • Pencina, M.J.1    D'Agostino, R.B.2
  • 17
    • 67649666999 scopus 로고    scopus 로고
    • Evaluation of the performance of survival analysis models: discrimination and calibration measures
    • D'Agostino R, Nam BH. Evaluation of the performance of survival analysis models: discrimination and calibration measures. Handb Stat. 2004; 23:1-25.
    • (2004) Handb Stat , vol.23 , pp. 1-25
    • D'Agostino, R.1    Nam, B.H.2
  • 18
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • Friedman JH, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting (with discussion). Ann Stat. 2000; 28:337-407.
    • (2000) Ann Stat , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 19
    • 28444439947 scopus 로고    scopus 로고
    • Using logitboost classifier to predict protein structural classes
    • Cai YD, Feng KY, Lu WC, Chou KC. Using logitboost classifier to predict protein structural classes. J Theor Biol. 2006; 238(1):172-6.
    • (2006) J Theor Biol , vol.238 , Issue.1 , pp. 172-176
    • Cai, Y.D.1    Feng, K.Y.2    Lu, W.C.3    Chou, K.C.4
  • 20
    • 84858743801 scopus 로고    scopus 로고
    • The importance of knowing when to stop - a sequential stopping rule for component-wise gradient boosting
    • Mayr A, Hofner B, Schmid M. The importance of knowing when to stop - a sequential stopping rule for component-wise gradient boosting. Methods Inf Med. 2012; 51(2):178-86.
    • (2012) Methods Inf Med , vol.51 , Issue.2 , pp. 178-186
    • Mayr, A.1    Hofner, B.2    Schmid, M.3
  • 21
    • 84979016256 scopus 로고    scopus 로고
    • Explaining the success of adaboost and random forests as interpolating classifiers
    • arXiv preprint arXiv:1504.07676
    • Wyner AJ, Olson M, Bleich J, Mease D. Explaining the success of adaboost and random forests as interpolating classifiers. 2015. arXiv preprint arXiv:1504.07676. http://arxiv.org/abs/1504.07676.
    • (2015)
    • Wyner, A.J.1    Olson, M.2    Bleich, J.3    Mease, D.4
  • 22
    • 84971357232 scopus 로고
    • Commentary: Prognostic models: Clinically useful or quickly forgotten?
    • Wyatt JC, Altman DG. Commentary: Prognostic models: Clinically useful or quickly forgotten?Br Med J. 1995; 311:1539-41.
    • (1995) Br Med J , vol.311 , pp. 1539-1541
    • Wyatt, J.C.1    Altman, D.G.2
  • 23
  • 24
    • 84871371181 scopus 로고    scopus 로고
    • Variable selection with error control: Another look at stability selection
    • Shah RD, Samworth RJ. Variable selection with error control: Another look at stability selection. J R Stat Soc Ser B Stat Methodol. 2013; 75(1):55-80.
    • (2013) J R Stat Soc Ser B Stat Methodol. , vol.75 , Issue.1 , pp. 55-80
    • Shah, R.D.1    Samworth, R.J.2
  • 25
    • 84873517125 scopus 로고    scopus 로고
    • A PAUC-based estimation technique for disease classification and biomarker selection
    • Schmid M, Hothorn T, Krause F, Rabe C. A PAUC-based estimation technique for disease classification and biomarker selection. Stat Appl Genet Mol Biol. 2012; 11(5). doi: http://dx.doi.org/10.1515/1544-6115.1792.
    • (2012) Stat Appl Genet Mol Biol. , vol.11 , Issue.5
    • Schmid, M.1    Hothorn, T.2    Krause, F.3    Rabe, C.4
  • 26
    • 84931262233 scopus 로고    scopus 로고
    • Controlling false discoveries in high-dimensional situations: Boosting with stability selection
    • Hofner B, Boccuto L, Göker B. Controlling false discoveries in high-dimensional situations: Boosting with stability selection. BMC Bioinformatics. 2015; 16(144). doi: http://dx.doi.org/10.1186/s12859-015-0575-3.
    • (2015) BMC Bioinformatics. , vol.16 , Issue.144
    • Hofner, B.1    Boccuto, L.2    Göker, B.3
  • 28
    • 79954466848 scopus 로고    scopus 로고
    • On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
    • Uno H, Cai T, Pencina MJ, D'Agostino RB, Wei LJ. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011; 30(10):1105-17.
    • (2011) Stat Med , vol.30 , Issue.10 , pp. 1105-1117
    • Uno, H.1    Cai, T.2    Pencina, M.J.3    D'Agostino, R.B.4    Wei, L.J.5
  • 29
    • 84877614360 scopus 로고    scopus 로고
    • Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring
    • Gerds TA, Kattan MW, Schumacher M, Yu C. Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Stat Med. 2013; 32(13):2173-84.
    • (2013) Stat Med , vol.32 , Issue.13 , pp. 2173-2184
    • Gerds, T.A.1    Kattan, M.W.2    Schumacher, M.3    Yu, C.4
  • 30
    • 85027931133 scopus 로고    scopus 로고
    • Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic
    • Wang M, Long Q. Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic. Biometrics. 2016. doi: http://dx.doi.org/10.1111/biom.12470.
    • (2016) Biometrics.
    • Wang, M.1    Long, Q.2
  • 31
    • 30944433977 scopus 로고    scopus 로고
    • A time-dependent discrimination index for survival data
    • Antolini L, Boracchi P, Biganzoli E. A time-dependent discrimination index for survival data. Stat Med. 2005; 24(24):3927-44.
    • (2005) Stat Med , vol.24 , Issue.24 , pp. 3927-3944
    • Antolini, L.1    Boracchi, P.2    Biganzoli, E.3
  • 32
    • 27944450863 scopus 로고    scopus 로고
    • Concordance probability and discriminatory power in proportional hazards regression
    • Gönen M, Heller G. Concordance probability and discriminatory power in proportional hazards regression. Biometrika. 2005; 92(4):965-70.
    • (2005) Biometrika , vol.92 , Issue.4 , pp. 965-970
    • Gönen, M.1    Heller, G.2
  • 33
    • 55349134907 scopus 로고    scopus 로고
    • A semiparametric approach for the covariate specific ROC curve with survival outcome
    • 947-965.
    • Song X, Zhou XH. A semiparametric approach for the covariate specific ROC curve with survival outcome. Stat Sinica. 2008; 18(947-965):84.
    • (2008) Stat Sinica , vol.18 , pp. 84
    • Song, X.1    Zhou, X.H.2
  • 34
    • 1042274712 scopus 로고    scopus 로고
    • Unified methods for censored longitudinal data and causality
    • New York: Springer
    • van der Laan MJ, Robins JM. Unified methods for censored longitudinal data and causality. New York: Springer; 2003.
    • (2003)
    • van der Laan, M.J.1    Robins, J.M.2
  • 35
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting (with discussion)
    • Bühlmann P, Hothorn T. Boosting algorithms: Regularization, prediction and model fitting (with discussion). Stat Sci. 2007; 22:477-522.
    • (2007) Stat Sci , vol.22 , pp. 477-522
    • Bühlmann, P.1    Hothorn, T.2
  • 36
    • 84914169260 scopus 로고    scopus 로고
    • The evolution of boosting algorithms - from machine learning to statistical modelling
    • Mayr A, Binder H, Gefeller O, Schmid M. The evolution of boosting algorithms - from machine learning to statistical modelling. Methods Inf Med. 2014; 53(6):419-27.
    • (2014) Methods Inf Med , vol.53 , Issue.6 , pp. 419-427
    • Mayr, A.1    Binder, H.2    Gefeller, O.3    Schmid, M.4
  • 37
    • 84914104651 scopus 로고    scopus 로고
    • Extending statistical boosting - an overview of recent methodological developments
    • Mayr A, Binder H, Gefeller O, Schmid M. Extending statistical boosting - an overview of recent methodological developments. Methods Inf Med. 2014; 53(6):428-35.
    • (2014) Methods Inf Med , vol.53 , Issue.6 , pp. 428-435
    • Mayr, A.1    Binder, H.2    Gefeller, O.3    Schmid, M.4
  • 38
    • 0043245810 scopus 로고    scopus 로고
    • 2 loss: Regression and classification
    • 2 loss: Regression and classification. J Am Stat Assoc. 2003; 98:324-38.
    • (2003) J Am Stat Assoc , vol.98 , pp. 324-338
    • Bühlmann, P.1    Yu, B.2
  • 39
    • 79960127235 scopus 로고    scopus 로고
    • Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
    • Fenske N, Kneib T, Hothorn T. Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J Am Stat Assoc. 2011; 106(494):494-510.
    • (2011) J Am Stat Assoc , vol.106 , Issue.494 , pp. 494-510
    • Fenske, N.1    Kneib, T.2    Hothorn, T.3
  • 40
    • 84893967115 scopus 로고    scopus 로고
    • Model-based boosting in R: A hands-on tutorial using the R package mboost
    • Hofner B, Mayr A, Robinzonov N, Schmid M. Model-based boosting in R: A hands-on tutorial using the R package mboost. Comput Stat. 2014; 29:3-35. doi: http://dx.doi.org/10.1007/s00180-012-0382-5.
    • (2014) Comput Stat , vol.29 , pp. 3-35
    • Hofner, B.1    Mayr, A.2    Robinzonov, N.3    Schmid, M.4
  • 41
    • 28944437658 scopus 로고    scopus 로고
    • Regularized ROC method for disease classification and biomarker selection with microarray data
    • Ma S, Huang J. Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics. 2005; 21(24):4356-62.
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4356-4362
    • Ma, S.1    Huang, J.2
  • 42
    • 84923930979 scopus 로고    scopus 로고
    • A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses
    • Shankar J, Szpakowski S, Solis NV, Mounaud S, Liu H, Losada L, Nierman WC, Filler SG. A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses. BMC Bioinformatics. 2015; 16(1):31.
    • (2015) BMC Bioinformatics , vol.16 , Issue.1 , pp. 31
    • Shankar, J.1    Szpakowski, S.2    Solis, N.V.3    Mounaud, S.4    Liu, H.5    Losada, L.6    Nierman, W.C.7    Filler, S.G.8
  • 43
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B. 1996; 58(1):267-88.
    • (1996) J R Stat Soc Series B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 44
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001; 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 45
    • 84964927929 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • Vienna, Austria: R Foundation for Statistical Computing
    • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. http://www.R-project.org.
    • (2015)
  • 46
    • 84979087694 scopus 로고    scopus 로고
    • Stabs: Stability Selection with Error Control. 2015. R package version 0.5-1. http://CRAN.R-project.org/package=stabs.
    • Hofner B, Hothorn T. Stabs: Stability Selection with Error Control. 2015. R package version 0.5-1. http://CRAN.R-project.org/package=stabs.
    • Hofner, B.1    Hothorn, T.2
  • 47
    • 84928174777 scopus 로고    scopus 로고
    • survAUC: Estimators of Prediction Accuracy for Time-to-event Data
    • R package version 1.0-5
    • Potapov S, Adler W, Schmid M. survAUC: Estimators of Prediction Accuracy for Time-to-event Data. 2012. R package version 1.0-5. http://CRAN.R-project.org/package=survAUC.
    • (2012)
    • Potapov, S.1    Adler, W.2    Schmid, M.3
  • 48
    • 79952934063 scopus 로고    scopus 로고
    • Regularization paths for cox's proportional hazards model via coordinate descent
    • Simon N, Friedman J, Hastie T, Tibshirani R, et al.Regularization paths for cox's proportional hazards model via coordinate descent. J Stat Softw. 2011; 39(5):1-13.
    • (2011) J Stat Softw , vol.39 , Issue.5 , pp. 1-13
    • Simon, N.1    Friedman, J.2    Hastie, T.3    Tibshirani, R.4
  • 49
    • 33750407091 scopus 로고    scopus 로고
    • gbm: Generalized Boosted Regression Models
    • R package version 1.6-3.1
    • Ridgeway G. gbm: Generalized Boosted Regression Models. 2010. R package version 1.6-3.1. http://CRAN.R-project.org/package=gbm.
    • (2010)
    • Ridgeway, G.1
  • 50
    • 84896737588 scopus 로고    scopus 로고
    • CoxBoost: Cox Models by Likelihood-based Boosting for a Single Survival Endpoint or Competing Risks
    • R package version 1.4
    • Binder H. CoxBoost: Cox Models by Likelihood-based Boosting for a Single Survival Endpoint or Competing Risks. 2013. R package version 1.4. http://CRAN.R-project.org/package=CoxBoost.
    • (2013)
    • Binder, H.1
  • 51
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Stat Med. 1999; 18(17-18):2529-45.
    • (1999) Stat Med , vol.18 , Issue.17-18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 52
    • 84942886975 scopus 로고    scopus 로고
    • Peperr: Parallelised Estimation of Prediction Error
    • R package version 1.1-7
    • Porzelius C, Binder H. Peperr: Parallelised Estimation of Prediction Error. 2013. R package version 1.1-7. http://CRAN.R-project.org/package=peperr.
    • (2013)
    • Porzelius, C.1    Binder, H.2
  • 53
    • 84877614877 scopus 로고    scopus 로고
    • Evaluating random forests for survival analysis using prediction error curves
    • Mogensen UB, Ishwaran H, Gerds TA. Evaluating random forests for survival analysis using prediction error curves. J Stat Softw. 2012; 50(11):1-23.
    • (2012) J Stat Softw , vol.50 , Issue.11 , pp. 1-23
    • Mogensen, U.B.1    Ishwaran, H.2    Gerds, T.A.3
  • 54
    • 0003440032 scopus 로고    scopus 로고
    • Survival analysis: techniques for censored and truncated data
    • 2nd edn. New York: Springer
    • Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data, 2nd edn. New York: Springer; 2003.
    • (2003)
    • Klein, J.P.1    Moeschberger, M.L.2
  • 56
    • 84914173494 scopus 로고    scopus 로고
    • Discussion: Stability selection
    • Hothorn T. Discussion: Stability selection. J R Stat Soc Ser B. 2010; 72:463-4.
    • (2010) J R Stat Soc Ser B , vol.72 , pp. 463-464
    • Hothorn, T.1
  • 57
    • 84890101314 scopus 로고    scopus 로고
    • A gradient boosting algorithm for survival analysis via direct optimization of concordance index
    • Chen Y, Jia Z, Mercola D, Xie X. A gradient boosting algorithm for survival analysis via direct optimization of concordance index. Comput Math Methods Med. 2013; 2013. doi: http://dx.doi.org/10.1155/2013/873595.
    • (2013) Comput Math Methods Med. , pp. 2013
    • Chen, Y.1    Jia, Z.2    Mercola, D.3    Xie, X.4
  • 58
    • 0001669738 scopus 로고
    • Measures of dependence for censored survival data
    • Kent JT, O'Quigley J. Measures of dependence for censored survival data. Biometrika. 1988; 75(3):525-34.
    • (1988) Biometrika , vol.75 , Issue.3 , pp. 525-534
    • Kent, J.T.1    O'Quigley, J.2
  • 59
    • 13644250447 scopus 로고    scopus 로고
    • Explained randomness in proportional hazards models
    • O'Quigley J, Xu R, Stare J. Explained randomness in proportional hazards models. Stat Med. 2005; 24(3):479-89.
    • (2005) Stat Med , vol.24 , Issue.3 , pp. 479-489
    • O'Quigley, J.1    Xu, R.2    Stare, J.3
  • 60
    • 79952266675 scopus 로고    scopus 로고
    • A robust alternative to the Schemper-Henderson estimator of prediction error
    • Schmid M, Hielscher T, Augustin T, Gefeller O. A robust alternative to the Schemper-Henderson estimator of prediction error. Biometrics. 2011; 67(2):524-35.
    • (2011) Biometrics , vol.67 , Issue.2 , pp. 524-535
    • Schmid, M.1    Hielscher, T.2    Augustin, T.3    Gefeller, O.4
  • 61
    • 85028262710 scopus 로고    scopus 로고
    • The residual-based predictiveness curve: A visual tool to assess the performance of prediction models
    • Casalicchio G, Bischl B, Boulesteix AL, Schmid M. The residual-based predictiveness curve: A visual tool to assess the performance of prediction models. Biometrics. 2015. doi: 10.1111/biom.12455.
    • (2015) Biometrics.
    • Casalicchio, G.1    Bischl, B.2    Boulesteix, A.L.3    Schmid, M.4
  • 62
    • 77949911450 scopus 로고    scopus 로고
    • Testing the additional predictive value of high-dimensional molecular data
    • Boulesteix AL, Hothorn T. Testing the additional predictive value of high-dimensional molecular data. BMC Bioinformatics. 2010; 11(78). doi: http://dx.doi.org/10.1186/1471-2105-11-78.
    • (2010) BMC Bioinformatics. , vol.11 , Issue.78
    • Boulesteix, A.L.1    Hothorn, T.2
  • 63
    • 84978955512 scopus 로고    scopus 로고
    • A permutation test to analyse systematic bias and random measurement errors of medical devices via boosting location and scale models
    • [Epub ahead of print].
    • Mayr A, Schmid M, Pfahlberg A, Uter W, Gefeller O. A permutation test to analyse systematic bias and random measurement errors of medical devices via boosting location and scale models. Stat Methods Med Res. 2015. [Epub ahead of print].
    • (2015) Stat Methods Med Res.
    • Mayr, A.1    Schmid, M.2    Pfahlberg, A.3    Uter, W.4    Gefeller, O.5
  • 64
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • Dudoit S, Shaffer JP, Boldrick JC. Multiple hypothesis testing in microarray experiments. Stat Sci. 2003; 18(1):71-103.
    • (2003) Stat Sci. , vol.18 , Issue.1 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.P.2    Boldrick, J.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.